
On the Graph Decomposition

1
Yangjun Chen and

2
Yibin Chen

Dept. Applied Computer Science, University of Winnipeg, Canada
1
y.chen@uwinnipeg.ca,

2
chenyibin@gmail.com

Abstract—In this paper, we propose an efficient algorithm to

decompose a directed acyclic graph (DAG) G into a minimized set of

node-disjoint chains, which cover all the nodes of G. For any two nodes u

and v on a chain, if u is above v then there is a path from u to v in G. The

best algorithm for this problem up to now needs O(n3) time, where n is

the number of the nodes of G. Our algorithm, however, needs only

O(max{  n, n m}) time, where n and m are the numbers of the

nodes and arcs of G, and  is G’s width, defined to be the size of a largest

node subset U of G such that for every pair of nodes x, y  U, there does

not exist a path from x to y or from y to x.  is in general much smaller

than n. In addition, by the existing algorithm, (n2) extra space (besides

the space for G itself) is required to maintain the transitive closure of G

to do the task while ours needs only O(n) extra space. Considering the

nowadays applications with massive graphs including millions and even

billions of nodes, like the facebook and twitter, space reduction is also

very important.

Key words: reachability queries, directed graphs, transitive closure,

graph decomposition

I. INTRODUCTION

Let G be a directed acyclic graph (a DAG for short). A chain
cover of G is a set C of node-disjoint chains such that it
covers all the nodes of G, and for any two nodes u and v on a

chain p  C, if u is above v then there is a path from u to v in
G. In this paper, we discuss an efficient algorithm to find a
minimized C for G. As an example, consider the DAG shown
in Fig. 1(a). We can decompose it into a set of two chains, as
shown in Fig. 1(b), which covers all the nodes of G. Fig. 1(c)
shows another possible minimized decomposition.

With the advent of the web technology, the efficient

decomposition of a DAG G into a minimum set of chains
becomes very important; especially, for the applications
involving massive graphs such as social networks, for which
we may quite often ask whether a node v is reachable from
another node u through a path in G. A naive method to answer
such a query is to precompute the reachability between every
pair of nodes in G(V, E) - in other words, to compute the
transitive closure of G, which is also a directed graph G*(V,

E*) with (v, u)  E* iff there is a path from v to u in G. (See
Fig. 2(a) for illustration, in which we show the transitive
closure of the graph shown in Fig. 1(a).)

As it is well known, the transitive closure of G can be

stored as a boolean matrix M such that M[i, j] = 1 if there is
path from i to j; otherwise, M[i, j] = 0 [18]. Then, a
reachability query can be answered in a constant time.
However, this requires O(n

2
) space for storage, which makes

it impractical for very large graphs, where n = |V|. Another
method is to compute the shortest path from u to v over such a
large graph on demand. Therefore, it needs only O(m) space,
but with high query processing cost - O(m) time in the worst
case, where m = |E|. However, if we are able to decompose a
DAG into a minimum set of chains, we can effectively
compress a transitive closure without increasing much query
time, as described below.

Let G be a directed graph. If it is cyclic (i.e., it contains
cycles), we can first find all the strongly connected
components (SCC) in linear time [17] and then collapse each
of them into a representative node. Clearly, all of the nodes in
an SCC are equivalent to its representative as far as
reachability is concerned since each pair of nodes in an SCC
are reachable from each other. In this way, we transform G to
a DAG. Next, we decompose the DAG into a minimum set C
of node-disjoint chains. (Recall that if a node u appears above
another node v on a chain, there is a path from u to v.) Denote

|C| = . We will then
(1) number each chain and number each node on a chain; and
(2) use a pair (i, j) as an index for the jth node on the ith chain.

Besides, each node u on a chain will be associated with an

index sequence of the form: (r, jr) … (i, ji) … (k, jk) (1  r  i

 k  ) such that any node v with index (x, y) is a descendant

of u iff there exists (x, jx) in the sequence with y  jx. (See Fig.
2(b) for illustration.) Such index sequences can be created as
follows.

First of all, we notice that we can associate each leaf node
with an index sequence, which contains only one index, i.e.,
the index assigned to it. Clearly, such an index sequence is

trivially sorted and its length is 1  . Let v be a non-leaf node
with children v1, ..., vl each associated with an index sequence

(b) (a)

Fig. 1. Illustration for DAG decomposition

a
4

a
1
 a

2

a
5
 a

6
 (c)

a
3

a
1

a
3

a
5

a
2

a
4

a
6

a
1

a
3

a
5

a
2

a
4

a
6

a3

a
4

a
1
 a

2

a
5
 a

6

a3

a
1

a
5

a4

a
2

a
6

(1, 1)
(1, 1)(2, 2)
(1, 1)
(1, 2)(2, 2)

(1, 3)
(1, 3)

(2, 1)
(1, 2)(2, 1)

(2, 2)
(1, 3)(2, 2)

(2, 3)
(2, 3)































3

3

22

22

12

21

6

5

4

3

2

1

a

a

a

a

a

a

1 2 index Index sequence

(a) (b) (c)

Fig. 2. Illustration for transitive closure and index
sequences

2014 IEEE Fourth International Conference on Big Data and Cloud Computing

978-1-4799-6719-3/14 $31.00 © 2014 IEEE

DOI 10.1109/BDCloud.2014.118

776

2014 IEEE Fourth International Conference on Big Data and Cloud Computing

978-1-4799-6719-3/14 $31.00 © 2014 IEEE

DOI 10.1109/BDCloud.2014.118

777

mailto:y.chen@uwinnipeg.ca

Li (1 i  l). Assume that |Li|   (1  i  l) and the indexes in
each Li are sorted according to the first element in each index.
We will create an index sequence L for v, which initially
contains only the index assigned to it. Then, we will merge all
Li’s into L one by one. To merge an Li into L, we will scan
both L and Li from left to right. Let (a1, b1) (from L) and (a2,
b2) (from Li) be the index pairs currently encountered. We will
perform the following checkings:

 If a2 > a1, we go to the index next to (a1, b1) (in L) and
compare it with (a2, b2) in a next step.

 If a1 > a2, insert (a2, b2) just before (a1, b1) (in L). Go to the
index next to (a2, b2) (in Li) and compare it with (a1, b1) in
a next step.

 If a1 = a2, we will compare b1 and b2. If b1 < b2, nothing
will be done. If b2 < b1, replace b1 (in (a1, b1)) with b2. In
both cases, we will go to the indexes next to (a1, b1) (in L)
and (a2, b2) (in Li), respectively.

 We will repeat the above three steps until either L or Li is
exhausted. If when L is exhausted Li still has some
remaining elements, append them at the end of L.

Obviously, after all Li’s have been merged into L, the

length of L is still bounded by the number . Denote by dv the
outdegree of v. The time spent on this process is then bounded

by O( 
v

vd ) = O(m), but the space overhead is only

O(n). The query time remains O(1) if we store the index
sequences as a matrix MG, as shown in Fig. 2(c), in which
each entry MG(v, j) is the jth element in the index sequence
associated with node v. So, a node u with index (i, j) is a

descendant of node v iff MG(v, i)  j. In practise,  is in gen-
eral much smaller than n. In this sense, G* is effectively
compressed based on a minimized decomposition of G.

The problem to decompose a DAG is also heavily related
to another theoretical problem: the decomposition of partially
ordered sets (or posets for short) S = (S, ≻) into a minimum
set of chains, where S is a set of elements and ≻ is a reflexive,
transitive, and antisymmetric relation over the elements [7].

In [12], Jagadish discussed an algorithm for finding a
minimum set of node-disjoint paths that cover a directed
acyclic graph G by transforming the problem to a min network

flow [8, 15]. Its time complexity is bounded by O(nm). But a
chain is in general not a path. For any pair of nodes u and v on
a chain, we only require that if u appears above v, there is a
path from u to v. So, the number of paths found by the method
discussed in [12] is generally much larger than the minimal
number of node-disjoint chains. However, if we apply the
Jagadish’s method to G*, we can get a minimized set of

chains for G. But again, O(n
3
) time and (n

2
) space are

required to construct G*.
The method discussed in [3] is also to decompose a DAG

into node-disjoint chains. It runs in O(n
2.5

) time. However, the
decomposition found is not minimum. Our earlier algorithm
[4] works for the same purpose. Its time complexity is
bounded by O(k

1.5
n), where k is the number of the chains, into

which a DAG is decomposed. But in some cases it fails to find
a minimum set of chains since when generating chains, only
part of reachability information is considered. This problem is
removed by [5] and [6] both with the same time complexity

O(n2
). However, in the method discussed in [5] each node is

associated with a large data structure and requires O(n2
)

space in the worst case. By [6], the generated chains may
contain some newly created nodes, but how to remove such
nodes are not discussed at all.

Different from the above strategies, the algorithm
discussed in [9] is to find a maximum k-chain in a planar point

set M  N  N, where N = {0, 1, ..., n - 1} and is defined by
establishing (i´, j´) ≻ (i, j) iff i´ > i and j´ > j. So M is a special
kind of posets. A k-chain is a subset of M that can be covered
by k chains. The time complexity of this algorithm is bounded
by O((n

2
/k)/logn). The algorithms discussed in [13] and [16]

are to find a maximum 2-chain and 1-chain in M, respectively.

[13] needs (nlogn) time while [16] needs only O(pn) time,
where p is the length of the longest chain.

In this paper, we propose an efficient algorithm to find a

minimum set of chains for G. It runs in O(max{  n, n

m}) time and in O(n) space while the best algorithm for this

problem needs O(n
3
) time and (n

2
) space.

The remainder of the paper is organized as follows. In
Section 2, we discuss an algorithm to stratify a DAG into
different levels. Section 3 is devoted to the description of our
algorithm to decompose a DAG into chains, as well as the
analysis of its computational complexities. We conclude our
paper in Section 4.

II. GRAPH STRATIFICATION AND BIPARTITE GRAPHS

Our method is based on a DAG stratification strategy and an
algorithm for finding a maximal matching in a bipartite graph.

We first discuss the DAG stratification.

Definition 1 Let G(V, E) be a DAG. We decompose V into

subsets V0, V1, ..., Vh such that V = V0  V1  ...  Vh and each
node in Vi has its children appearing only in Vi-1, ..., V0 (i =
1, ..., h), where h is the height of G, i.e., the length of the

longest path in G. 

For each node v in Vi, we say, its level is i, denoted level(v)
= i. We also use Cj(v) (j < i) to represent a set of links which
start from v to all those v’s children, which appear in Vj.
Therefore, for each v in Vi, there exist i1, ..., ik (il < i, l = 1, ...,

k) such that the set of its children equals  vCi1
 ...   vC

ki
.

Let Vi = {v1, v2, ..., vl}. We use i
jC (j < i) to represent Cj(v1)

 ...  Cj(vl).
Such a DAG decomposition can be done in O(m) time by

using the following algorithm, in which we use G1\G2 to stand
for a graph obtained by deleting the arcs of G2 from G1; and

G1  G2 for a graph obtained by adding the arcs of G1 and G2
together. In addition, din(v) and dout(v) represent v’s indegree

and v’s outdegree, respectively.
In the above algorithm, we first determine V0, which

contains all those nodes having no outgoing arcs (see line 1).
In the subsequent computation, we determine V1, ..., Vh. In this
process, G is reduced step by step (see line 8), so is dout(v) for

any v  G (see line 9). In order to determine Vi (i > 0), we
will first find all those nodes that have at least one child in Vi-1,
which are stored in a temporary variable W. For each node v
in W (see line 3), we will then check whether it also has some
other children not appearing in Vi-1, which is done by checking
whether dout(v) > k in line 7, where k is the number of v’s

777778

children in Vi-1. If it is the case, it will be removed from W
since it cannot belong to Vi. Concerning the correctness of the
algorithm, we have the following proposition.

ALGORITHM 1. GraphStra(G)

Begin

1. V0 := all the nodes with no outgoing arcs; i := 0;
2. W := all the nodes that have at least one child in V0;

3. while W   do
4. for each node v in W do
5. let v1, ..., vk be v’s children appearing in Vi;
6. Ci(v) := {v1, ..., vk}; (*Here, for simplicity, we use vj

to represent a link from v to vj.*)
7. if dout(v) > k then remove v from W;
8. G := G\{v  v1, ..., v  vk};
9. dout(v) := dout(v) - k;
10. Vi+1 := W; i := i + 1;
11. W := all the nodes that have at least one child in Vi;

end

In the above algorithm, we first determine V0, which
contains all those nodes having no outgoing arcs (see line 1).
In the subsequent computation, we determine V1, ..., Vh. In this
process, G is reduced step by step (see line 8), so is dout(v) for

any v  G (see line 9). In order to determine Vi (i > 0), we
will first find all those nodes that have at least one child in Vi-1,
which are stored in a temporary variable W. For each node v
in W (see line 3), we will then check whether it also has some
other children not appearing in Vi-1, which is done by checking
whether dout(v) > k in line 7, where k is the number of v’s
children in Vi-1. If it is the case, it will be removed from W
since it cannot belong to Vi.

Since each arc is accessed only once in the process, the
time complexity of the algorithm in bounded by O(m).

As an example, consider the graph shown in Fig. 3(a).
Applying the above algorithm to this graph, we will generate a
stratification of the nodes as shown in Fig. 3(b).

In Fig. 3(b), the nodes of the DAG shown in Fig. 3(a) are

divided into three levels: V0 = {a, b, c, d, e}, V1 = {f, g, h},
and V2 = {i, j, k, l}. Associated with each node at each level is
a set of links pointing to its children at different levels. For
example, node g in V1 is associated with three links
respectively to nodes b, c, and d in V0, denoted as C0(g) = {b,
c, d}. (For simplicity, we use C0(g) = {b, c, d} to represent
three links from g to b, c, and d, respectively.)

III. ALGORITHM DESCRIPTION

In this section, we describe our algorithm for the DAG
decomposition. The main idea behind it is to construct a series
of bipartite graphs for G(V, E) based on the graph
stratification and then find a maximum matching for each of
such bipartite graphs using the Hopcroft-Karp algorithm [11].

All these matchings make up a set of node-disjoint chains,
which, however, may not be minimal. In the following, we
first discuss an example to illustrate this idea in Subsection A.
Then, in Subsection B, we define the so-called virtual nodes,
and show how they can be used to efficiently and effectively
reduce the number of node-disjoint chains. Next, in
Subsection C, we discuss how the virtual nodes can be
resolved (removed) from created chains to get the final result.

A. Chain Generation

From the above example, we can see that by simply
combining maximal matchings of bipartite graphs, the number
of formed chains may be larger than the minimized number of
chains. To solve this problem, we need to introduce some
virtual nodes into the original graph, which are used to
transfer the reachability information from lower levels to
higher levels.

1) Basic idea: virtual nodes

We will work bottom-up. During the process, some virtual
nodes may be added to Vi (i = 1, ..., h - 1) level by level.
However, such virtual nodes will be eventually resolved to
obtain the final result.

In the following, we first give a formal definition of virtual
nodes. Then, we describe how a virtual node is established.
We start our discussion with the following specification:

V0′ = V0.

Vi′ = Vi  {virtual nodes added to Vi} for 1  i  h - 1.

Ci = i
i 1C  {all the new arcs from the nodes in Vi to the

virtual nodes added to Vi-1′} for 1  i  h - 1.

B(Vi, Vi-1′; Ci) - the bipartite graph containing Vi and Vi-1′.
Mi - a maximal matching of B(Vi, Vi-1′; Ci).

Definition 2 (virtual nodes) Let G(V, E) be a DAG, divided

into V0, ..., Vh (i.e., V = V0  ...  Vh). Let Mi be a maximal
matching of B(Vi, Vi-1′; Ci) for i = 1, …, h. For each free node
v in Vi-1′ with respect to Mi, a virtual node v′ created for v is a

new node added to Vi (1  i  h - 1), denoted as v = s(v′). 

The goal of virtual nodes is to establish the connection
between the free nodes (with respect to a certain maximum
matching of a bipartite graph) and the nodes that may be
several levels apart. Therefore, for each virtual node v′
(created for v in Vi-1′ and added to Vi), a bunch of virtual arcs
incident to it should be created. Especially, we distinguish
among three kinds of virtual arcs, which are created in
different ways:

inherited arcs - If there is u  Vj (j > i) such that u  v  E,

add u  v′, referred to as an inherited arc.

transitive arcs - If there exist u Vj (j > i) and w  Vi such

that u  w E and w  v Ci, add u  v′ if it has not been
created as an inherited arc, referred to as a transitive arc.

alternating arcs of the first kind - If there exists a node w  Vi-

1′ (covered by Mi) such that one of v’s parents is connected to

w through an -segment (which is an alternating path with
the edges in Mi and the edges not in Mi interleaved, starting
and ending both at a by Mi covered edge) in B(Vi, Vi-1′; Ci),

and u  Vj (j > i) such that one of the two conditions holds:

- u  w  E, or

(b) (a)

e a b c d

f g h

i j k l

f

i

g

j
C0(i) = {a}
C1(i) = {f}

l
C0(l) = {g}

C1(k) = {g}
 h

C0(f) = {a, e} C0(g) = {b, c, d} C0(h) = {d, e}
c e a b d

V2:

V1:

V0:

k

C0(j) = {

C1(j) = {g}

C0(k) = {c}

C0(j) = {a}

Fig. 3. Illustration for DAG stratification

778779

- there is a node x  Vi such that u  x  E and x  w  Ci,

add u  v′ if it has not been created as an inherited or a
transitive arc. It is referred to as an alternating arc of the first
kind. We create such an arc to indicate a possibility to make v
covered by transferring the edges on the corresponding
alternating path from v to w, and then connect u and w.

In addition, a virtual arc from v′ to s(v′) is generated to
record the relationship between v′ and s(v′).

Example 1 Continued with Fig. 3. Relative to M1 of B(V1, V0;
E1) shown in Fig. 4(a), c and e are two free nodes. Then, two
virtual nodes c′ and e′ (for c and e, respectively) will be
created and added to V1. Then, we have V1′ = {f, g, h, c′, e′}.

In addition, seven virtual arcs: i  e′, j  c′, j  e′, k  c′, k

 e′, l  c′, and l  e′ will be generated, shown as eight
dashed arcs in Fig. 4(b).

Among these virtual arcs, k  c′ is an inherited arc since

in the original graph we have k  c (see Fig. 3(a)). But j  c′,

l  c′, and i  e′ are three transitive arcs since c is reachable
respectively from j and l through g in V1, and e is reachable
from i through f in V1. (see Fig. 3(a)).

Finally, j  e′, k  e′ and l  e′ are three alternating arcs.
We join j to e′ since there is a node b that is connected to e’s

parent h through an -segment: b ― g ― d ― h (in B(V1, V0,
E1)) and b is reachable from j in G through a node g (in V1)
(see Fig. 3(a).) For the same reason, we join k to e′, and l to e′.

In Fig. 4(c), we show a possible maximum matching M2 of
B(V2, V1′; C2). Combining M2 and M1, we get a set of five
chains as shown in Fig. 4(d). Of the two virtual nodes c′ and e′,

c′ can be simply removed and connect k to c since k  c′ is an
inherited arc. In order to remove e′, we have to transfer the
edges on the alternating path: b ― g ― d ― h ― e and then
connect l and b, obtaining the final set of 5 chains.

We will call an arc along a chain a chain arc. From the
above example, we can see that how a virtual node is resolved
depends on how it is connected to its parent through a chain
arc. Especially, an alternating arc in fact does not represent a
reachability, but indicates a possibility to connect two nodes
by transferring edges along some alternating path. Thus, we
need to label virtual arcs to represent their properties, and at
the same time indicate at what level a virtual node is added.
Let v′ be a virtual node. Depending on whether its source s(v′)
is an actual node or a virtual node itself, we label the virtual
arcs incident to v′ in two different ways.

Assume that s(v′) is an actual node in Vi-1. Then, v′ is a

virtual node added to Vi and an virtual arc incident to v′: u 

v′ with u  Vj (j > i) will be labeled as follows:

i) If u  v′ is inherited or transitive, its label label(u  v′)
will be set to 0, indicating that s(v′) is reachable from u
(through a path in G).

ii) If u  v′ is an alternating arc, label(u  v′) will be set to i,
indicating that to resolve v′ we need to transfer edges
along an alternating path in B(Vi, Vi-1′; Ci).

If s(v′) itself is a virtual node, we need to label u  v′ a little
bit differently:

iii) If u  v′ is inherited (i.e., u  s(v′) already exists), the

label for it is set to be the same as label(u  s(v′)).

iv) If u  v′ is transitive, there must exist w1, ... wk (k  1) in

Vi such that w1  s(v′), ..., wk  s(v′)  Ci and u  w1, ...,

u  wk  E. We will label u  v′ with min{l1, ..., lk},

where lj = label(wj  s(v′)) (j = 1, ..., k).

v) If u  v′ is an alternating arc, label(u  v′) is set to i (in
the same way as (ii)).

In addition, for convenience, all the original arcs in G are
considered to be labeled with 0.

In the whole process, we will not only create a set of
chains which may contain virtual nodes, but also a new graph
by adding virtual nodes and virtual arcs to G, called a
companion graph of G, denoted as Gc, which will be used for
resolution of virtual nodes.

Example 2 Consider the graph shown in Fig. 5(a). This graph
can be divided into five levels as shown in Fig. 5(b).

In Fig. 6(a), we show the bipartite graph B(V1, V0; C1)
made up of the first two levels. A possible maximal matching
M1 of it is shown in Fig. 6(b). Relative to M1, c, e and z are
three free nodes in V0. So three virtual nodes c′, e′ and z′ will
be created and added to V1. At the same time, 15 arcs will be
created, as shown in Fig. 6(c).

Among them, there are four transitive arcs: t  e′, t  z′,

i  e′, i  z′; six alternating arcs: j  c′, j  e′, k  c′, k 

e′, l  c′, l  e′.

We have the transitive arc t  e′ since e is reachable from
t in G through a node f in V1. The same claim applies to the
other three transitive arcs.

The alternating arc: j  c′ is created since there is an
alternating path c – x – y – g – b in B(V1, V0; C1) and b is
reachable from j in G. In a similar way, we can analyze all the
other five alternating arcs of the first kind.

Thus, V1′ = {c′, e′, z′, g, x, h, f}. B(V2, V1′; C2) is shown in

Fig. 6(d). Assume that the maximal matching M2 found for it

is as shown in Fig. 6(e), and M3 for B(V3, V2′; C3) and M4 for

Fig. 5. A DAG and its stratification

q r s

k l t j

d e z c

V1:

V0:

V4:

V2:

y

o p m n V3:

x h f

(b) (a)

e a b y d

f g h

i j k l

m n o p
l

q r s

t

z

i

a

x

c b

g

Fig. 4. Illustration for virtual nodes and chains with virtual nodes

(c)

(b)

(d)

V2:

V1’:

k

g f h

j

c’ e’

l i

M2: k

g f h

j

c’ e’

l i

e a b c d

k

g f h

j

c’ e’

l i

e a b c d

M1: f g h

(a)

779780

B(V4, V3′; C4) are as shown in Fig. 6(f) and 6(g), respectively.

By combining M1, M2, M3 and M4, we get M1  M2  M3 

M4. This plus all the free nodes in V4 make up a set of eight

chains as shown in Fig. 7(a), and one of them contains only a

single node.

We can simply connect t and z′ since t  z′ is a transitive
arc. We can also transfer the edges on P1 and then connect k
and b as shown in Fig. 7(b). After that, removing e′ will leave
l and e disconnected, resulting in a set of nine chains. It is not
minimum. In Fig. 7(c), we show a possible decomposition of
eight chains. In the next subsection, we discuss how the
problem can be figured out.

2) General algorithm for chain generation

To solve the above problem, we need to slightly modify the
working process. For this, we need a new concept.

Definition 3 (alternating graph) Let B(T, S; E) be a bipartite
graph. Let M be a matching of B(T, S; E). The alternating

graph B


 with respect to M is a directed graph with the
following sets of nodes and arcs:

 V


 = V(B


) = T  S, and

 E


 = E(B


) = {u  v | u  S, v  T, and (u, v)  M} 

 {v  u | u  S, v  T, and (u, v)  E\M}. 

In Fig. 8(a), we show the alternating graph 1B


 with respect

to M1 for B(V1, V0, C1) shown in Fig. 6(a). Assume that the
maximum matching M2 for B(V2, V1, C2) is as shown in Fig.
8(b). Then, the corresponding alternating graph is a graph
shown in Fig. 8(c).

Next, we will combine two consecutive alternating graphs

iB


 = B


(Vi′, Vi-1′; Ci) and 1iB


 = B


(Vi+1, Vi′; Ci+1), denoted as

iB

 1iB


, by connecting each node in Vi+1 to all its reachable

nodes in Vi-1′. In Fig. 9(a), we show 1B


  2B


 for the graph

shown in Fig. 5(a). We notice that in 1B


  2B


, the nodes in

V1 are stored two times and the copy of a node v is considered
to be a different node from v.

What we want is to find a maximum set  of node-disjoint

paths in iB


  1iB


, each starting from a free node u relative to

Mi+1 in Vi+1, and ending at a free node v relative to Mi in Vi-1′,
Let P be such a path which can always be divided into two

parts: P′ and P′′ such that P′ contains only the nodes in iB


while P′′ contains only the nodes in 1iB


. We will create a

virtual node v´ for v, connect it to the last node on P′, and then

Fig. 9. Illustration for combined graphs and node-disjoint paths

V2:

V1:
M1:

V1:

V0:

f g h

i j k l t

x

e a y c d

f x h

z b

g

f g h

i j k l t

x

e a y c d

f x h

z b

g

(a)

(b)

(a)

Fig. 6. Illustration for generation of chains

(d)

V1:

V0:

M1: M2:

(b)

(c)

(e)

(f)

label(t  e’) = 0

label(j  e’) = 1

label(t  z’) = 0

label(k  c’) = 1
label(i  e’) = 0

label(k  e’) = 1

label(i  z’) = 0

label(l  c’) = 1
label(j  c’) = 1

label(l  e’) = 1

V2:

V1’:
M1: f g h

i j k l t

c

’
e

’
z’ x

f g h

i j k l t

c

’
e

’
z

’
x

e a y c d

f x h

z b

g

a y c d e

f x h

z b

g

M3:

q r s

o p
l

M4:

(g)

m n o p
l

i j k l t

f g h

m n

q r s

o p
l

i j k l t

c

’
e

’
z

’
x

V3:

V4:

V2:

V1’:
M1:

Fig. 7. Result after removing
virtual nods

m n o p
l

q r s

f g h

i j k l t

c’ e’ z’ x

a y c d e z b

m n o p
l

q r s

f g h

i j k l t

x

a y c d e z b

m n o p
l

q r s

f g h

i j k l t

x

a y c d e z b

(a) (b)

(c)

Fig. 8. Illustration for

alternating graphs

V1:

V0: e a y c d

f x h

z b

g M2:

f h

i k l t

x

V2:

V1:

f g h

i j k l t

x

(a) (b)

(c)

g

j

780781

transfer the edges on P′. However, for each free node (in Vi-1′)
not appearing on such a path, its virtual node will be added to
Vi+1, for which only inherited and transitive arcs, as well as a
new kind of virtual arcs, called supplementary arcs will be
created.

alternating arcs of the second kind – Let v´ be a virtual node
created for v in Vi-1′ and added to Vi+1. If there exist a free

node w  Vi-1′ (relative to Mi) and a node u  Vj (j > i) such

that one of v’s parents is connected to w through a -segment
(which is an alternating path, starting and ending both at an
edge not covered by Mi) in B(Vi′, Vi-1′; Ci), satisfying one of
the following two conditions:

- u  w  E, or

- there is an alternating path in B


(Vi′, Vi-1′; Ci), which does

not go through any node in , but connects w to a node x

 Vi-1′ such that x is reachable from u,

add u  v′ if it has not been created as an inherited or a

transitive arc. label(u  v′) is set to be i, same as an
alternating arc incident to a virtual node added to Vi′. We
create such an arc to resolve the conflict among free nodes in
the case that they share a same alternating path P to a certain
node. In this case, one free node, for example, node w can get
covered by transferring the edges on P. But some other free
node v which shares P with w may still be able to get covered
along P if it is possible to make w covered along a different

alternating path. To see this, let’s check 1B


  2B


 shown in

Fig. 9(a) again, in which we can find a maximum set of two

paths: P1 = l  b  g  y  x  d  h  e and P2 = t  z

as shown in Fig. 9(b). Then, we add two virtual node e and z
to V1 and a virtual node c to V2. Especially, P1 can be divided

into P1 = l and P1 = b  g  y  x  d  h  e; and P2

into P2 = t and P2 = z. So e will be connected to l

according to P1, and z will be connected to t according to P2.

Furthermore, c will be connected to m and q for the following

reason:

- there is a free node e in V1 which is connected to c’s parent

x through a -segment: x – d – h – e, and

- e is reachable from both m and q in G.

 See Fig. 10(a) for illustration.
In a next step, we will consider V1′, V2′, V3 and determine

new virtual nodes to be added to V2′ and V3, by which any
node in V1′, which does not have parents needn’t be
considered any more. Assume that the maximum matching M2

found for B(V2, V1; C2) is as shown in Fig. 9(b). With virtual
nodes e′, z′ and c′ added, M2 is extended as illustrated in Fig.
10(b). There is no free node in V1′ relative to M2, and thus no
new virtual nodes will be added to V2′. Finally, we will
consider V2′, V3′, V4. Assume that the maximum matching M3

found for B(V3, V2′; C3) is as shown in Fig. 10(c). Then, c´ is a
free node in V2′ relative to M3. We continually assume that the
maximum matching M4 found for B(V4, V3′; C4) is as shown in

Fig. 10(d). A maximum set of node-disjoint paths in 3B


 

4B


contains only one path: P = s  p  r  o  q  i  m

 c′, which can be divided into P′ = s  p  r  o  q and

P′′ = i  m  c′. So the virtual node c′′ created for c′ will be
connected to q, as demonstrated in Fig. 10(e). (We notice that

t does not have parents and therefore no virtual node for it will
be generated.) Transferring edges on P′, we will change M4 to
a matching as shown in Fig. 11(a), and the final chains M1 
M2  M3  M4 is as shown in Fig. 11(b).

According to the above discussion, we design a process,
denoted as VirtualGen(Vi-1′, Vi′, Vi+1, Mi), conducting the
following task:

1. It takes Vi-1′, Vi′, Vi+1, Mi as the input.

2. Find Mi+1 and form iB

 1iB


. Find a maximum set of

node-disjoint paths in iB

 1iB


, each starting from a free

node u relative to Mi+1 in Vi+1, and ending at a free node v
relative to Mi in Vi-1′. For each free node in Vi-1′ appearing

on a path in this set, the created virtual node v is added to
Vi′. For each free node in Vi-1′ not appearing on a path in

this set, the created virtual node v is added to Vi+1. Create
virtual arcs as described above.

3. Mi+1 is used as the output of the process.

Based on this process, the general algorithm for the chain
generation can be formally described as below.

Fig. 11. Illustration for generating virtual nodes

V1:

V0:

V4:

V2:

V3:

e a b y d z c

f g h x e′ z′

i j k l t c′

q r s

m n o p
l

c′′

(a) (b)

q r s

m n o p
l

M4:

q r s

m n o p
l

M4:

Fig. 10. Illustration for generation of virtual nodes

(e)

(a)

V1:

V0:

V4:

V2:

V3:
g

j k l t c′

z′ e′

M2:

n o p
l

j k l t c′

M3:

q r s

m n o p
l

M4:

(b)

(c)

(d)

e a b y d

q r s

z c

f g h x

c′

z′

m n o p
l

i j k l t

e′

label(l  e’) = 1

label(m  c’) = 1
label(t  z) = 0

label(q  c’) = 1

f

i

m

i

e a b y d

q r s

z c

f g h x

c′

z′

m n o p
l

i j k l t

e′

c′′

label(q  c) = 1

h x

781782

ALGORITHM 2. GenChain(stratification of G)

input: a graph stratification.

output: a set of chains which may contain virtual nodes.

begin

1. V0 := V0; V1 := V1;

2. find M1 for B(V1, V0; C1);

3. for i = 1 to h - 1 do

4. { Mi+1 = VirtualGen(Vi-1′, Vi′, Vi+1, Mi); }

5. M := M1  ...  Mh; return M;

end

In the above algorithm, special attention should be paid to
lines 1 - 2, by which the input for the first call of VirtualGen()
is prepared. In the main for-loop, the input for a next call of
VirtualGen() is produced in the current execution of
VirtualGen().

We also notice that at any point in time only the virtual
nodes at the current level and the level just below the current
are associated with supplementary arcs according to the
following analysis.

Assume that before the execution of VirtualGen(Vi-1′, Vi′,
Vi+1, Mi) we have some virtual nodes in Vi′, which are
associated with supplementary arcs. Then, during the
execution of VirtualGen(Vi-1′, Vi′, Vi+1, Mi), it is possible that
some more virtual nodes will be added to both Vi′ and Vi+1.
Especially, the virtual nodes added to Vi+1 may also be
associated with supplementary arcs. Thus, the virtual nodes in
two consecutive levels Vi′ and Vi+1′ can be associated with
supplementary arcs. However, by a next call of VirtualGen(),
i.e., when executing VirtualGen(Vi′, Vi+1′, Vi+2, Mi+1), any
virtual node in Vi′ will become covered, or be promoted to
Vi+1′ or Vi+2 in the sense that a virtual node for it will be
created and added to Vi+1′ or Vi+2. Again, only the virtual
nodes added to Vi+2 can be associated with supplementary arcs.

So, the number of virtual arcs maintained in the process is

bounded by O(n) since the number of supplementary arcs

incident to a virtual node is bounded by O(n).
It remains to show how to find a maximal set of node-

disjoint paths in iB

 1iB


. For this purpose, we define a

maximum flow problem over iB

 1iB


, (with multiple

sources and sinks) as follows:

 Each free node in Vi+1 in Bi+1 is designated as a source.
Each free node in Vi-1′ in Bi is designated as a sink.

 Each arc u  v is associated with a capacity c(u, v) = 1. (If

nodes u, v are not connected, c(u, v) is considered to be 0.)

It is a typical 0-1 network. By finding a maximum flow

over it we will find a maximum set of node-disjoint paths.

We notice that for each node v in iB

 1iB


, either there is

only one arc emanating from it or only one arc entering it.

Then, by using Dinic’s algorithm [8] for a maximum flow

problem over such a 0-1, only O(n m) time is required,

where n and m are the numbers of the nodes and arcs of the

network, respectively. (See pp. 119 – 121 in [15].) Thus, the

cost of this task is bounded by

O( 


 
h

i
iiiiiiii VVVVVVVV

1
1111 |||'||||'||||'||||'|

O n ).

In addition, for each virtual node, once it becomes covered
by a maximum matching when it is promoted to a certain level,
all the virtual arcs incident to it can be removed. So, the extra

space required in bounded by O(n).

B. Virtual Node Resolution

After the chain generation, the next step is to resolve (or say,
to remove) virtual nodes from chains. For this purpose, we
will work top-down along the chains. Two steps will be
carried out:
1. Remove virtual nodes, and at the same time connect some

nodes according to the connectivity represented by them,
and

2. Establish new connections between free nodes by
transferring edges along alternating paths within a bipartite
graph or cross more than one bipartite graph.

In the first step, we will check virtual nodes level by level,
and change Gc (the graph generated during the chain creation)

to another graph G containing part of G’s transitive closure,
which is necessary to find the final result. In this process, we

will first remove all those virtual nodes v with label(u  v)
being the highest (where u is the parent of v along a chain arc),
then the virtual nodes with the labels just smaller than v, and
so on. Thus, when we try to remove virtual nodes v with

label(u  v) = i, all the virtual nodes with higher labels must
have been eliminated. In this step, the following operations
will be conducted.

i) Let v be a virtual node in Vi′. If v does not have a parent
along the corresponding chain, it will be simply removed.

ii) If v has a parent u along a chain with label(u  v) = 0,

remove v and connect u to s(v). label(u  s(v)) is set to 0,

iii) If v has a parent u along a chain with label(u  v) = i,
remove v and connect u to each reachable node in Vi-1.

iv) Construct a combined graph in a way similar to the chain
generation, involving the corresponding bipartite graphs,
where the direction of each arc corresponding an edge
belonging to a maximum matching is reversed.

See Fig. 12 for illustration.

In Fig. 12(a), we show the resulting graph by removing c′′
from the graph shown in Fig. 10(e), by which the parent q of
c′′ along the chain shown in Fig. 11 will be connected to all

Fig. 12. Illustration for virtual node resolution in Gc

(a) (b)

e a b y d

q r s

z c

f g h x z′

m n o p
l

i j k l t

e′

e a b y d

q r s

z c

f g h x

m n o p
l

i j k l t

782783

those nodes in V0 that are reachable from q since label(q  c′′)
= 1. After c′′ is eliminated, c′ becomes a node without a parent
along a chain and is also removed. In Fig. 12(b), e′ and z′ are
continually removed from the graph shown in Fig. 12(a), by
which

- l will be connected to b since label(l  e′) = 1 and b is the
only node in V0 reachable from l, and

- t will be connected to z since label(t  z′) = 0.

After that, we will construct a combined graph as shown in
Fig. 13(a), which contains B(V1, V0′; C1) and B(V2, V1′; C2),
plus node q, as well as the arcs connecting q, l and t to their
respective reachable nodes in V0 (shown in Fig. 14(b)).

We will then find a maximum set of node-disjoint paths

with each starting from a node which is a parent of some
virtual node along a chain, and ending at a node which is an
actual free node relative to Mi in Vi-1′ in B(Vi, Vi-1′; Ci). By
transferring the arcs on these paths, we will get the final
result. For example, in Fig. 13(b), we can see a possible
maximum set of three paths in the graph shown in Fig. 12(a):

P1 = q  a  f  e, P2 = l  b  g  y  x  c, and P3 =

t  z. Transferring the arcs on each of these paths, we will
transform the chains created by the algorithm GenChain() to
a minimum set of chains containing no virtual nodes:

 Along P1, we will connect node q to node a, cut off a  f
on the corresponding chain, and then connect f to e.

 Along P2, we connect node l to node b, cut off b  g,

connect g to y, cut off y  x, and connect x to c.

 Along P3, we connect node t to node z.

Fig. 14 demonstrates the final result.

We will repeat the above process to remove all the virtual
nodes.

IV. CONCLUSION

In this paper, a new algorithm for finding a minimal
decomposition of DAGs is proposed. The algorithm needs

O(max{  n, n m}) time and O(n) space, where n

and m are the number of the nodes and the arcs in a DAG G,

respectively; and  is the width of G.

REFERENCES

 [1] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing a

maximum cardinality matching in a bipartite graph in time

O(), Information Processing Letters, 37(1991), 237 -240.

[2] A.S. Asratian, T. Denley, and R. Haggkvist, Bipartite Graphs

and their Applications, Cambridge University, 1998.

[3] C. Chekuri and M. Bender, An Efficient Approximation

Algorithm for Minimizing Makespan on Uniformly Related

Machines, Journal of Algorithms 41, 212-224(2001).

[4] Y. Chen and Y.B. Chen, An Efficient Algorithm for Answering

Graph Reachability Queries, in Proc. 24th Int. Conf. on Data

Engineering (ICDE 2008), IEEE, April 2008, pp. 892-901.

[5] Y. Chen and Y.B. Chen, On the Decomposition of Posets, in

Proc. 2nd Int. Conf. on Computer Science and Service System

(CSSS 2012), IEEE, Aug. 11-13, Nanjing, China, pp. 1115 -

1119.

[6] Y. Chen and Y.B. Chen, On the Decomposition of Posets into

Minimized Set of Node-Disjoint Chains, 2013 Int. Conf. on

Computer, Networks and Communication Engineering

(ICCNCE 2013), Beijing, China, May 23-24, 2013, pp. 131-135.

[7] R.P. Dilworth, A decomposition theorem for partially ordered

sets, Ann. Math. 51 (1950), pp. 161-166.

[8] E.A. Dinic, Algorithm for solution of a problem of maximum

flow in a network with power estimation, Soviet Mathematics

Doklady, 11(5):1277-1280, 1970.

[9] S. Felsner, L. Wernisch, Maximum k-chains in planar point

sets: combinatorial structure and algorithms, SIAM J. Comp.

28, 1998, pp. 192-209.

[10] D.R. Fulkerson, Note on Dilworth’s embedding theorem for

partially ordered sets, Proc. Amer. Math. Soc. 7(1956), 701-

702.

[11] J.E. Hopcroft, and R.M. Karp, An n2.5 algorithm for maximum

matching in bipartite graphs, SIAM J. Comput. 2(1973), 225-

231.

[12] H.V. Jagadish, "A Compression Technique to Materialize

Transitive Closure," ACM Trans. Database Systems, Vol. 15,

No. 4, 1990, pp. 558 - 598.

[13] R.-D. Lou, M. Sarrafzadeh, An optimal algorithm for the

maximum two-chain problem, SIAM J. Disc. Math. 5(2), 1992,

pp. 285-304.

[14] M.A. Perles, A proof of Dilworth’s decomposition theorem for

partially ordered sets, Israel J. of Math. 1(1963), 105-107.

[15] S. Even, Graph Algorithms, Computer Science Press, Inc.,

Rockville, Maryland, 1979.

[16] H. Goeman, Time and Space Efficient Algorithms for

Decomposing Certain Patially Ordered Sets, PhD thesis,

Department of Mathematics-Science, Rheinischen Friedrich-

Wilhelms Universität Bonn, Germany, Dec. 1999.

[17] R. Tarjan: Depth-first Search and Linear Graph Algorithms,

SIAM J. Compt. Vol. 1. No. 2. June 1972, pp. 146 -140.

[18] H.S. Warren, “A Modification of Warshall’s Algorithm for the

Transitive Closure of Binary Relations,” Commun. ACM 18, 4

(April 1975), 218 - 220.
Fig. 14. Transforming the chains generated by Algorithm

GenChain() to the final result

V1:

V0:

V4:

V2:

V3:

e a b y d z c

f g h x e′ z′

i j k l t c′

q r s

m n o p
l

c′′

e a b y d z c

f g h x

i j k l t

q r s

m n o p
l

Fig. 13. Illustration for global alternating graphs

and node-disjoint paths

(a)
(b)

e a b y d

q r s

z c

f g h x

i j k l t

m n o p
l

i j k l t

f g h x

e b y d

q r s

z c

g h x

j k l t

n o p
l

j k l t

g h

a

f

i

m

i

f x

783784

