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Abstract—In this paper, we propose an efficient algorithm to 

decompose a directed acyclic graph (DAG) G into a minimized set of 

node-disjoint chains, which cover all the nodes of G. For any two nodes u 

and v on a chain, if u is above v then there is a path from u to v in G. The 

best algorithm for this problem up to now needs O(n3) time, where n is 

the number of the nodes of G.  Our algorithm, however, needs only 

O(max{  n, n  m}) time, where n and m are the numbers of the 

nodes and arcs of G, and  is G’s width, defined to be the size of a largest 

node subset U of G such that for every pair of nodes x, y  U, there does 

not exist a path from x to y or from y to x.  is in general much smaller 

than n. In addition, by the existing algorithm, (n2) extra space (besides 

the space for G itself) is required to maintain the transitive closure of G 

to do the task while ours needs only O(n) extra space. Considering the 

nowadays applications with massive graphs including millions and even 

billions of nodes, like the facebook and twitter, space reduction is also 

very important. 

Key words: reachability queries, directed graphs, transitive closure, 

graph decomposition 

I. INTRODUCTION 

Let G be a directed acyclic graph (a DAG for short). A chain 
cover of G is a set C of node-disjoint chains such that it 
covers all the nodes of G, and for any two nodes u and v on a 

chain p  C, if u is above v then there is a path from u to v in 
G. In this paper, we discuss an efficient algorithm to find a 
minimized C for G. As an example, consider the DAG shown 
in Fig. 1(a). We can decompose it into a set of two chains, as 
shown in Fig. 1(b), which covers all the nodes of G. Fig. 1(c) 
shows another possible minimized decomposition. 

 
With the advent of the web technology, the efficient 

decomposition of a DAG G into a minimum set of chains 
becomes very important; especially, for the applications 
involving massive graphs such as social networks, for which 
we may quite often ask whether a node v is reachable from 
another node u through a path in G. A naive method to answer 
such a query is to precompute the reachability between every 
pair of nodes in G(V, E) - in other words, to compute the 
transitive closure of G, which is also a directed graph G*(V, 

E*) with (v, u)  E* iff there is a path from v to u in G. (See 
Fig. 2(a) for illustration, in which we show the transitive 
closure of the graph shown in Fig. 1(a).) 

 
As it is well known, the transitive closure of G can be 

stored as a boolean matrix M such that M[i, j] = 1 if there is 
path from i to j; otherwise, M[i, j] = 0 [18]. Then, a 
reachability query can be answered in a constant time. 
However, this requires O(n

2
) space for storage, which makes 

it impractical for very large graphs, where n = |V|. Another 
method is to compute the shortest path from u to v over such a 
large graph on demand. Therefore, it needs only O(m) space, 
but with high query processing cost - O(m) time in the worst 
case, where m = |E|. However, if we are able to decompose a 
DAG into a minimum set of chains, we can effectively 
compress a transitive closure without increasing much query 
time, as described below. 

Let G be a directed graph. If it is cyclic (i.e., it contains 
cycles), we can first find all the strongly connected 
components (SCC) in linear time [17] and then collapse each 
of them into a representative node. Clearly, all of the nodes in 
an SCC are equivalent to its representative as far as 
reachability is concerned since each pair of nodes in an SCC 
are reachable from each other. In this way, we transform G to 
a DAG. Next, we decompose the DAG into a minimum set C 
of node-disjoint chains. (Recall that if a node u appears above 
another node v on a chain, there is a path from u to v.) Denote 

|C| = . We will then 
(1) number each chain and number each node on a chain; and 
(2) use a pair (i, j) as an index for the jth node on the ith chain. 

Besides, each node u on a chain will be associated with an 

index sequence of the form: (r, jr) … (i, ji)  … (k, jk) (1  r  i 

 k  ) such that any node v with index (x, y) is a descendant 

of u iff there exists (x, jx) in the sequence with y  jx. (See Fig. 
2(b) for illustration.) Such index sequences can be created as 
follows. 

First of all, we notice that we can associate each leaf node 
with an index sequence, which contains only one index, i.e., 
the index assigned to it. Clearly, such an index sequence is 

trivially sorted and its length is 1  . Let v be a non-leaf node 
with children v1, ..., vl each associated with an index sequence 
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Fig. 1. Illustration for DAG decomposition 
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Fig. 2. Illustration for transitive closure and index 
sequences 
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Li (1 i  l). Assume that |Li|   (1  i  l) and the indexes in 
each Li are sorted according to the first element in each index. 
We will create an index sequence L for v, which initially 
contains only the index assigned to it. Then, we will merge all 
Li’s into L one by one. To merge an Li into L, we will scan 
both L and Li from left to right. Let (a1, b1) (from L) and (a2, 
b2) (from Li) be the index pairs currently encountered. We will 
perform the following checkings: 

 If a2 > a1, we go to the index next to (a1, b1) (in L) and 
compare it with (a2, b2) in a next step. 

 If a1 > a2, insert (a2, b2) just before (a1, b1) (in L). Go to the 
index next to (a2, b2) (in Li) and compare it with (a1, b1) in 
a next step. 

 If a1 = a2, we will compare b1 and b2. If b1 < b2, nothing 
will be done. If b2 < b1, replace b1 (in (a1, b1)) with b2. In 
both cases, we will go to the indexes next to (a1, b1) (in L) 
and (a2, b2) (in Li), respectively. 

 We will repeat the above three steps until either L or Li is 
exhausted. If when L is exhausted Li still has some 
remaining elements, append them at the end of L.  

Obviously, after all Li’s have been merged into L, the 

length of L is still bounded by the number . Denote by dv the 
outdegree of v. The time spent on this process is then bounded 

by O(  
v

vd  ) = O(m), but the space overhead is only 

O(n). The query time remains O(1) if we store the index 
sequences as a matrix MG, as shown in Fig. 2(c), in which 
each entry MG(v, j) is the jth element in the index sequence 
associated with node v. So, a node u with index (i, j) is a 

descendant of node v iff MG(v, i)  j. In practise,  is in gen-
eral much smaller than n. In this sense, G* is effectively 
compressed based on a minimized decomposition of G. 

The problem to decompose a DAG is also heavily related 
to another theoretical problem: the decomposition of partially 
ordered sets (or posets for short) S = (S, ≻) into a minimum 
set of chains, where S is a set of elements and ≻ is a reflexive, 
transitive, and antisymmetric relation over the elements [7].  

In [12], Jagadish discussed an algorithm for finding a 
minimum set of node-disjoint paths that cover a directed 
acyclic graph G by transforming the problem to a min network 

flow [8, 15]. Its time complexity is bounded by O(nm). But a 
chain is in general not a path. For any pair of nodes u and v on 
a chain, we only require that if u appears above v, there is a 
path from u to v. So, the number of paths found by the method 
discussed in [12] is generally much larger than the minimal 
number of node-disjoint chains. However, if we apply the 
Jagadish’s method to G*, we can get a minimized set of 

chains for G. But again, O(n
3
) time and (n

2
) space are 

required to construct G*. 
The method discussed in [3] is also to decompose a DAG 

into node-disjoint chains. It runs in O(n
2.5

) time. However, the 
decomposition found is not minimum. Our earlier algorithm 
[4] works for the same purpose. Its time complexity is 
bounded by O(k

1.5
n), where k is the number of the chains, into 

which a DAG is decomposed. But in some cases it fails to find 
a minimum set of chains since when generating chains, only 
part of reachability information is considered. This problem is 
removed by [5] and [6] both with the same time complexity 

O(n2
). However, in the method discussed in [5] each node is 

associated with a large data structure and requires O(n2
) 

space in the worst case. By [6], the generated chains may 
contain some newly created nodes, but how to remove such 
nodes are not discussed at all. 

Different from the above strategies, the algorithm 
discussed in [9] is to find a maximum k-chain in a planar point 

set M  N  N, where N = {0, 1, ..., n - 1} and  is defined by 
establishing (i´, j´) ≻ (i, j) iff i´ > i and j´ > j. So M is a special 
kind of posets. A k-chain is a subset of M that can be covered 
by k chains. The time complexity of this algorithm is bounded 
by O((n

2
/k)/logn). The algorithms discussed in [13] and [16] 

are to find a maximum 2-chain and 1-chain in M, respectively. 

[13] needs (nlogn) time while [16] needs only O(pn) time, 
where p is the length of the longest chain.  

In this paper, we propose an efficient algorithm to find a 

minimum set of chains for G. It runs in O(max{  n, n  

m}) time and in O(n) space while the best algorithm for this 

problem needs O(n
3
) time and (n

2
) space.  

The remainder of the paper is organized as follows. In 
Section 2, we discuss an algorithm to stratify a DAG into 
different levels. Section 3 is devoted to the description of our 
algorithm to decompose a DAG into chains, as well as the 
analysis of its computational complexities. We conclude our 
paper in Section 4. 

II. GRAPH STRATIFICATION AND BIPARTITE GRAPHS 

Our method is based on a DAG stratification strategy and an 
algorithm for finding a maximal matching in a bipartite graph.  

We first discuss the DAG stratification. 

Definition 1 Let G(V, E) be a DAG. We decompose V into 

subsets V0, V1, ..., Vh such that V = V0  V1  ...  Vh and each 
node in Vi has its children appearing only in Vi-1, ..., V0 (i = 
1, ..., h), where h is the height of G, i.e., the length of the 

longest path in G.   

For each node v in Vi, we say, its level is i, denoted level(v) 
= i. We also use Cj(v) (j < i) to represent a set of links which 
start from v to all those v’s children, which appear in Vj. 
Therefore, for each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., 

k) such that the set of its children equals  vCi1
 ...   vC

ki
. 

Let Vi = {v1, v2, ..., vl}. We use i
jC   (j < i) to represent Cj(v1) 

 ...  Cj(vl). 
Such a DAG decomposition can be done in O(m) time by 

using the following algorithm, in which we use G1\G2 to stand 
for a graph obtained by deleting the arcs of G2 from G1; and 

G1  G2 for a graph obtained by adding the arcs of G1 and G2 
together. In addition, din(v) and dout(v) represent v’s indegree 

and v’s outdegree, respectively. 
In the above algorithm, we first determine V0, which 

contains all those nodes having no outgoing arcs (see line 1). 
In the subsequent computation, we determine V1, ..., Vh. In this 
process, G is reduced step by step (see line 8), so is dout(v) for 

any v  G (see line 9). In order to determine Vi (i > 0), we 
will first find all those nodes that have at least one child in Vi-1, 
which are stored in a temporary variable W. For each node v 
in W (see line 3), we will then check whether it also has some 
other children not appearing in Vi-1, which is done by checking 
whether dout(v) > k in line 7, where k is the number of v’s 
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children in Vi-1. If it is the case, it will be removed from W 
since it cannot belong to Vi. Concerning the correctness of the 
algorithm, we have the following proposition. 

ALGORITHM 1. GraphStra(G) 

Begin 

1. V0 := all the nodes with no outgoing arcs; i := 0; 
2. W := all the nodes that have at least one child in V0; 

3. while W   do 
4.  for each node v in W do 
5.   let v1, ..., vk be v’s children appearing in Vi; 
6.  Ci(v) := {v1, ..., vk}; (*Here, for simplicity, we use vj 

to represent a link from v to vj.*) 
7.   if dout(v) > k then remove v from W; 
8.   G := G\{v  v1, ..., v  vk}; 
9.   dout(v) := dout(v) - k; 
10.  Vi+1 := W; i := i + 1; 
11.  W := all the nodes that have at least one child in Vi; 

end  

In the above algorithm, we first determine V0, which 
contains all those nodes having no outgoing arcs (see line 1). 
In the subsequent computation, we determine V1, ..., Vh. In this 
process, G is reduced step by step (see line 8), so is dout(v) for 

any v  G (see line 9). In order to determine Vi (i > 0), we 
will first find all those nodes that have at least one child in Vi-1, 
which are stored in a temporary variable W. For each node v 
in W (see line 3), we will then check whether it also has some 
other children not appearing in Vi-1, which is done by checking 
whether dout(v) > k in line 7, where k is the number of v’s 
children in Vi-1. If it is the case, it will be removed from W 
since it cannot belong to Vi.  

Since each arc is accessed only once in the process, the 
time complexity of the algorithm in bounded by O(m). 

As an example, consider the graph shown in Fig. 3(a). 
Applying the above algorithm to this graph, we will generate a 
stratification of the nodes as shown in Fig. 3(b). 

 
In Fig. 3(b), the nodes of the DAG shown in Fig. 3(a) are 

divided into three levels: V0 = {a, b, c, d, e}, V1 = {f, g, h}, 
and V2 = {i, j, k, l}. Associated with each node at each level is 
a set of links pointing to its children at different levels. For 
example, node g in V1 is associated with three links 
respectively to nodes b, c, and d in V0, denoted as C0(g) = {b, 
c, d}. (For simplicity, we use C0(g) = {b, c, d} to represent 
three links from g to b, c, and d, respectively.) 

III. ALGORITHM DESCRIPTION 

In this section, we describe our algorithm for the DAG 
decomposition. The main idea behind it is to construct a series 
of bipartite graphs for G(V, E) based on the graph 
stratification and then find a maximum matching for each of 
such bipartite graphs using the Hopcroft-Karp algorithm [11]. 

All these matchings make up a set of node-disjoint chains, 
which, however, may not be minimal. In the following, we 
first discuss an example to illustrate this idea in Subsection A. 
Then, in Subsection B, we define the so-called virtual nodes, 
and show how they can be used to efficiently and effectively 
reduce the number of node-disjoint chains. Next, in 
Subsection C, we discuss how the virtual nodes can be 
resolved (removed) from created chains to get the final result. 

A. Chain Generation 

From the above example, we can see that by simply 
combining maximal matchings of bipartite graphs, the number 
of formed chains may be larger than the minimized number of 
chains. To solve this problem, we need to introduce some 
virtual nodes into the original graph, which are used to 
transfer the reachability information from lower levels to 
higher levels. 

1)  Basic idea: virtual nodes 

We will work bottom-up. During the process, some virtual 
nodes may be added to Vi (i = 1, ..., h - 1) level by level. 
However, such virtual nodes will be eventually resolved to 
obtain the final result. 

In the following, we first give a formal definition of virtual 
nodes. Then, we describe how a virtual node is established. 
We start our discussion with the following specification: 

V0′ = V0. 

Vi′ = Vi  {virtual nodes added to Vi} for 1  i  h - 1. 

Ci = i
i 1C  {all the new arcs from the nodes in Vi to the 

virtual nodes added to Vi-1′} for 1  i  h - 1. 

B(Vi, Vi-1′; Ci) - the bipartite graph containing Vi and Vi-1′. 
Mi - a maximal matching of B(Vi, Vi-1′; Ci). 

Definition 2 (virtual nodes) Let G(V, E) be a DAG, divided 

into V0, ..., Vh (i.e., V = V0  ...  Vh). Let Mi be a maximal 
matching of B(Vi, Vi-1′; Ci) for i = 1, …, h. For each free node 
v in Vi-1′ with respect to Mi, a virtual node v′ created for v is a 

new node added to Vi (1  i  h - 1), denoted as v = s(v′).  

The goal of virtual nodes is to establish the connection 
between the free nodes (with respect to a certain maximum 
matching of a bipartite graph) and the nodes that may be 
several levels apart. Therefore, for each virtual node v′ 
(created for v in Vi-1′ and added to Vi), a bunch of virtual arcs 
incident to it should be created. Especially, we distinguish 
among three kinds of virtual arcs, which are created in 
different ways: 

inherited arcs - If there is u  Vj (j > i) such that u  v  E, 

add u  v′, referred to as an inherited arc. 

transitive arcs - If there exist u Vj (j > i) and w  Vi such 

that u  w E and w  v Ci, add u  v′ if it has not been 
created as an inherited arc, referred to as a transitive arc.   

alternating arcs of the first kind - If there exists a node w  Vi-

1′ (covered by Mi) such that one of v’s parents is connected to 

w through an -segment (which is an alternating path with 
the edges in Mi and the edges not in Mi interleaved, starting 
and ending both at a by Mi covered edge) in B(Vi, Vi-1′; Ci), 

and u  Vj (j > i) such that one of the two conditions holds: 

- u  w  E, or 
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Fig. 3. Illustration for DAG stratification 
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- there is a node x  Vi such that u  x  E and x  w  Ci, 

add u  v′ if it has not been created as an inherited or a 
transitive arc. It is referred to as an alternating arc of the first 
kind. We create such an arc to indicate a possibility to make v 
covered by transferring the edges on the corresponding 
alternating path from v to w, and then connect u and w. 

In addition, a virtual arc from v′ to s(v′) is generated to 
record the relationship between v′ and s(v′).   

Example 1 Continued with Fig. 3. Relative to M1 of B(V1, V0; 
E1) shown in Fig. 4(a), c and e are two free nodes. Then, two 
virtual nodes c′ and e′ (for c and e, respectively) will be 
created and added to V1. Then, we have V1′ = {f, g, h, c′, e′}. 

In addition, seven virtual arcs: i  e′, j  c′, j  e′, k  c′, k 

 e′, l  c′, and l  e′ will be generated, shown as eight 
dashed arcs in Fig. 4(b). 

 
Among these virtual arcs, k  c′ is an inherited arc since 

in the original graph we have k  c (see Fig. 3(a)). But j  c′, 

l  c′, and i  e′ are three transitive arcs since c is reachable 
respectively from j and l through g in V1, and e is reachable 
from i through f in V1. (see Fig. 3(a)). 

Finally, j  e′, k  e′ and l  e′ are three alternating arcs. 
We join j to e′ since there is a node b that is connected to e’s 

parent h through an -segment: b ― g ― d ― h (in B(V1, V0, 
E1)) and b is reachable from j in G through a node g (in V1) 
(see Fig. 3(a).) For the same reason, we join k to e′, and l to e′. 

In Fig. 4(c), we show a possible maximum matching M2 of 
B(V2, V1′; C2). Combining M2 and M1, we get a set of five 
chains as shown in Fig. 4(d). Of the two virtual nodes c′ and e′, 

c′ can be simply removed and connect k to c since k  c′ is an 
inherited arc. In order to remove e′, we have to transfer the 
edges on the alternating path: b ― g ― d ― h ― e and then 
connect l and b, obtaining the final set of 5 chains. 

We will call an arc along a chain a chain arc. From the 
above example, we can see that how a virtual node is resolved 
depends on how it is connected to its parent through a chain 
arc. Especially, an alternating arc in fact does not represent a 
reachability, but indicates a possibility to connect two nodes 
by transferring edges along some alternating path. Thus, we 
need to label virtual arcs to represent their properties, and at 
the same time indicate at what level a virtual node is added. 
Let v′ be a virtual node. Depending on whether its source s(v′) 
is an actual node or a virtual node itself, we label the virtual 
arcs incident to v′ in two different ways. 

Assume that s(v′) is an actual node in Vi-1. Then, v′ is a 

virtual node added to Vi and an virtual arc incident to v′: u  

v′ with u  Vj (j > i) will be labeled as follows: 

i) If u  v′ is inherited or transitive, its label label(u  v′) 
will be set to 0, indicating that s(v′) is reachable from u 
(through a path in G). 

ii) If u  v′ is an alternating arc, label(u  v′) will be set to i, 
indicating that to resolve v′ we need to transfer edges 
along an alternating path in B(Vi, Vi-1′; Ci). 

If s(v′) itself is a virtual node, we need to label u  v′ a little 
bit differently: 

iii) If u  v′ is inherited (i.e., u  s(v′) already exists), the 

label for it is set to be the same as label(u  s(v′)). 

iv) If u  v′ is transitive, there must exist w1, ... wk (k  1) in 

Vi such that w1  s(v′), ..., wk  s(v′)  Ci and u  w1, ..., 

u  wk  E. We will label u  v′ with min{l1, ..., lk}, 

where lj = label(wj  s(v′)) (j = 1, ..., k). 

v) If u  v′ is an alternating arc, label(u  v′) is set to i (in 
the same way as (ii)).  

In addition, for convenience, all the original arcs in G are 
considered to be labeled with 0. 

In the whole process, we will not only create a set of 
chains which may contain virtual nodes, but also a new graph 
by adding virtual nodes and virtual arcs to G, called a 
companion graph of G, denoted as Gc, which will be used for 
resolution of virtual nodes. 

Example 2 Consider the graph shown in Fig. 5(a). This graph 
can be divided into five levels as shown in Fig. 5(b). 

 

In Fig. 6(a), we show the bipartite graph B(V1, V0; C1) 
made up of the first two levels. A possible maximal matching 
M1 of it is shown in Fig. 6(b). Relative to M1, c, e and z are 
three free nodes in V0. So three virtual nodes c′, e′ and z′ will 
be created and added to V1. At the same time, 15 arcs will be 
created, as shown in Fig. 6(c).  

Among them, there are four transitive arcs: t  e′, t  z′,  

i  e′, i  z′; six alternating arcs: j  c′, j  e′,  k  c′, k  

e′, l  c′, l  e′. 

We have the transitive arc t  e′ since e is reachable from 
t in G through a node f in V1. The same claim applies to the 
other three transitive arcs.  

The alternating arc: j  c′ is created since there is an 
alternating path c – x – y – g – b in B(V1, V0; C1) and b is 
reachable from j in G. In a similar way, we can analyze all the 
other five alternating arcs of the first kind.  

Thus, V1′ = {c′, e′, z′, g, x, h, f}. B(V2, V1′; C2) is shown in 

Fig. 6(d). Assume that the maximal matching M2 found for it 

is as shown in Fig. 6(e), and M3 for B(V3, V2′; C3) and M4 for 

Fig. 5. A DAG and its stratification 
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B(V4, V3′; C4) are as shown in Fig. 6(f) and 6(g), respectively. 

By combining M1, M2, M3 and M4, we get M1   M2   M3   

M4. This plus all the free nodes in V4 make up a set of eight 

chains as shown in Fig. 7(a), and one of them contains only a 

single node. 

We can simply connect t and z′ since t  z′ is a transitive 
arc. We can also transfer the edges on P1 and then connect k 
and b as shown in Fig. 7(b). After that, removing e′ will leave 
l and e disconnected, resulting in a set of nine chains. It is not 
minimum. In Fig. 7(c), we show a possible decomposition of 
eight chains. In the next subsection, we discuss how the 
problem can be figured out. 

 

 

2) General algorithm for chain generation 

To solve the above problem, we need to slightly modify the 
working process. For this, we need a new concept. 

Definition 3 (alternating graph) Let B(T, S; E) be a bipartite 
graph. Let M be a matching of B(T, S; E). The alternating 

graph B


 with respect to M is a directed graph with the 
following sets of nodes and arcs: 

 V


 = V( B


) = T  S, and 

 E


 = E( B


) = {u  v | u  S, v  T, and (u, v)  M}  

  {v  u | u  S, v  T, and (u, v)  E\M}.  

In Fig. 8(a), we show the alternating graph 1B


 with respect 

to M1 for B(V1, V0, C1) shown in Fig. 6(a). Assume that the 
maximum matching M2 for B(V2, V1, C2) is as shown in Fig. 
8(b). Then, the corresponding alternating graph is a graph 
shown in Fig. 8(c). 

 
Next, we will combine two consecutive alternating graphs 

iB


 = B


(Vi′, Vi-1′; Ci) and 1iB


 = B


(Vi+1, Vi′; Ci+1), denoted as 

iB

 1iB


, by connecting each node in Vi+1 to all its reachable 

nodes in Vi-1′. In Fig. 9(a), we show 1B


  2B


 for the graph 

shown in Fig. 5(a). We notice that in 1B


  2B


, the nodes in 

V1 are stored two times and the copy of a node v is considered 
to be a different node from v. 

 
What we want is to find a maximum set  of node-disjoint 

paths in iB


  1iB


, each starting from a free node u relative to 

Mi+1 in Vi+1, and ending at a free node v relative to Mi in Vi-1′, 
Let P be such a path which can always be divided into two 

parts: P′ and P′′ such that P′ contains only the nodes in iB


 

while P′′ contains only the nodes in 1iB


. We will create a 

virtual node v´ for v, connect it to the last node on P′, and then 

Fig. 9. Illustration for combined graphs and node-disjoint paths 
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transfer the edges on P′. However, for each free node (in Vi-1′) 
not appearing on such a path, its virtual node will be added to 
Vi+1, for which only inherited and transitive arcs, as well as a 
new kind of virtual arcs, called supplementary arcs will be 
created. 

alternating arcs of the second kind – Let v´ be a virtual node 
created for v in Vi-1′ and added to Vi+1. If there exist a free 

node w  Vi-1′ (relative to Mi) and a node u  Vj (j > i) such 

that one of v’s parents is connected to w through a -segment 
(which is an alternating path, starting and ending both at an 
edge not covered by Mi) in B(Vi′, Vi-1′; Ci), satisfying one of 
the following two conditions: 

- u  w  E, or 

- there is an alternating path in B


(Vi′, Vi-1′; Ci), which does 

not go through any node in , but connects w to a node x 

 Vi-1′ such that x is reachable from u, 

add u  v′ if it has not been created as an inherited or a 

transitive arc. label(u  v′)  is set to be i, same as an 
alternating arc incident to a virtual node added to Vi′. We 
create such an arc to resolve the conflict among free nodes in 
the case that they share a same alternating path P to a certain 
node. In this case, one free node, for example, node w can get 
covered by transferring the edges on P. But some other free 
node v which shares P with w may still be able to get covered 
along P if it is possible to make w covered along a different 

alternating path. To see this, let’s check 1B


  2B


 shown in 

Fig. 9(a) again, in which we can find a maximum set of two 

paths: P1 = l  b  g  y  x  d  h  e and P2 = t  z 

as shown in Fig. 9(b). Then, we add two virtual node e and z 
to V1 and a virtual node c to V2. Especially, P1 can be divided 

into P1  = l and P1  = b  g  y  x  d  h  e; and P2 

into P2  = t and P2  = z. So e will be connected to l 

according to P1, and z will be connected to t according to P2. 

Furthermore, c will be connected to m and q for the following  

reason: 

- there is a free node e in V1 which is connected to c’s parent 

x through a -segment: x – d – h – e, and  

- e is reachable from both m and q in G. 

 See Fig. 10(a) for illustration. 
In a next step, we will consider V1′, V2′, V3 and determine 

new virtual nodes to be added to V2′ and V3, by which any 
node in V1′, which does not have parents needn’t be 
considered any more. Assume that the maximum matching M2 

found for B(V2, V1; C2) is as shown in Fig. 9(b). With virtual 
nodes e′, z′ and c′ added, M2 is extended as illustrated in Fig. 
10(b). There is no free node in V1′ relative to M2, and thus no 
new virtual nodes will be added to V2′. Finally, we will 
consider V2′, V3′, V4. Assume that the maximum matching M3 

found for B(V3, V2′; C3) is as shown in Fig. 10(c). Then, c´ is a 
free node in V2′ relative to M3. We continually assume that the 
maximum matching M4 found for B(V4, V3′; C4) is as shown in 

Fig. 10(d). A maximum set of node-disjoint paths in 3B


  

4B


contains only one path: P = s  p  r  o  q  i  m 

 c′, which can be divided into P′ = s  p  r  o  q and 

P′′ = i  m  c′. So the virtual node c′′ created for c′ will be 
connected to q, as demonstrated in Fig. 10(e). (We notice that 

t does not have parents and therefore no virtual node for it will 
be generated.) Transferring edges on P′, we will change M4 to 
a matching as shown in Fig. 11(a), and the final chains M1   
M2   M3   M4 is as shown in Fig. 11(b). 

 

 

According to the above discussion, we design a process, 
denoted as VirtualGen(Vi-1′, Vi′, Vi+1, Mi), conducting the 
following task: 

1. It takes Vi-1′, Vi′, Vi+1, Mi as the input. 

2. Find Mi+1 and form iB

 1iB


. Find a maximum set of 

node-disjoint paths in iB

 1iB


, each starting from a free 

node u relative to Mi+1 in Vi+1, and ending at a free node v 
relative to Mi in Vi-1′. For each free node in Vi-1′ appearing 

on a path in this set, the created virtual node v is added to 
Vi′. For each free node in Vi-1′ not appearing on a path in 

this set, the created virtual node v  is added to Vi+1. Create 
virtual arcs as described above. 

3. Mi+1 is used as the output of the process. 

Based on this process, the general algorithm for the chain 
generation can be formally described as below.  

Fig. 11. Illustration for generating virtual nodes 
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ALGORITHM 2. GenChain(stratification of G) 

input: a graph stratification. 

output: a set of chains which may contain virtual nodes. 

begin 

1. V0 := V0; V1 := V1; 

2. find M1 for B(V1, V0; C1); 

3. for i = 1 to h - 1 do 

4. { Mi+1 = VirtualGen(Vi-1′, Vi′, Vi+1, Mi); } 

5. M := M1   ...   Mh; return M;   

end  

In the above algorithm, special attention should be paid to 
lines 1 - 2, by which the input for the first call of VirtualGen( ) 
is prepared. In the main for-loop, the input for a next call of 
VirtualGen( ) is produced in the current execution of 
VirtualGen( ).  

We also notice that at any point in time only the virtual 
nodes at the current level and the level just below the current 
are associated with supplementary arcs according to the 
following analysis. 

Assume that before the execution of VirtualGen(Vi-1′, Vi′, 
Vi+1, Mi) we have some virtual nodes in Vi′, which are 
associated with supplementary arcs. Then, during the 
execution of VirtualGen(Vi-1′, Vi′, Vi+1, Mi), it is possible that 
some more virtual nodes will be added to both Vi′ and Vi+1. 
Especially, the virtual nodes added to Vi+1 may also be 
associated with supplementary arcs. Thus, the virtual nodes in 
two consecutive levels Vi′ and Vi+1′ can be associated with 
supplementary arcs. However, by a next call of VirtualGen( ), 
i.e., when executing VirtualGen(Vi′, Vi+1′, Vi+2, Mi+1), any 
virtual node in Vi′ will become covered, or be promoted to 
Vi+1′ or Vi+2 in the sense that a virtual node for it will be 
created and added to Vi+1′ or Vi+2. Again, only the virtual 
nodes added to Vi+2 can be associated with supplementary arcs. 

So, the number of virtual arcs maintained in the process is 

bounded by O(n) since the number of supplementary arcs 

incident to a virtual node is bounded by O(n). 
It remains to show how to find a maximal set of node-

disjoint paths in iB

 1iB


. For this purpose, we define a 

maximum flow problem over iB

 1iB


, (with multiple 

sources and sinks) as follows: 

 Each free node in Vi+1 in Bi+1 is designated as a source. 
Each free node in Vi-1′ in Bi is designated as a sink. 

 Each arc u  v is associated with a capacity c(u, v) = 1. (If 

nodes u, v are not connected, c(u, v) is considered to be 0.) 

It is a typical 0-1 network. By finding a maximum flow 

over it we will find a maximum set of node-disjoint paths. 

We notice that for each node v in iB

 1iB


, either there is 

only one arc emanating from it or only one arc entering it. 

Then, by using Dinic’s algorithm [8] for a maximum flow 

problem over such a 0-1, only O( n m) time is required, 

where n and m are the numbers of the nodes and arcs of the 

network, respectively. (See pp. 119 – 121 in [15].) Thus, the 

cost of this task is bounded by  

O(  


 
h

i
iiiiiiii VVVVVVVV

1
1111 |||'||||'||||'||||'|  

O n  ). 

In addition, for each virtual node, once it becomes covered 
by a maximum matching when it is promoted to a certain level, 
all the virtual arcs incident to it can be removed. So, the extra 

space required in bounded by O(n).  

B. Virtual Node Resolution 

After the chain generation, the next step is to resolve (or say, 
to remove) virtual nodes from chains. For this purpose, we 
will work top-down along the chains. Two steps will be 
carried out: 
1. Remove virtual nodes, and at the same time connect some 

nodes according to the connectivity represented by them, 
and 

2. Establish new connections between free nodes by 
transferring edges along alternating paths within a bipartite 
graph or cross more than one bipartite graph.    

In the first step, we will check virtual nodes level by level, 
and change Gc (the graph generated during the chain creation) 

to another graph G containing part of G’s transitive closure, 
which is necessary to find the final result. In this process, we 

will first remove all those virtual nodes v with label(u  v) 
being the highest (where u is the parent of v along a chain arc), 
then the virtual nodes with the labels just smaller than v, and 
so on. Thus, when we try to remove virtual nodes v with 

label(u  v) = i, all the virtual nodes with higher labels must 
have been eliminated. In this step, the following operations 
will be conducted. 

i) Let v be a virtual node in Vi′. If v does not have a parent 
along the corresponding chain, it will be simply removed. 

ii) If v has a parent u along a chain with label(u  v) = 0, 

remove v and connect u to s(v). label(u  s(v)) is set to 0, 

iii) If v has a parent u along a chain with label(u  v) = i, 
remove v and connect u to each reachable node in Vi-1. 

iv) Construct a combined graph in a way similar to the chain 
generation, involving the corresponding bipartite graphs, 
where the direction of each arc corresponding an edge 
belonging to a maximum matching is reversed. 

See Fig. 12 for illustration. 

 

In Fig. 12(a), we show the resulting graph by removing c′′ 
from the graph shown in Fig. 10(e), by which the parent q of 
c′′ along the chain shown in Fig. 11 will be connected to all 

Fig. 12. Illustration for virtual node resolution in Gc 
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those nodes in V0 that are reachable from q since label(q  c′′) 
= 1. After c′′ is eliminated, c′ becomes a node without a parent 
along a chain and is also removed. In Fig. 12(b), e′ and z′ are 
continually removed from the graph shown in Fig. 12(a), by 
which 

- l will be connected to b since label(l  e′) = 1 and b is the 
only node in V0 reachable from l, and 

- t will be connected to z since label(t  z′) = 0. 

After that, we will construct a combined graph as shown in 
Fig. 13(a), which contains B(V1, V0′; C1) and B(V2, V1′; C2), 
plus node q, as well as the arcs connecting q, l and t to their 
respective reachable nodes in V0 (shown in Fig. 14(b)).  

 
We will then find a maximum set of node-disjoint paths 

with each starting from a node which is a parent of some 
virtual node along a chain, and ending at a node which is an 
actual free node relative to Mi in Vi-1′ in B(Vi, Vi-1′; Ci).  By 
transferring the arcs on these paths, we will get the final 
result. For example, in Fig. 13(b), we can see a possible 
maximum set of three paths in the graph shown in Fig. 12(a): 

P1 = q  a  f  e, P2 = l  b  g  y  x  c, and  P3 = 

t  z. Transferring the arcs on each of these paths, we will 
transform the chains created by the algorithm GenChain( ) to 
a minimum set of chains containing no virtual nodes: 

 Along P1, we will connect node q to node a, cut off a  f 
on the corresponding chain, and then connect f to e. 

 Along P2, we connect node l to node b, cut off b  g, 

connect g to y, cut off y  x, and connect x to c. 

 Along P3, we connect node t to node z.  

Fig. 14 demonstrates the final result. 

We will repeat the above process to remove all the virtual 
nodes. 

IV.  CONCLUSION 

In this paper, a new algorithm for finding a minimal 
decomposition of DAGs is proposed. The algorithm needs 

O(max{  n, n  m}) time and O(n) space, where n 

and m are the number of the nodes and the arcs in a DAG G, 

respectively; and  is the width of G.  
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