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Abstract— In this paper, we discuss an efficient and effective index 

mechanism to support set intersections, which are important to 

evaluation of conjunctive queries by search engines. The main idea 

behind it is to decompose an inverted list associated with a word into 

a collection of disjoint sub-lists by arranging a set of word sequences 

into a trie structure. Then, by using a kind of tree encoding, we can 

replace each inverted list with a much shorter interval sequence. In 

this way, we can transform the comparison of document identifiers to 

the checking of interval containment by associating each interval 

with a sub-list. More importantly, for a sorted interval sequence the 

binary search can also be used. With the lowest common ancestors 

being utilized to control the search, a better theoretical time 

complexity than any traditional method can be achieved. 

Key words: Search engine; inverted files; conjunctive queries; 

disjunctive queries. 

1. INTRODUCTION 

Indexing the Web for fast keyword search is among the 

most challenging applications for scalable data management. 

In the past several decades, different indexing methods have 

been developed to speed up text search, such as inverted files 

[14, 15], signature files and signature trees for indexing texts 

[1, 5, 6, 11, 12]; and suffix trees and tries [13] for string 

matching. Especially, different variants of inverted files have 

been used by the Web search engines to find pages satisfying 

conjunctive queries of the form: 

 w1  w2  …  wk.  

A document D is an answer to such a query if it contains 

every wi for 1  i  k. The algorithms developed to evaluate 

such a query typically use inverted lists, each of which 

comprises all those document identifiers containing a certain 

word. So, to find all the documents satisfying a query, set 

intersections have to be conducted. 

There has been considerable study on this topic, such as 

adaptive algorithms [9], melding algorithms [2], building 

additional data structures like skipping lists [32], treaps (a 

kind of balanced trees) [4], hash tables over sorted lists [3, 10], 

and so on. All of them can improve the time complexity at 

most by a constant factor, but none of them is able to break 

through the linear time bottleneck. 

In this work, we explore a different way to speed up the 

operation by constructing indexes, which are substantially 

different from any existing strategy. Concretely, our method 

works as follows.  

- Represent each document as a word sequence, sorted 

decreasingly by the word appearance frequency (referred to 

as a document word sequence, or simply a word sequence), 

and then construct a trie structure over all such sequences.    

- Associate each word with an interval sequence L, where 

each interval in L is created by applying a kind of tree 

encoding over the generated trie structure. 

- Associate each interval, rather than a word, with a set of 

document identifiers. In this way, we decompose an 

inverted list associated with a word into a collection of 

disjoint sub-lists, and transform the comparison of 

document identifiers to the checking of interval 

containment. 

- For each word w, instead of its interval sequence, we will 

construct a balanced binary tree over an even shorter 

interval sequence with each being an interval for a lowest 

common ancestor of some nodes labelled with w. The set 

intersection operation can then be done by searching a 

binary tree against a series of intervals.  

Let x and y be two inverted lists associated with two 

words x and y, respectively. Without loss of generality, 

assume that |x| < |y|. Up to now, the best comparison-based 

algorithm for intersecting Lx and Ly requires O(|x|log
||

||

x

y




) 

time. In contrast, our algorithm needs O(|Ly|log
|| y

x

L


) time, 

where Lx and Ly are the interval sequences created for Lx and 

Ly, respectively; and x is the size of a subset of nodes with 

each being a lowest common ancestor of some nodes labeled 

with x in the trie. Generally, we have |Ly| ≤ |Lx| ≤ |x| and x < 

|x|. This time complexity is significantly better than the 

traditional methods due to the following two key facts: 

1. Each interval corresponds to a sub-list of an inverted list. 

Therefore, in general, the length of an interval sequence 

associated with a word is much shorter than the inverted list 

for that word. Especially, the larger an inverted list is, the 

smaller its corresponding interval sequence. Only for those 

very short inverted lists (associated with low frequent 

words), the sizes of their corresponding interval sequences 

may be near their sizes. 

2. During the search of a tree constructed over intervals, the 

relationship between a set of nodes and their lowest 

common ancestor can be used to skip over a lot of useless 

interval containment checkings while it is not possible by 

any tree built over an inverted list. 

Moreover, our index structure can also be easily maintained. 
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2. NEW INDEX STRUCTURE 

In this section, we mainly discuss our index structure, by 

which each word with high frequency will be assigned an 

interval sequence. We will then associate intervals, instead of 

words, with inverted sub-lists. To clarify this mechanism, we 

will first discuss interval sequences for words in 2.1. Then, in 

2.2, how to associate inverted lists with intervals will be 

addressed. 

2.1 Interval sequences assigned to words 

Let D = {D1, ..., Dn} be a set of documents. Let Wi = 

{wi1, …, 
1ijw } (i = 1,…, n) be all of the words appearing in Di, 

to be indexed.  Denote W =
n

i iW1
, called the vocabulary. For 

each word w  W, we will associate it with an inverted list 

containing all the document identifiers with each containing w. 

Thus, to answer a conjunctive query, a set intersection over 

some inverted lists has to be conducted. 

For the purpose of the new index structure, we will put 

all the words in a sorted sequence  = w1, w2, …, wm (m = |W |) 

such that for any two words w and w if the frequency of w is 

higher than w then w appears before w in , denoted as w ≺ 

w. Then, each document can be represented as a subsequence 

of ; and over all these subsequences a trie structure can be 

established as illustrated in Fig. 1. 

 

In Fig. 1(a), we show a document database containing 11 

documents, their words, and their sorted sequences by the 

word frequency, where we use a character to represent a word 

for simplicity. In Fig. 1(b), we show the inverted lists for all 

the words in the database. The trie over all the sorted 

sequences is shown in Fig. 1(c). 

In this trie, v0 is a virtual root, labeled with an empty 

word  while any other node is labeled with a real word. 

Therefore, all the words on a path from the root to a leaf spell 

a sorted word sequence for a certain document. For instance, 

the path from v0 to v13 corresponds to the sequence: c, f, a, p, 
m. Then, to check whether two words w1 and w2 are in the 

same document, we need only to check whether there exist 

two nodes v1 and v2 such that v1 is labeled with w1, v2 with w2, 

and v1 and v2 are on the same path. This shows that the 

reachability needs to be checked for this task, by which we 

ask whether a node v can reach another node u through a path. 

If it is the case, we denote it as v ⇒u; otherwise, we denote it 

as v ⇏u. 

The reachability problem on tries can be solved very 

efficiently by using a kind of tree encoding [7][8], which 

labels each node v in a trie with an interval Iv = [αv, βv], where 

βv denotes the rank of v in a post-order traversal of the trie. 

Here the ranks are assumed to begin with 1, and all the 

children of a node are assumed to be ordered and fixed during 

the traversal. Furthermore, αv denotes the lowest rank for any 

node u in T[v] (the subtree rooted at v, including v). Thus, for 

any node u in T[v], we have Iu  Iv since the post-order 

traversal visits a node after all of its children have been 

accessed. In Fig. 1(c), we also show such a tree encoding on 

the trie, assuming that the children are ordered from left to 

right. It is easy to see that by interval containment we can 

check whether two nodes are on a same path. For example, v3 

⇒ v19, since
3vI  = [8, 19],

19vI = [12, 12], and [12, 12]  [8, 19]; 

but v2 ⇏ v18, since 
2vI = [5, 7], 

18vI = [11, 11], and [11, 11]  

[5, 7]. 

Let I = [α, β] be an interval. We will refer to α and β as 

I[1] and I[2], respectively. 

Lemma 1 For any two intervals I and I generated for two 

nodes in a trie, one of four relations holds: I  I, I  I, I[2] < 

I[1], or I[2] < I[1]. 

Proof. It is easy to prove.  

However, more than one node may be labeled with the 

same word, such as nodes v1, and v6 in Fig. 1(c). Both are 

labeled with word d. Therefore, a word may be associated 

with more than one node (or say, more than one node’s 

interval). Thus, to know whether two words are in the same 

document, multiple checkings may be needed. For example, to 

check whether d and b are in the same document, we need to 

check v1 and v6 each against both v16 and v19, by using the 

node’s intervals. 

In order to minimize such checkings, we associate each 

word w with a word sequence of the form: Lw = 1
wI , 2

wI , …, k
wI , 

where k is the number of all those nodes labeled with w and 

each i
wI = [ i

wI [1], i
wI [2]] (1  i  k) is an interval associated 

with a certain node labeled with w. In addition, we can sort Lw 

by the interval’s first value such that for 1  i < j  k we have 
i
wL [1] < j

wL [1], which will greatly reduce the time for the 
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Fig. 1: A trie and a set of sorted interval sequences 
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reachability checking. We illustrate this in Fig. 2, in which 

each word in Fig. 1(a) is associated with an interval sequence. 

 
From this figure, we can see that for any two intervals I 

and I in Lw we must have I  I, and I  I since in any trie no 

two nodes on a path are labeled with the same word. 

In addition, for any interval sequence L, we will use L[i] 

to refer to the ith interval in L, and L[i .. j] to the segment from 

the ith to the jth interval in L. 

2.2 Assignment of DocIDs to intervals 

Another important component of our index is to assign 

document identifiers to intervals. An interval I can be 

considered as a representative of some words, i.e., all those 

words appearing on a prefix in the trie, which is a path P from 

the root to a certain node that is labeled with I. Then, the 

document identifiers assigned to I should be those containing 

all the words on P. For example, the words appearing on the 

prefix: v0  v3  v7  v14 in the trie shown in Fig. 1(c) are 

words: , e, d, and f, represented by the interval [10, 13] 

associated with v14. So, the document identifiers assigned to 

[10, 13] should be {6, 7, 8}, indicating that documents D6, D7 

and D8 all contain those three words. See the trie shown in Fig. 

3 for illustration, in which each node v is assigned a set of 

document identifiers that is also considered to be the set 

assigned to the interval associated with v. 

 
Let v be the ending node of a prefix P, labeled with I. 

We will use I, interchangeably v, to represent the set of 

document identifiers containing the words appearing on P. 

Thus, we have, for example,
14v = [10, 13] = {6, 7, 8}. 

Concerning the decomposition of inverted lists, the following 

two lemmas can be easily proved. 

Lemma 1 Let T be a trie constructed over a set of word 

sequences (sorted by the appearance frequency) over W. Then, 

we have 



Ww

w
Tv

v  . 

Proof. Let v1, …, 
wl

v be all the nodes labeled with a word w in 

T. Then w = 


w

i

l

i
v

1

 . Since in T no node is labeled with more 

than one word, we have   
  


Ww

l

i Tv
vv

Ww
w

w

i

1

 .  

Lemma 2 Let u and v be two nodes in a trie T. If u and v are 

not on the same path in T, then u and v are disjoint, i.e., u 

 v = . 

Proof. It is easy to prove.  

Proposition 1 Assume that v1, v2, …, vj be all the nodes 

labeled with the same word w in T. Then, w, the inverted list 

of w (i.e., the list of all the documents identifiers containing 

w) is equal to 
1v ⊎

2v ⊎ … ⊎
jv , where ⊎ represents disjoint 

union over disjoint sets that have no elements in common. 

Proof. Obviously, w is equal to 
1v  

2v  …  
jv . Since 

v1, v2, …, vj are labeled with the same word, they definitely 

appear on different paths as no nodes on a path are labeled 

with the same word. According to Lemma 1, 
1v  

2v  … 

 
jv is equal to 

1v ⊎
2v ⊎… ⊎

jv .  

As an example, see the nodes v1 and v7 in Fig. 2. Both are 

labeled with word d. So the inverted list of d is 
1v ⊎

7v = {1, 

2} ⊎ {4, 5, 6, 7, 8} = {1, 2, 4, 5, 6, 7, 8}. 

3. BASIC UERY EVALUATION 

Based on the new index structure, we design our basic 

algorithms.  

We first consider a query containing only two words w  

w with w ≺ w. It is easy to see that any interval in Lw cannot 

be contained in any interval in Lw. Thus, to check whether w 

and w are in the same document, we need only to check 

whether there exist I  Lw and I  Lw such that I  I. 
Therefore, such a query can be evaluated by running a process, 

denoted as conj(Lw, Lw), to find all those intervals in Lw with 

each being contained in some interval in Lw, stored in a new 

sequence L. 

1. Let Lw = 
1
wI ,

2
wI , …, 

k
wI . Let Lw = 

1
wI  , 

2
wI  , …, 

k
wI

 . L  . 

2. Step through Lw and Lw from left to right. Let 
p
wI and

q
wI  be the 

intervals currently encountered. We will do one of the following 

checkings: 

i) If
p
wI 

q
wI  , append 

q
wI  to the end of L. Move to

1


q
wI if q < k 

(then, in a next step, we will check
p
wI against

1


q
wI ). 

ii) If
p
wI [1] >

q
wI  [2], move to

1


q
wI if q < k. If q = k, stop. 

iii) If
p
wI [2] <

q
wI  [1], move to

1p
wI if p < k (then, in a next step, 

we will check
1p

wI against
q
wI  ).  If p = k, stop.    

Assume that the result is L = I1, I2, …, Il (0 ≤ l ≤ k). 

Then, for each 1 ≤ j ≤ l,   there exists an interval I  Lw such 

e: 

d: 

f: 

a: 

c: 

b: 

[8,19] 

[1, 4][8, 14] 

[1, 2][5, 7][10, 13][16, 18] 

[1, 1][3, 3][5, 6][8, 8][11, 11][16, 16] 

[9, 9][10, 10][15, 15][17, 17] 

[5, 5][12, 12] 

 

Fig. 2: a set of interval sequences 
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Fig. 3: Illustration for assignment of document IDs 

14vI = [10, 13]. The set {6, 7, 8} assigned to v14 can 

be considered as the set assigned to [10, 13].  



 

that Ij  I, and we can return 
1I ⊎… ⊎

kI as the answer. In 

Fig. 4, we illustrate the working process on Lp and Lb shown 

in Fig. 1(b). 

 

In Fig. 4, we first notice that Ld = [1, 4][8, 14] and Lb = 

[5, 5][12, 12]. In the 1
st
 step, we will check 1

dL = [1, 4] against 

1
b

L = [5, 6]. Since 1
dL [2] = 4 < 1

b
L [1] = 5, we will check 2

dL = 

[8, 14] against 1
b

L  in a next step, and find 1
b

L [2] = 5 < 2
dL [1] = 

8. So we will have to do the third step, in which we will check 
2
dL  against 2

b
L  = [12, 12]. Since 2

dL   2
b

L , we get to know that 

d and b are in the same document. 

Lemma 3 Let L = I1, …, Ik be the result of conj(Lw, Lw). Then, 

for each Ij (1 ≤ j ≤ k), there must be an interval I  Lw such 

that I  Ij. For any interval I′  Lw′ but  L, it definitely does 

not belong to any interval in Lw. 

Proof. It is easy to prove.  

Since in this process, each interval in both Lw and Lw is 

accessed only once, the time complexity of this process is 

bounded by O(|Lw| + |Lw|). In addition, the above approach can 

be easily extended to evaluate general queries of the form Q = 

w1  w2  …  wl with w1 ≺ w2 ≺ … ≺ wl and l  1 based on 

the transitivity of intervals: I  I′   I′′   I  I′′. 

What we need to do is to repeatedly apply conj( ) to the 

corresponding interval sequences associated with the query 

words one by one. The following is a formal description of the 

process. 

ALGORITHM conEvaluation(Q) 

begin 

1. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l]; 

2. L := Q[1]; 

3. for (j = 2 to l) do  

4. { L  conj(L, LQ[j]); } 

5. let L = I1, …, Ik; 

6. return 
1I

 ⊎… ⊎
kI . 

end 

It is easy to see that the time complexity of the algorithm 

is bounded by O( 
Qw

wL || ). 

Proposition 2 Let Q = w1  w2  …  wl with w1 ≺ w2 ≺ … 

≺ wl and l  1. The answer produced by algorithm 

conEvaluation(Q) is correct. 

Proof. Let L = I1, …, Ik be the interval sequence  produced by 

the main for-loop (line 3 – 4). Then, according to Lemma 3, 

for each Ij (1 ≤ j ≤ k), there must exist an interval sequence 1, 

2, …, l-1 such that i  
iwL (1 ≤ i ≤ l - 1) and 1  2  …  l-

1  Ii. Next, according to Proposition 1, we know that 
1I

 ⊎ …  

⊎
kI  must be the correct answer.  

Example 1 Consider Fig. 2 and 3. Let Q = d  f  a. Then, in 

the first iteration, we will get L = conj(Ld, Lf) = [1, 2][10, 13]. 

In the second iteration, we will get L = conj(L, Lp) = [1, 1][11, 

11].  The results is then R = [1, 1] ⊎ [11, 11] = {1} ⊎ {7} = {1, 

7}.   

4. Improvements 

In this section, we discuss a new algorithm to improve 

the naïve method shown in the previous subsection. The main 

idea is to use lowest common ancestors (LCAs for short) of 

nodes (in T) to control a binary search process. First, in 4.1, 

we discuss the binary search of an Lw. Then, we show how to 

use LCAs to speed up such a search in 4.2.  

4.1 Set intersection based on binary search 
Each interval sequence is sorted. So we can do the 

conjunction of interval sequences based on binary search. 

Let Lo = 1
oI , 2

oI , …, m
oI  and Lw = 1

wI ,
2
wI , …,

n
wI  be two 

interval sequences with w ≺ o. Then, m = |Lo| ≤ n = |Lw|. 

By using the binary search technique, we need to work 

from the end to the start of Lw to incorporate the LCAs into the 

process. To this end, we design an algorithm different from 

conj(Lo, Lw), called conjB( ), which can be mostly easily 

described recursively. When m = 0, there is no conjunction to 

be done and the result is . Otherwise, we will first check 

m
oI against Lw. As with [46], let l = 









m

n
lg . Then, 2

l
 is the 

largest power of two
 
not exceeding

m

n
. Let t = n - 2

l
 + 1. 

Compare m
oI  and t

wI . 

1. If m
oI [1] > t

wI [2], we should look for the intervals (in Lw) 

covered by m
oI somewhere to the right of t

wI . By using the 

traditional binary search, we try to find an interval I 

covered by m
oI  with l more comparisons. Around I, we 

will continually (by a simple linear search) find the left-

most interval x in Lw, which can be covered by 
m
oI ; and 

then with l more comparisons, we will find the right-most 

interval y covered by 
m
oI , in a similar way. Obviously, all 

the intervals between x and y, including x and y, can be 

covered by 
m
oI . (See Fig. 5(a).) This information allows us 

to reduce the problem to the situation illustrated in Fig. 

5(b). To complete the whole operation, it is sufficient to 

apply the above process to Lo and Lw, where Lo 

= 1
oI , …,

1m
oI and Lw = 1

wI , …, 1x
wI . 

2. If, on the other hand, m
oI [2] < t

wI [1], we should check the 

intervals to the left of t
wI , and the problem immediately 

reduces to the checking of Lo = Lo against Lw = Lw[1 .. t - 

p 

[1, 4][8, 14] 

q 

[5, 5][12, 12] 

p 

q 

 [1, 4][8, 14] 

[5, 5][12, 12] 

p 

q 

Lb: [5, 5][12, 12] 

Ld: [1, 4][8, 14] 

1st step: 2nd step: 3rd step: 

Fig. 4: Illustration 
for conj(Lw, Lw) 



 

1]. We can complete the operation by applying the above 

process to Lo and Lw. 

 
However, Lo may become larger than Lw. So in the 

recursive call to conjB( ), the roles of Lo and Lw may be 

reversed, by which we will check each interval I in Lw against 

Lo to find an interval I  in Lw  such that I  the last interval 

in Lo. See Fig. 6 for illustration. Assume that that the last 

interval 1x
wI in Lw is covered by an interval j

oI   (1 ≤ j ≤ m - 2) 

in Lo. Then, by the next recursive call, we will check Lw 

= 1
wI , …,

2x
wI  and Lu = 1

oI , …, 2j
oI . 

 

3. If m
oI  

t
wI , we will check linearly 1t

wI , 2t
wI  , … until we 

meet a first interval x which is to the left of t
wI and not 

covered by m
oI . Then, check 1t

wI , 2t
wI , … until a first 

interval y which is to the right of t
wI and not covered by 

m
oI . All the encountered nodes, except x and y, must be 

covered by m
oI . This reduces the problem to a checking of 

Lo = Lo[1 .. m - 1] against Lw = Lw[1 .. x]. 

4. If m
oI  

t
wI (we may have this case due to the roll 

interchange), we add 
m
oI to the result and the problem 

reduces to a checking Lo = Lo[1 .. m - 1] against Lw = Lw[1 

.. t]. 

According to the above discussion, we give the 

following recursive algorithm, which takes three inputs: Lo, 

Lw, b with |Lo| ≤ |Lw|, where b is a Boolean value used to 

indicate how m
oI is checked against Lw. If o ≺ w, b = 0. 

Otherwise (w ≺ o), b = 1. In addition, in the Algorithm a 

global variable R is used to store the result. 

ALGORITHM conjB(Lo, Lw, b) 

begin 

1. m  |Lo|; n  |Lw|; 

2. if m = 0 then return; 

3. l  








m

n
lg ; t  n - 2

l
 + 1; I  m

oI ; 

4. if I[2] < 
t
wI [1] then {Lo  Lo; Lw  Lw[1 .. t - 1];} 

5. if I[1] > 
t
wI [2] 

6. then if b = 1 then z  binaryS-1(I, Lw[t + 1 .. n] 

7.   if z = 0 then {Lo  Lo[1..m-1]; Lw  Lw; } 

8. else R := R  {I}; 

9.  Lo  Lo[1 .. m - 1]; 

10.  Lw  Lw[1 .. t + z - 1]; 

11. else <x, y>  binaryS-2(I, Lw[t + 1 .. n]) 

12.   if x = 0 then {Lo  Lo[1 .. m - 1]; Lw  Lw; }  

13. else R  R  {all interval between x and y, including x 

and y}; 

14. Lo  Lo[1 .. m - 1]; Lw  Lw[1 .. x - 1]; 

15. if I  
t
wI then <x, y>  linearSearch(I, Lw, t

wI ) 

16. Lo  Lo[1 .. m - 1]; Lw  Lw[1 .. x - 1]; 

17. R  R  {all interval between x and y, including 

x and y}; 

18. if I  
t
wI then R := R  {I}; 

19.  Lo  Lo[1 .. m - 1]; Lw  Lw[1 .. t]; 

20. if |Lo| ≤ | Lw| then conjB(Lo, Lw, b) 

21. else conjB(Lw, Lo, b ); 

end  

The above algorithm can be divided into two parts. The 

first part consists of lines 1 – 10; and the second part lines 20 

– 21. In the first part, we will check the first interval m
oI in Lo 

against Lw. According to the above discussion, four 

cases are distinguished: m
oI [2] < t

wI [1] (line 4), m
oI [1] > 

t
wI [2] (lines 4 – 14), m

oI [1]  t
wI (lines 15 – 17), and m

oI [1] 

 t
wI (18 – 19). Special attention should be paid to the use of 

b, which indicates whether we check m
oI to find a covering 

interval in Lw (by calling binaryS-1( )) or to find all those 

intervals that can be covered by m
oI (by calling binaryS-2( ))). 

In the second part (lines 20 – 21), we make a recursive 

call to check Lo and Lw, which are determined 

respectively from Lo and Lw during the execution of 

the first part. If |Lo| ≤ | Lw|, we simply call conjB(Lo, Lw, 

b) (see line 14.) Otherwise, the rolls of Lo and Lw should 

be interchanged and we will call conjB(Lw, Lo, b ), where 

b  represents the negation of b (see line 21.) 

It binaryS-1(I, L), we will find, by the binary search, an 

interval Iz in L which covers I. If z = 0, it shows that such an 

interval does not exist. 

FUNCTION binaryS-1(I, L) 

begin 

1. z  0; 

2. binary search of L to find an interval z, which covers I; 

3. return z; 

end  

In binaryS-2(I, L), we will first find a pair <x, y> such 

that Ix is the left-most interval in L, which can be covered by I; 

Fig. 5: First comparison during an interval intersection 

Lo: 

Lw: 
t x y 

Lo 

Lw 

(a) (b) 
t x y 
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and Iy the right-most interval covered by I. Then, x = 0 

indicates that no interval in L is covered by I. 

FUNCTION binaryS-2(I, L) 

begin 

1. x  0; y  0; 

2. binary search of L to find an interval Iz which is covered by 

I; 

3. return linearSearch(I, L, Iz);  

end  

In linearSearch(I, L, I), we will find a pair <x, y> such 

that Ix, Ix+1, …, I, …, Iy-1, Iy are all the intervals that can be 

covered by I.  

FUNCTION linearSearch(I, L, I) 

begin 

1. Let I be Iz; 

2. Search Iz-1, Iz-2, … until Ix such that Ix is covered by I, but 

Ix-1 not; 

3. Search Iz+1, Iz+2, … until Iy such that Iy is covered by I, 

but Iy+1 not; 
2. return <x, y>; 

end 

 

Example 2 Consider Ld = [1, 4][8, 14] and La = [1, 1][3, 3][5, 

6][8, 8][11, 11][16, 16]. By calling conjB(Lf, La, false), the 

following operations will be conducted: 

Step 1: checking Ld[1] = [1, 4] against La. l = 








2

6
lg = 1, t = 

2
l
 = 2, La[2] = [3, 3]. Since [1, 4]  [3, 3], we will call 

linearSearch( ) to find x = 1 and y = 2. 

Step 2: checking Ld[2] = [8, 14] against La[3 .. 6]. l = 










1

4
lg = 2, t = 2

l
 = 4, La[4] = [16, 16]. Since [8, 14] is to the 

left of [16, 16], we will make a binary search of  La[3 .. 5], by 

which we will find x = 4 and y = 5.  

4.2 Search control by using LCAs  
The method discussed in 4.1 can be significantly 

improved by using LCAs. Given a word w, denote by Vw all 

the nodes labeled with w. All the LCAs of the nodes in Vw (in 

T), denoted as Vw′, can be efficiently recognized using a way 

to be discussed in Section 6. For example, for the set of nodes 

labeled with word a: Va = {v10, v5, v6, v12, v18, v15}, we can find 

another set of nodes: Va′ = {v1, v7, v2, v0} with v1 being LCA of 

{v10, v5}, v7 being LCA of {v12, v18}, v2 being LCA of {v6, v12, 

v18, v15}, and v0 being LCA of {v10, v5, v6, v12, v18, v15}. Now 

we construct a tree structure, called an LCA-tree and denoted 

as Tw, which contains all the nodes in Vw  Vw′. In Tw, there is 

arc from v1 to v2 iff there exists a path P from v1 to v2 in T and 

P does not pass any other node in Vw  Vw′. In Fig. 7(a), we 

show Ta for illustration. 

Replacing each node in Tw with the corresponding 

interval, we get another tree, denoted as 
~

wT , in which each 

internal node v must be an interval that is the smallest interval 

covering all the intervals represented by the leaf nodes in 

~
wT [v] (the subtree rooted at v in ~

wT ). See ~
aT  shown in Fig. 

7(b) for illustration. From this, we can see that [1, 4] is the 

smallest interval covering [1, 1] and [3, 3]; [8, 14] is the 

smallest interval covering [8, 8] and [11, 11]; and [8, 19] is 

the smallest interval covering [8, 8], [11, 11] and [16, 16]. 

Finally, [1, 20] is the smallest interval covering all the 

intervals in La: [1, 1], [3, 3], [5, 6], [8, 8], [11, 11], [16, 16]. 

 

Here, our intention is to associate interval j
wI  in Lw with 

a second interval j, which is the parent of j
wI  in ~

wT , and two  

links, denoted as lj and rj, respectively pointing to two 

intervals in Lw, which are respectively the left-most and right-

most leaf nodes in ~
wT [j]. Fig. 8 helps for illustration.  

 

In Fig. 8, 3
aI = [5, 6] is associated with an LCA interval 

3 = [8, 14], which is the parent of 3
aI  in the corresponding 

~
aT  shown in Fig. 7(b). In addition, l3 is a link pointing to 1

aI  

and r3 is a link pointing to 6
aI . They are respectively the laft-

most interval and the right-most interval covered by 3. In the 

same way, we can check all the other intervals and links 

shown in Fig. 8. 

In addition, we will keep a sequence w containing all 

the LCA intervals in the post-order of ~
wT . For example, a = 

1463 = [1, 4][8, 14][8, 19][1, 20]. With such intervals and 

links, the binary search of Lw against a certain interval (in Lo) 

can be done much more efficiently by skipping over useless 

checkings. Concretely, the checking of m
oI against Lw will be 

done as follows. 

1. If m
oI [1] > t

wI [2], compare m
oI and t. If 

m
oI  t, explore 

Lw[rt + 1 .. n] by the binary search. Otherwise, explore Lw[t 

+1 .. rt]. 

2. If 
m
oI [2] < t

wI [1], compare 
m
oI and t. If 

m
oI  t, explore 

Lw[1 .. lt – 1]. Otherwise (
m
oI  t), explore Lw[lt .. t – 1]. 

3. If 
m
oI  t

wI , compare 
m
oI and t. If t 

m
oI , t

wI  must be the 
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unique interval which can be covered by m
oI . Therefore, t

wI  

is the result and the search stops. The problem reduces to a 

checking of Lo[1 .. m – 1] against Lw[1 .. t – 1] with w[1 .. 

k] to be used for control, where k is the position prior to t 

in u. If t =
m
oI , we will return all those intervals between lt 

and rt, including both lt and rt. The search also stops and the 

problem reduces to a checking of Lo[1 .. m – 1] against Lw[1 

.. lt – 1] with w[1 .. k]. If t 
m
oI , we will search part of w 

to the right of t to find the right-most interval f covered 

by m
oI . Then, return all the intervals between lf and rf, 

including lf and rf, which allows us to reduce the problem  

to check Lo[1 .. m – 1] against Lw[1 .. lf – 1] with w[1 .. g], 

where g is the position prior to f in w. 

4. If m
oI  t

wI , the above data structure cannot be utilized to 

speed up the search. Thus, this case will be handled in the 

same way as described for conjB( ). 

Example 3 To see how the LCAs can be used to skip over 

useless checkings, we check several single intervals against La 

in Fig. 8 to show the working process.  

1. Assume that I = [5, 7] is compared with I5 = [11, 11] in La. 

Since [5, 7] is to the left of [11, 11], we will compare [5, 7] 

with 5 = [8, 14] and [5, 7]  [8, 14]. So we will check [5, 7] 

against La[1 .. l5  - 1] = La[1 .. 3] in a next step, instead of the 

sequence containing all the intervals to the left of I5. 

2. Assume that I = [10, 13] is compared with I4 = [8, 8] in La. 

Since [10, 13] is to the right of [8, 8], [10, 13] and 4 = [8, 14] 

will be compared and [10, 13]  [8, 14]. So, in the next step, 

we will check [10, 13] against La[4 + 1 .. r5] = La[5 .. 5], not 

the sequence containing all the intervals to the right of I4. 

3. Assume that I = [10, 13] is compared with I5 = [11, 11] in 

La. We have [10, 13]  [11, 11]. However, [10, 13]  5 = [8, 

14]. It shows that [11, 11] is the only interval in La, which can 

be covered by [10, 13]. No further search is necessary. 

4. Assume that I = [8, 14] is compared with I4 = [8, 8] in La. 

We have [8, 14]  [8, 8]. But we also have [8, 14] = 4. Then, 

we know immediately that only the intervals in La[l4 .. r4] = 

La[4 .. 5] can be covered by [8, 14].  

By Example 3, we can clearly see that LCAs are quite 

useful to speed up the operation. However, all of them should 

be efficiently recognized. We will discuss this in the next 

Section. 

5. Conclusion 

In this paper, a new index structure is discussed. It 

associates each word w with a sequence of intervals, which 

partition the inverted list (w) into a set of disjoint subsets, 

and transform the evaluation of conjunctive queries to a series 

of checkings of interval containment. Especially, the intervals 

can be organized into a compact interval graph, which enables 

us to skip over any useless checking of interval containment. 

On average, to evaluate a two-word query, only O(logn) time 

is required, where n is the number of documents. This is much 

more efficient than any existing method for set intersection. 

Also, how to maintain such an index is described in great 

detail. Although the index is of a more complicated structure, 

the cost of maintaining it in the cases of addition and deletion 

of documents is (theoretically) comparable to the inverted file. 

Extensive experiments have been conducted, which show that 

our method outperformances the inverted file and the 

signature tree by an order of magnitude or more. 
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