
Introducing Cuts into Top-down Search: A

New Way to Check Tree Inclusion

Yangjun Chen

Department of Applied Computer Science,

University of Winnipeg, Canada.

 Abstract

The ordered tree inclusion is an interesting problem, by which we will check

whether a pattern tree P can be included in a target tree T, where the order of

siblings in both P and T is significant. In this paper, we propose an efficient

algorithm for this problem. Its time complexity is bounded by O(|T|loghP) with

O(|T| + |P|) space being used, where hP represents the height of P. Up to now the

best algorithm for this problem needs (|T||leaves(P)|) time [1], where leaves(P)

stands for the set of the leaves of P.

Keywords: tree matching, tree inclusion, top-down tree search.

1 Introduction

Let T be a rooted tree. We say that T is ordered and labeled if each node is

assigned a symbol from an alphabet and a left-to-right order among siblings in

T is specified.

 Technically, it is convenient to consider a slight generalization of trees,

namely forests, which are defined to be a set of disjoint trees. A tree T consisting

of a specially designated node root(T) = t (called the root of the tree) and a forest

<T1, ..., Tk> (where k  0) is denoted as <t; T1, ..., Tk>. We also call Tj (1  j  k)

a direct subtree of t, and denote the set of nodes and edges by V(T) and E(V),

respectively. The size of T is denoted by |T|.

Let u, v be two nodes in T. If there is path from node u to node v, we say, u is

an ancestor of v and v is a descendant of u. In this paper, by ancestor

(descendant), we mean a proper ancestor (descendant), i.e., u  v. We will use u

 v to represent that u is a proper ancestor of v.

The ancestorship in a tree can be checked very efficiently by using a kind of

tree encoding, which labels each node v in a tree with an interval Iv = [av, bv],

where bv denotes the rank of v in a post-order traversal of the tree. Here the ranks

are assumed to begin with 1, and all the children of a node are assumed to be

ordered and fixed during the traversal. Furthermore, av denotes the lowest rank

for any node u in T[v] (the subtree rooted at v, including v). Thus, for any node u

in T[v], we have Iu  Iv since the post-order traversal visits a node after all its

children have been visited.

Let I = [a, b] be an interval. We will refer to a and b as I[1] and I[2],

respectively.

Lemma 1 For any two intervals I and I generated for two nodes in a tree T, one

of four relations holds: I  I, I  I, I[2] < I[1], or I[2] < I[1]. 

Based on Lemma 1, the left-to-right ordering of nodes can also formally be

defined. A node u is said to be to the left of v if they are not related by the

ancestor-descendant relationship and v follows u when we traverse T in preorder.

Then, u is to the left of v if and only if Iu[2] < Iv[1].

In the following, we use  to represent the left-to-right ordering. Also, v  v

iff v  v or v = v.
 The following definition is due to [1].

Definition 1 Let F and G be labeled ordered forests. We define an ordered

embedding (, G, F) as an injective function : V(G)  V(F) such that for all

nodes v, u  V(G),

i) label(v) = label((v)); (label preservation condition)

ii) v  u iff (v)  (u), i.e., Iu  Iv iff I(u)  I(v); (ancestor condition)

iii) v  u iff (v)  (u), i.e., Iv[2] < Iu[1] iff I(v)[2] < I(u)[1]. (sibling condition)



 If there exists such an injective function from V(G) to V(F), we say, F

includes G, F contains G, F covers G, or say, G can be embedded in F.

Fig. 1 shows an example of an ordered tree inclusion.

Let P and T be two labeled ordered trees. An embedding of P in T is said to

be root-preserving if (root(P)) = root(T). If there is a root-preserving

embedding of P in T, we say that the root of T is an occurrence of P.

Fig. 1(b) also shows an example of a root preserving embedding. According to

[1], restricting to root-preserving embedding does not lose generality. In fact, the

method to be discussed works top-down and always tries to find root-preserving

subtree embeddings.

(a) (b)

Figure 1: (a) The tree on the left can be included in the tree on the right; (b)

an embedding represented by the dashed lines.

a

b d

a

f e b

c c d

a

b d

a

f e b

c c d

2 Main Idea

In this section, we discuss the main idea of our algorithm and show why this idea

will lead to an optimal computational complexity.

 The main idea of our algorithm consists in a mechanism called cut checking

introduced into a top-down tree search to get rid of useless computations.

Let T = <t; T1, ...,Tk> (k  0) be a tree and G = <P1, ..., Pq> (q  0) be a forest.

We handle G as a tree P = <G; P1, ..., Pq>, where G represents a virtual node,

matching any node in T. Note that even though G contains only one single tree it

is considered to be a forest. So a virtual root is added. Therefore, each node in G,

except the virtual node, has a parent.

Consider a node v in G = <P1, ..., Pq> with children v1, ..., vk. We use a pair

<[i, j], v>, called an interval rooted at v, to represent an ordered forest <G[vi], ...,

G[vj]> made up of a series of subtrees rooted at vi, ..., vj, respectively. Especially,

<[1, i], v> (or simply denoted as <i, v>) represents an ordered forest containing

the first i subtrees of v: <G[v1], ..., G[vi]>. If v is G, or a node on the left-most

path in P1, <i, v> is called a left-corner of G [6]. Obviously, <i, G> is a left-

corner, representing the first i subtrees in G: P1, ..., Pi. So, <q, G> stands for the

whole G. In addition, we will use <i, v>̅̅ ̅̅ ̅̅ ̅̅ to represent the forest <G[vi+1], ...,

G[vk]>, referred to as the complement of <i, v>. When it is clear from a context,

we may use <G[vi], ..., G[vj]> and <[i, j], v> interchangeably without causing any

confusion. Let u be a node on the left-most path in P1. Let <i, v> be a left-corner

of G = <P1, ..., Pq>. If v = u, we say that <i, v> and u are level-equal, denoted as

<i, v>  u. If v is an ancestor of u, we say, <i, v> is higher than u, denoted as <i,

v> ↝ u. Then, <i, v> ↝ u represents that <i, v> is higher than or level-equal to u.

In particular, we will use A(T, G) = <i, v> to represent a checking of G

against T, returning a left-corner <i, v> in G with the following properties:

 If i > 0 and v is not the left-most leaf node, it shows that

- the first i subtrees of v can be embedded in T;

- for any i′ > i, <i′, v> cannot be embedded in T; and

- for any v’s ancestor u on the left-most path in G, there exists no j > 0 such

that <j, u> is able to be embedded in T.

 If i = 0 or v is the left-most leaf node of G (denoted as (G)), it indicates that

no left-corner of G can be embedded in T.

In this sense, we say, <i, v> is the highest and widest left-corner which can be

embedded in T.

Now we consider a tree T and a forest G shown in Fig. 2, in which each node

in T is identified with ti, such as t1, t2, t11, and so on; and each node in G is

identified with pj. Besides, each subtree rooted at ti (pj) is represented by Ti (resp.

Pj).

In order to check whether T includes G = <P1, P2>, we can first check

whether T1 includes G. That is, we will perform a recursive call as follows:

 A(T, <P1, P2>)  A(T1, <P1, P2>).

Assume that A(T1, <P1, P2>) returns <i, v>. We may have one of three cases:

Case 1: <i, v> = <2, G>.

Case2: <i, v> = <1, G>.

Case 3: v  G, but a node on the left-most path in P1. That is, T1 contains only

a left-corner not higher than p1.

In Case 1, T1 contains G. In Case 2, T1 contains only P1, and we will call A(T2,

<P2>) in a next step. In Case 3, we will continually check whether T2 alone is

able to include G (by calling A(T2, <P1, P2>)) . This time, however, we will use v

(from <i, v>) to control the working process to cut off part of computation once

we find that it cannot lead to a left-corner higher than v. It is because such a

computation will not make any contribution to the final result due to the

following operations to be conducted.

Assume that A(T2, <P1, P2>) returns <i′, v′> with v = v or v  v′. Then, in a

next step, we will check T3 against <P1, P2> by calling A(T3, <P1, P2>). If its

return left-corner is higher than v, then we will use this left-corner as the return

value of A(T, <P1, P2>). Then, <i′, v′> will not be used. If its return left-corner is

not higher than v, we will make a supplement checking of <T2, T3> against <i, v>̅̅ ̅̅ ̅̅ ̅̅

to see whether <T2, T3> is able to embed some subtrees in <i, v>̅̅ ̅̅ ̅̅ ̅̅ . Assume that

<T2, T3> embeds the first j subtrees in <i, v>̅̅ ̅̅ ̅̅ ̅̅ . Then, the return value of A(T, <P1,

P2>) should be <i + j, v>. In this case, <i′, v′> will not be used, either, according

to the following analysis:

If v  v′, or v = v but i′ ≤ i, <i′, v′> is obviously useless for the final result.

However, even if v = v with i′ > i, it is still useless since in this case there is

definitely an integer j  i′ - i such that <T2, T3> embeds the first j subtrees in

<i, v>̅̅ ̅̅ ̅̅ ̅̅ , and the supplement computation will find this embedding.

The above discussion shows that if A(T2, <P1, P2>) cannot return a left-corner

higher than v, the corresponding work is futile and should be avoided. However,

avoiding the whole work seems not possible. Yet we can really effectively block

a significant part of the useless computation by using the partial results obtained

in the previous steps.

We refer to a node which is used to eliminate useless work as a cut. With

respect to cuts, two issues have to be addressed: (i) how a cut is transferred

between two consecutive recursive calls of the A-function; and (ii) how a cut is

checked during an execution of the A-function, which will be specified in the

next section where the whole algorithm will be discussed.

Figure 2. A tree and a forest

p1 P2

t0

t1 t3 t2

t21 t2j t22

T: G:

3 Algorithm

In this section, we present our algorithm to check a tree T (= <t; T1, …, Tk>)

against a forest G (= <P1, ..., Pq>), by which for the purpose of optimality, a cut v

is utilized. So, T, G, and v should be its input. For simplicity, it is denoted as A(T,

G, v) and considered to be a variant of the A-function discussed in Section 2.

Initially, v is set to be (G), and therefore no cutting at the very beginning is

in fact imposed. In addition, the algorithm works in a multiple recursive way in

the sense that different kinds of recursive calls will be carried out in terms of

different characteristics of inputs. First, as mentioned in the previous section, a

simple-checking of cuts will be conducted to see whether p1’s parent  v. If it is

not the case, the algorithm will output <0, (G)>. Otherwise, the checking will

be conducted, by which two general cases need to be recognized:

In Case 1, we have G = <P1>; or G = <P1, ..., Pq> with q > 1, but |T|  |P1| +

|P2|. In this case, what we can do is to check T against P1 since it is not possible

for T to embed more than one subtree in G.

In Case 2, we have G = <P1, ..., Pq> with q > 1, and |T| > |P1| + |P2|. In this

case, we will check <T1, ..., Tk> against the whole G since in this case we may

have a sequence of subtrees
1l

T , …,
ml

T with each being able to embed some

subtrees in G. For this reason, we define two subfunctions: -function and -

function, used to handle Case 1 and Case 2, respectively.

(T, P1, v) returns P1, or a highest and wildest left-corner in P1, which can be

embedded in T, higher than v. Otherwise, it returns <0, (G)>. Similarly, (T, G,

v) returns a highest and wildest left-corner in G, embeddable in <T1, ..., Tk> and

higher than v. Otherwise, it returns <0, (G)>.

Here, our intention is quite straightforward: in Case 1 we will call (T, P1, v)

and in Case 2 we will call (<T1, ..., Tk>, G, v). However, in Case 2, the return

value <j, u> of (<T1, ..., Tk>, G, v) needs to be further checked as follows:

- If u p1’s parent, check whether label(t) = label(u) and j = d(u). If it is not

the case, the return value of A(T, G, v) is the same as <j, u>. Otherwise, the

return value of A(T, G, v) will be set to <1, u’s parent>.

- If u = p1’s parent, the return value of A(T, G, v) is the same as <j, u>,

showing that T embeds <P1, ..., Pj>.

By using the -function and the -function, the algorithm for A(T, G, v) can

be described as in Fig. 3.

In the following, both the -function and -function will be discussed in

great detail.

- -function

In order to implement the -function, we need to associate each node v in G with

a link to the left-most leaf node in G[v], denoted as (v), as illustrated in Fig. 4(a).

Let v' be a leaf node in G. (v') is defined to be a link to v' itself. So in Fig.

4(a), we have  (v1) =  (v2) =  (v3) =  (v4) = v4,  (v5) =  (v6) = v6,  (v7) = v7,

and  (v8) = v8. Denote by -1
(v') a set of nodes x such that for each v  x (v) =

v'. Then, in Fig. 4(a), we have -1
(v4) = {v1, v2, v3, v4}, -1

(v6) = {v5, v6}, -1
(v7) =

{v7}, and -1
(v8) = {v8}.

Let p1 be the root of P1. We also have (G) = (p1).

Let T = <t; T1, …, Tk>, G = <P1, ..., Pq>, and v be a node on the left-most

path in P1. In (T, P1, v), altogether seven different cases as listed in Fig. 4(b)

should be checked.

Obviously, in Case (1-1), where t is a leaf node, we will check whether label(t) =

label((p1) since (p1) is the only left-corner which can possibly be covered by t.

If it is the case, return <1, parent of (p1)>. Otherwise, return <0, (p1)>.

In Case (1-2), where |T| > 1, but |T| |P1| or h(t) < h(p1), we will make a

recursive call A(T, <P11, ..., P1j>, v), where <P11, ..., P1j> is a forest containing all

the direct subtrees of p1. The return value of A(T, <P11, ..., P1j>, v) is used as the

return value of (T, P1, v). It is because in this case, T is not able to embed the

whole P1. So we will try to find whether T is able to embed a left-corner within

<P11, ..., P1j>.
In Case (1-3), where |T1|  |P1|, h(t)  h(p1) (but |T|  |P1| + |P2|)), p1 is a leaf node and

label(t) = label(p1), we will simply return <1, p1’s parent>. If p1 is not a leaf node, we

have Case (1-4) or (1-5), depending on whether p1 = v or p1  v. If p1 = v (Case

Figure 4.  (v) and different cases to be checked in -function

t is a leaf node

label(t) = label(p
1
)

label(t)  label(p
1
)

p
1
  v

p
1
 = v

(1 – 1)

(1 – 2)

(1 – 3)
(1 – 4)

(1 – 6)

|T| > 1, but |T| < | P
1
|

or h(t) < h(p
1
)

|T|  |P
1
| and

h(t)  h(p
1
)

but |T| ≤ |P1|

+ |P2|

p
1
 is a leaf

p
1
 is not a

leaf node (1 – 5)

v
3

v
1

v
2
 v

8

v
5

(v
1
)

(v
2
)

v
4
 v

6
 v

7

(v
3
)

(v
5
)

(a) (b)

input: T = <t; T1, ..., Tk >, G = <P1, ..., Pq>.

output: a left corner.

begin

1 if p1’s parent is not an ancestor of v then return <0, (G)>;

2 if (q = 1 or |T[t]|  |G[p1]| + |G[p2]|)

3 then return (T, P1, v)

4 else <j, u> := (<T1, ..., Tk>, G, v);

5 if v p1’s parent

6 then if (label(t) = label(u)  j = d(u) then return <1, u’s

7 return <j, u>; parent>;

end

FUNCTION A(T, G, v)

Figure 3. A-function

1-4), we will call (<T1, ..., Tk>, <P11, ..., P1j>, p11). Here, we have a vertical cut

propagation and the cut is changed from v = p1 to p11. If p1  v (Case 1-5), we

will call (<T1, ..., Tk>, <P11, ..., P1j>, v) with the cut not updated. In both Cases

1-4 and 1-5, let <j, u> be the return value of the corresponding -function call.

We will further check whether j = dout(u) and label(t) = label(u). If it is the case,

the return value of (T, P1, v) will be set to <1, u’s parent>. Otherwise, it should

be the same as <j, u>.

In Case (1-6), where |T|  |P1|, h(t)  h(p1), and label(t)  label(p1), we will

call (<T1, ..., Tk>, <P1>, v) and the return value of this call will be used as the

return value of (T, P1, v).

According to the above discussion, we give the formal algorithm for the -

function in Fig. 5.

- -function

In comparison with the -function, the -function is more interesting. It is

designed to handle the general

Case 2. Let F = <T1, ..., Tk>, G = <P1, ..., Pq>, and v  -1
((G)). Denote by tl the

root of Tl (l = 1, ...,k). Denote by pj the root of Pj (j = 1, ...,q). In (F, G, v), we

will make a series of calls A(Tl, <𝑃𝑗𝑙 , ..., Pq>, vl), where l = 1, ..., x k, j1 = 1,

j1j2  ... jx q, and v1 = v, controlled as follows.

1. Two index variables l, j are used to scan T1, ..., Tk and P1, ..., Pq, respectively.

(Initially, l is set to 1, and j is set to 0.) They also indicate that <P1, ..., Pj> has

been successfully embedded in <T1, ..., Tl>.

2. Let <il, ul> be the return value of A(Tl, <Pj+1, ..., Pq>, vl). If ul = pj+1’s parent,

set j to j + il and vl+1 to pj. Otherwise, j is not changed. Set l to l + 1 and vl+1 to

higher{ul, vl}. Go to (2).

input: T = <t; T1, ..., Tk>, P1 = <p1 ; P11, ..., P1j>.

output: a left corner.

begin

1 if (1-1) then if label(t) = label((p1))

2. then return <1, (p1)’s parent>
3. else return <0, (p1)>;

4. if (1-2) then return A(T, <P11, ..., P1j>, v);

5. if (1-3) then return <1, p1’s parent>;

6. if (1-4) or (1-5) then

7. if (1-4) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>, p11)

8. else <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>, v);

9. if j = dout(u) and label(t) = label(u)

10. then return <1, u’s parent>

11. else return <j, u>;

12. if (1-6) then return (<T1, ..., Tk>, <P1>, v);

end

FUNCTION (T, P1, v)

Figure 5. -function

3. The loop terminates when all Tl’s or all Pj’s are examined.

4. If j > 0 when the loop terminates, (F, G, v) returns <j, p1’s parent>,

indicating that F contains P1, ..., Pj. Otherwise, j = 0, indicating that even P1

alone cannot be embedded in any Tl (l k}). However, in this case, we

need to continue looking for a highest and widest left-corner <i, u> in P1,

which can be embedded in F. This can be done as follows.

i) Let <i1, u1>, ...,<ik, uk> be the return values of A(T1, <P1, ..., Pq>, v1), ...,

A(Tk, <P1, ..., Pq>, vk), respectively. Since j = 0, each ul, vl 
--1

((G)) (l =

1, ..., k).

ii) If each il = 0, the return value of (F, G, v) should be <0, (G)>.

Otherwise, there must be some ul’s (higher than v) with il > 0. We call

such a node a non-zero point. Find the first non-zero point uf with children

w1, ...,ws such that uf is not a descendant of any other non-zero point. Then,

we will check <Tf+1, ..., Tk> against <P[𝑤𝑖𝑓+1
], ..., P[ws]>. This can be

done by a recursive call (<Tf+1, ..., Tk>, <P[𝑤𝑖𝑓+1
], ..., P[𝑤𝑖𝑓+𝑦

]>, 𝑤𝑖𝑓+1
).

Let y be a number such that <P[𝑤𝑖𝑓+1
], ..., P[𝑤𝑖𝑓+𝑦

]> can be embedded in

<Tf+1, ..., Tk>. The return value of (F, G, v) should be set to <if + y, uf>. 

In the above process, (1), (2) and (3) together are referred to as a main

computation while (4) alone as a supplement computation.

Also, special attention should be paid to the condition under which a

supplement computation is conducted:

- j = 0, and

- there exists at least non-zero point, which is higher than v.

We refer to this condition as the supplement checking condition (SCC-

condition for short). We also notice that in a supplement computation no further

supplement computation will be carried out due to the way the cut for this is set,

by which the cut is set to be the root of the first subtree of the forest to be

checked. This will effectively block any supplement computation with a

supplement computation.

In terms of the above discussion, we give the formal algorithm for the -

function in Fig. 6, which is in fact an extension of the bottom-up process given in

[2, 3], but with the cuts integrated into the process to control the supplement

computation.

In the above algorithm, we have two while-loops: one from line 2 to 7 and the

other from line 12 to 15. In the first while-loop, we do the main computation to

find a largest j such that <T1, ..., Tk> embeds <P1, ..., Pj>. In this process, by the

first A-function call we have a vertical cut propagation while by the subsequent

A-function calls the cuts are horizontally propagated.

In the second while-loop, the supplement computation will be conducted.

However, this is done only when the SCC-condition is satisfied.

Finally, we point out that corresponding to a -function call we may have

more than one -function calls (see line 4), by which a node t is checked against

more than one node along a left-most path in G to find a node p in a subtree

rooted at a certain node in G (see line 4 in ()) such that |T[t]|  |G[p]| and h(t) 

h(p). This process can be trivially improved by storing each left-most path in a

sorted array and using a binary search.

4 Conclusion

In this paper, a new algorithm is proposed to solve the ordered tree inclusion

problem. It requires only O(|T|loghP) time and O(|T| + |P|) space, where T and P

are a target and a pattern tree (forest), respectively; and hP is the height of P.

References
[1] P. Bille and I.L. Gørtz, The Tree Inclusion Problem: In Linear Space and

Faster, ACM Transaction on Algorithms, Vol. 7, No. 3, Article 38, July 2011,

pp. 38:1-38:47.

[2] Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm, Information

Processing Letters 98(2006) 253-262, Elsevier Science B.V.

[3] Y. Chen and Y.B. Chen, A Time and Space Efficient Algorithm for Tree

Inclusion Problem, in: Proc. International Conference on Future

Communication, Information and Computer Science (FCICS 2014), Beijing,

China, May 22-23, 2014.

input: F = <T1, ..., Tk>, G = <P1, ..., Pq>.

output: a left corner.

begin

1 l := 1; j := 0; u := v; f := 0;

2 while (j < q and l k) do (*main checking*)

3 <il, ul> := A(Tl, <Pj+1, ..., Pq>, u)

4 if (ul = p1’s parent and il > 0) then {j := j + il; u := pj;}

5 else if (ul is an ancestor of u and il > 0)

6 then {u := ul; f := l;}

7 l:= l + 1;

8 if j > 0 then return <j, p1’s parent>;

9 if f = 0 then return <0, (p1)>;

10 let w1, ..., ws be the children of uf; (*supplement checking*)

11 l := f + 1; j := if;

12 while (j < s and l k) do

13 <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>, wj+1);

14 if (vl = vf and il > 0) then j := j + il;

15 l:= l + 1;

16 return <j, uf>;

end

FUNCTION (F, G, v)

Figure 6. -function

