
Abstract ⎯ Given a directed graph G, to check whether a node v is
reachable from another node u through a path is often required.
In a database system, such an operation is called a recursion com-
putation or reachability checking and not efficiently supported.
The reason for this is that the space to store the whole transitive
closure of G is prohibitively high. In this paper, we address this
issue and propose an O(n2 + bn ) time algorithm to decompose
a directed acyclic graph (DAG) into a minimized set of disjoint
chains to facilitate reachability checking, where n is the number
of the nodes and b is the DAG’s width, defined to be the size of a
largest node subset U of the DAG such that for every pair of
nodes u, v ∈ U, there does not exist a path from u to v or from v to
u. Using this algorithm, we are able to label a graph in O(be) time
and store all the labels in O(bn) space with O(logb) reachability
checking time, where e is the number of the edges of the DAG.
The method can also be extended to handle cyclic directed
graphs. Experiments have been performed, showing that our
method is promising.

I. INTRODUCTION
In numerous applications, including CAD/CAM, CASE, of-

fice systems, software management, as well as geographical
navigation and ontology queries, data are normally organized
into a directed graph (digraph for short) and the ancestor-de-
scendant relationship of nodes (whether a node is reachable
from another node through a path) are often enquired. 

Let G(V, E) be a directed graph. Digraph G* = (V, E*) is the
reflexive, transitive closure of G if (v, u) ∈ E* iff there is a path
from v to u in G. Obviously, if a transitive closure (TC for short)
is physically stored, the checking of the ancestor-descendant re-
lationship can be done in a constant time. However, the materi-
alization of a whole transitive closure is very space-consuming.
Therefore, it is desired to find a way to compress a transitive
closure, but without sacrificing too much the query time.

During the past several decades, a lot of research has been
done on this issue and materialization of transitive closures in
the database research community, including join index [5],
hashing [24], clustering of composite objects [21], and nested
relations (or NF2 relations, see, e.g., [11]). In addition, deduc-
tive databases and object-relational databases can be consid-
ered as two quite different extensions to handle this problem [7,
17].

The so-called graph labeling methods discussed in [6, 9, 14,
28] are most related to our work, by which the nodes are as-

signed labels such that the reachability between nodes can be
decided using their labels only. In this sense, a transitive closure
is compressed in some way. In the following, we review them
in some detail.

- DAG decomposition

In [14], Jagadish suggested an interesting method to decom-
pose a DAG (directed acyclic graph) into disjoint chains such
that on each chain, if node v appears above node u, there is a
path from v to u in G. Then, each node v is assigned an index (i,
j), where i is a chain number, on which v appears, and j indicates
v’s position on the chain. In addition to this, v is associated with
an index sequence (1, j1) … (i – 1, ji-1) (i + 1, ji+1) … (k, jk) such
that for any node u with index (x, y) if x = i and y > j or x ≠ i but
y ≥ jx it is a descendant of v, where k is the number of the disjoint
chains. For this method, the space overhead and the query time
are respectively O(kn) and O(logk). However, to find a mini-
mized set of chains for a graph, Jagadish’s algorithm needs
O(n3) time (see page 566 in [14]). For this reason, Jagadish sug-
gested a heuristic method to find all the disjoint paths of G and
then stitch some paths together to form a chain. In doing so, the
number of the produced chains is normally much larger than the
minimum number of chains, increasing significantly both space
and query time. 

- Tree encoding
In [6], Chen described a method based on tree encoding. It

works in two steps. In the first step, a spanning tree Gr of G
(called a branching in [6]) is found by exploring G in the depth-
first searching fashion. Then, each node v in Gr is associated
with a pair (p, q), where p and q are the preorder and postorder
numbers with respect to Gr, respectively. Another node u asso-
ciated with (p’, q’) is a descendant of v (with respect to Gr) iff
p’ > p and q’ < q. In the second step, a pair sequence for each
node v is generated by exploring G bottom-up and merging v’s
pair with the pair sequences of v’s child nodes. A pair sequence
generated in this way has the following properties:
- Its length is bounded by the number β of the leaf nodes of Gr.
- The pairs in it are increasingly sorted. A pair (p, q) is consid-

ered to be smaller that another pair (p’, q’) if p < p’ and q < q’.
Therefore, the query time is bounded by O(logβ) and the

space overhead is O(βn). The time on generating such a data
structure is bounded by O(βe) since for each node v O(dvβ) time
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is needed to construct the pair sequence for it, where dv repre-
sents the outdegree of v. If we corresponds a leaf node in Gr to
the end point of some chain, we can see that β must be equal to
or larger than the minimum number of disjoint chains.

- 2-hop labeling
The method proposed by Cohen et al. [9] labels a graph

based on the so-called 2-hop covers. A hop is a pair (h, v),
where h is a path in G and v is one of the endpoints of h. A 2-
hop cover is a collection of hops H such that if there are some
paths from v to u, there must exist (h1, v) ∈ H and (h2, u) ∈ H
and one of the paths between v and u is the concatenation h1h2.
Using this method to label a graph, the worst space overhead is

on the order of O(n ). The main theoretical barrier of this
method is that finding a 2-hop cover of minimum size is an NP-
hard problem. So a heuristic method is suggested in [9], by
which each node v is assigned two labels, Cin(v) and Cout(v),
where Cin(v) contains a set of nodes that can reach v, and Cout(v)
contains a set of nodes reachable from v. Then, a node u is
reachable from node v if Cin(v) ∩ Cout(v) ≠ φ. Using this meth-

od, the overall label size is increased to O(n logn). In addi-

tion, the reachability queries take O( ) time because the

average size of each label is above O( ). The time for gener-

ating labels is O(n4). 

- Dual labeling
Recently, Wang at el. proposed a new approach, called Dual-

I, for sparse graphs [28]. It assigns to each node v a dual label:
(av, bv) and (xv, yv, zv). In addition, a t × t matrix N (called a TLC
matrix) is maintained, where t is the number of edges that do
not appear in the spanning tree of G. Another node u with (au,
bu) and (xu, y, zu) is reachable from v iff au ∈ [av, bv), or N(xv,

zu) - N(yv, zu) > 0. The size of all labels is bounded by O(n + t2)

and can be produced in O(n + e + t3) time. The query time is
O(1). As a variant of Dual-I, one can also store N as a tree
(called a TLC search tree), which can reduce the space overhead
from a practical viewpoint, but increases the query time to logt.
This scheme is referred to as Dual-II.

Obviously, this method is only suitable for sparse graphs.
When t = e - n is on the order of O(n), the size of labels is more
than O(n2) and the query time is O(logn). Moreover, O(n3) time
is needed to generate labels, worse than any traditional matrix-
based method. 

There are some other graph labeling methods, such as the
method using signatures [26], PE-Encoding [8] and PQ-Encod-
ing [31]. The idea of the signature-based method [26] is to as-
sign to each node a signature (which is in fact a bit string)
generated using a set of hash functions. The space complexity
is O(l⋅n), where l is the length of a signature. But this encoding
method suffers from the so-called signature conflicts (two
nodes are assigned the same signature). Moreover, in the case
of DAGs, a graph needs to be decomposed into a series of trees;
and no formal decomposition was reported in that paper. The
PE-Encoding [8] and the PQ-Encoding [31] are similar to the 2-
hop labeling, but with higher computational complexities. The
methods discussed in [22, 23] reduces 2-hop’s labeling com-

plexity from O(n4) to O(n3), but is still not applicable to mas-
sive graphs. The method proposed in [10] is a geometry-based
algorithm to find high-quality 2-hop covers. It has the same the-
oretical computational complexities as the method discussed in
[28] and is only applicable for sparse graphs, too.

In this paper, we propose a new algorithm for general cases.
Similar to Jagadish’s, we will decompose a DAG into disjoint
chains. But we can decompose a graph into a minimized set of

disjoint chains in O(n2 + bn ) time, where b is G’s width, de-
fined to be the size of a largest node subset U of G such that for
every pair of nodes u, v ∈ U, there does not exist a path from u
to v or from v to u. This enables us to generate a compressed
transitive closure in O(be) time, improving the existing meth-
ods for the problems of practical size by one order of magnitude
or more. The space overhead and the query time are bounded by
O(bn) and logb, respectively.

As a by-product, our algorithm can also be used to decom-
pose a finite poset P (partially ordered set) into disjoint chains
since any finite poset can be represented as a DAG. According
to Dilworth [12], the minimum number of chains is equal to the
size of a largest antichain of P (i.e., the width of the correspond-
ing DAG). It is well known that the size of a largest antichain

can be determined in O(e⋅ ) time [2]. But it does not mean
that the minimized set of chains can be found in the same time
(see page 190 in [2]). Up to now, the best approach for this task
is based on the network flow algorithm [15, 19] and needs
O(n3) time [15], similar to Jagadish’s.

Since our data structure is of the same form as Jagadish’s, the
maintenance suggested by Jagadish’s can be adapted to ours.
(So this part of content will not be reported in this paper due to
space limitation.)

The remainder of the paper is organized as follows. In Sec-
tion 2, we show what is the DAG decomposition and how it can
be used for the transitive closure compression. In Section 3, we
give some basic concepts and techniques related to our algo-
rithm. Section 4 is devoted to the description of our algorithm
to decompose a DAG into chains. In Section 5, we report the ex-
periment results. Finally, a short conclusion is set forth in Sec-
tion 6.

II. TC COMPRESSION BASED ON DAG DECOMPOSITION 

Our method is based on the DAG decomposition. For a cyclic
graph (a graph containing cycles), we can find all the strongly
connected components (SCC) in linear time [25] and then col-
lapse each of them into a representative node. Clearly, all of the
nodes in an SCC is equivalent to its representative as far as
reachability is concerned (see pp. 567 - 569 in [14]).

Consider the graph shown in Fig. 1(a). Its transitive closure
is shown in Fig. 1(b). It is easy to see that we need O(n2) space
to store such an enlarged graph. 

This space requirement can be significantly reduced by de-
composing a DAG G into a set of disjoint chains that covers all
the nodes of G, as illustrated in Fig. 1(c). As we can see, on each
chain, if node v appears above node u, there is a path from v to
u in G. Based on such a chain decomposition, we can assign to
each node an index as follows:

(1)Number each chain and number each node on a chain.
(2)The jth node on the ith chain will be assigned a pair (i, j)
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as its index. 

In addition, each node v on the ith chain will be associated
with an index sequence of length k - 1: (1, j1) … (i – 1, ji-1) (i +
1, ji+1) … (k, jk) such that any node with index (x, y) is a descen-
dant of v if x = i and y < j or x ≠ i but y ≤ jx, where k is the number
of the disjoint chains. In this way, the space overhead is de-
creased to O(kn) (see Fig. 1(c) for illustration). In terms of Dil-
worth [12], the minimal k equals the width b of G. Once a
minimized set of disjoint chains is determined, the index se-
quences for all nodes can be produced in O(be) time. This can
be seen by the following inductive analysis. 

First of all, we notice that each leaf node is exactly associated
with one index, which is trivially sorted. Let v1, ..., vl be the
child nodes of v, associated with the index sequences L1, ..., Ll,
respectively. Assume that |Li| ≤ b (1≤ i ≤ l) and the indexes in
each Li are sorted according to the first element in each index.
We will merge all Li’s into a new index sequence and associate
it with v. This can be done as follows. First, make a copy of L1,
denoted L. Then, we merge L2 into L by scanning both of them
from left to right. Let (a1, b1) (from L) and (a2, b2) (from L2) be
the index pair encountered. We will perform the following
checkings:

- If a2 > a1, we go to the index next to (a1, b1) and compare
it with (a2, b2) in a next step.

- If a1 > a2, insert (a2, b2) just before (a1, b1). Go to the index
next to (a2, b2) and compare it with (a1, b1) in a next step.

- If a1 = a2, we will compare b1 and b2. If b1 > b2, nothing
will be done. If b2 > b1, replace b1 with b2. In both cases,
we will go to the indexes next to (a1, b1) and (a2, b2), re-
spectively. 

We will repeatedly merge L2, ..., Ll into L. Obviously, |L| ≤ b
and the indexes in L are sorted. The time spent on this process
is O(dvb), where dv represents the outdegree of v. So the whole

cost is bounded by O( ) = O(be).  

III. BIPARTITE GRAPH AND GRAPH STRATIFICATION

Our method for DAG decomposition is based on a DAG
stratification strategy and an algorithm for finding a maximum
matching in a bipartite graph. Therefore, the relevant concepts
and techniques should be first reviewed and discussed.

A. Stratification of DAGs
Definition 1. (DAG stratification) Let G(V, E) be a DAG. The
stratification of G is a decomposition of V into subsets V1, V2,...,
Vh such that V = V1 ∪ V2 ∪ ... Vh and each node in Vi has its chil-
dren appearing only in Vi-1, ..., V1 (i = 2, ..., h), where h is the

height of G, i.e., the length of the longest path in G. 
For each node v in Vi, we say, its level is i, denoted l(v) = i.

We also use Cj(v) (j < i) to represent a set of links with each
pointing to one of v’s children, which appears in Vj. Therefore,
for each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., k) such that

the set of its children equals ∪ ... ∪ .

Such a DAG decomposition can be done in O(e) time, by us-
ing the following algorithm, in which we use G1/G2 to stand for
a graph obtained by deleting the edges of G2 from G1; and G1
∪ G2 for a graph obtained by adding the edges of G1 and G2 to-
gether. In addition, (v, u) represents an edge from v to u; and
d(v) represents v’s outdegree.

Algorithm graph-stratification(G)
begin
1. V1 := all the nodes with no outgoing edges;
2. for i = 1 to h - 1 do
3. {W := all the nodes that have at least one child in Vi;
4. for each node v in W do
5. { let v1, ..., vk be v’s children appearing in Vi;
6. Ci(v) := {links to v1, ..., vk};
7. if d(v) > k then remove v from W;
8. G := G/{(v, v1), ..., (v, vk)};
9. d(v) := d(v) - k;}
10. Vi+1 := W;
11. }
end

In the above algorithm, we first determine V1, which con-
tains all those nodes having no outgoing edges (see line 1). In
the subsequent computation, we determine V2, ..., Vh. In order
to determine Vi (i > 1), we will first find all those nodes that
have at least one child in Vi-1 (see line 3), which are stored in a
temporary variable W. For each node v in W, we will then check
whether it also has some children not appearing in Vi-1, which
can be done in a constant time as demonstrated below. During
the process, the graph G is reduced step by step, and so does
d(v) for each v (see lines 8 and 9). First, we notice that after the
jth iteration of the out-most for-loop, V1 , ..., Vj+1 are deter-
mined. Denote Gj(V, Ej) the reduced graph after the jth iteration
of the out-most for-loop. Then, any node v in Gj, except those
in V1 ∪ ... ∪ Vj+1, does not have children appearing in V1 ∪ ...
∪ Vj. Denote dj(v) the outdegree of v in Gj. Thus, in order to
check whether v appearing in Gi-1 has some children not ap-
pearing in Vi, we need only to check whether di-1(v) is strictly
larger than k, the number of the child nodes of v appearing in Vi
(see line 7).

During the process, each edge is accessed only once. So the
time complexity of the algorithm in bounded by O(e).

As an example, consider the graph shown in Fig. 1(a). Ap-
plying the above algorithm to this graph, we will generate a
stratification of the nodes as shown in Fig. 2.
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Fig. 1. DAG, transitive closure and graph encoding
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In Fig. 2, the nodes of the DAG shown in Fig. 1(a) are divid-
ed into four levels: V1 = {d, e, i}, V2 = {c, h}, V3 = {b, g}, and
V4 = {a, f}. Associated with each node at each level is a set of
links pointing to its children at different levels.

B. Concepts of Bipartite Graphs
Now we restate two concepts from the graph theory which

will be used in the subsequent discussion.
Definition 2. (bipartite graph [2]) An undirected graph G(V, E)
is bipartite if the node set V can be partitioned into two sets T
and S in such a way that no two nodes from the same set are ad-
jacent. We also denote such a graph as G(T, S; E).  

For any node v ∈ G, neighbour(v) represents a set containing
all the nodes connected to v.
Definition 3. (matching) Let G(V, E) be a bipartite graph. A
subset of edges E’ ⊆ E is called a matching if no two edges have
a common end node. A matching with the largest possible num-
ber of edges is called a maximum matching, denoted as MG.

Let M be a matching of a bipartite graph G(T, S; E). A node
v is said to be covered by M, if some edge of M is incident to v.
We will also call an uncovered node free. A path or cycle is al-
ternating, relative to M, if its edges are alternately in E/M and
M. A path is an augmenting path if it is an alternating path with
free origin and terminus. In addition, we will use freeM(T) and
freeM(S) to represent all the free nodes in T and S, respectively.  

Much research on finding a maximum matching in a bipartite
graph has be done. The best algorithm for this task is due to

Hopcroft and Karp [13] and runs in O(e⋅ ) time, where n = |V|
and e = |E|. The algorithm proposed by Alt, Blum, Melhorn and

Paul [1] needs O( ) time. In the case of large e,
the latter is better than the former.

IV. ALGORITHM DESCRIPTION

Now we begin to discuss how a DAG can be decomposed
into a minimized set of disjoint chains. First, we present our
main algorithm in 4.1. Then, in 4.2, we discuss how a kind of
redundancy can be removed. Finally, we prove the correctness
of the algorithm and analyze its time complexity in 4.3.

A. Main Algorithm 
The main idea of the algorithm is to construct a series of bi-

partite graphs for G(V, E) and then find a maximum matching
for each of such bipartite graphs using Hopcroft-Karp algo-
rithm. All these matchings make up a set of disjoint chains and
the size of this set is equal to the maximum size of an antichain
[12], i.e., the width of G.

During the process, some new nodes, called virtual nodes,
may be introduced into Vi (i = 2, ..., h; V = V1 ∪ V2 ∪ ... Vh) to
facilitate the computation. However, such virtual nodes will be
eventually resolved to get the final result.

In the following, we first show how a virtual node is con-
structed. Then, the algorithm will be formally described. 

We start our discussion with the following specification:
Mi - the found maximum matching of G(Vi+1, Vi; Ci), where

Ci = Ci(v1) ∪ ... ∪ Ci(vk) with vl ∈ Vi+1 (l = 1, ..., k).
Mi’ - the found maximum matching of G(Vi+1, Vi’; Ci’),

where Vi’ = Vi ∪ {all the virtual nodes added into Vi}. Ci’
= Ci ∪ {(u, v) | u ∈ Vi+1, v is a virtual node in Vi’}.

In addition, for a graph G, we will use V(G) to represent all
its nodes and E(G) all its edges.
Definition 4. (virtual nodes) Let G(V, E) be a DAG, divided into
V1, ..., Vh (i.e., V = V1 ∪ ... ∪ Vh). Let v be a free (actual or vir-

tual) node in (if i = 1, we take M1 as M1’). Add a

virtual node v’ into Vi+1 (i = 1, ..., h -1), labeled as follows.
1. If there exist some covered nodes u1, ..., uk (relative to Mi’)

in Vi’ such that each ug (g = 1, ..., k) shares a covered par-
ent node wg (i.e., (wg, ug) ∈ Mi’) with v, label v’ with

v[(w1, {(n11, S11), ..., ( , )}), ..., (wk, uk, {(nk1, Sk1),

..., ( , )})],

where ngj (g = 1, ..., k; j = 1, ..., jg) is an odd number to in-
dicate a position on the alternating path starting at wg, and
Sgj is a set containing all the parents of the node pointed to
by ngj, which appear in Vi+2. 

2. If no such a covered node exists, v’ is labeled with v[ ]. 
In addition, for a virtual node v’ (generated for v), we will es-

tablish an edge (u, v’) for every u ∈ S11 ∪ ... ∪  ∪ ... ∪ Sk1...

∪ . v’ will also inherit the edges incident to v except the

edges from a node in Vi+1 to v. That is, for each parent w of v,
we will establish an edge (w, v’) if w appears in Vi+2. A virtual
edge (v’, v) will be constructed to facilitate the virtual node res-
olution process. Finally, we set Vi+1’ to be Vi+1 ∪ {all those vir-
tual nodes}, and Ci+1’ to be Ci+1 ∪ {(u, v) | u ∈ Vi+2, v is a
virtual nodes in Vi+1’}.

The following example helps for illustration.
Example 1. Consider the graph shown in Fig. 3(a). The bipar-
tite graph made up of V2 and V1, G(V2, V1; C1), is shown in Fig.
3(b) and a possible maximum matching M1 of it is shown in Fig.
3(c). 

Relative to M1, we have a free node i in V1.
For the free node i, we will construct a virtual node i’, labeled

with i[(b, {(3, {d, g})}), (h, {(5, {d, g})})] for the following rea-
son.
(i) The covered node c and j share the parent b and h with i, re-

spectively.
(ii)On the alternating path starting at b, the 3rd node e has two

parents d, and g that appear in V3. (Fig. 3(d) shows the alter-
nating path starting at b, in which a solid edge represents an
edge belonging to M1 while a dashed edge to C1/M1.) On the
alternating path starting at h, the 5th node e has two parents
d, and g that appear in V3. 
The motivation of constructing such a virtual node is that it

n

n1.5 e nlog( )⁄

freeMi ′
Vi′( )

n1j1
S1 j1

nkjk
Skjk

S1 j1

Skjk

b e
V1:

V2:
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is possible to connect f to d or g to form part of a chain if we
transfer the edges on the alternating path (starting at b and end-
ing at the node pointed to by 3 + 1 = 4; or starting at h and end-
ing at the node pointed to by 5 + 1 = 6). Then, we connect d or
g to f, as well as b or h to i without increasing the number of
chains, as illustrated in Fig. 3(e). This can be achieved by the
virtual node resolution process (see below).

The bipartite graph made up of V3 and V2’ is shown in Fig.
4(a). A possible maximum matching M2’ of this bipartite graph
is shown in Fig. 4(b).

Now we consider M1 ∪ M2’. It is a set of 4 paths shown in
Fig. 4(c). In order to get the final result, all the virtual nodes ap-
pearing on those chains have to be resolved.

In the whole process, we may also need to generate virtual
nodes for free virtual nodes themselves. However, this can be
done in the same way as for actual nodes.

Example 2. Let’s have a look at the graph shown in Fig. 1(a)
once again. The bipartite graph made up of V2 and V1, G(V2, V1;
C1), is shown in Fig. 5(a) and a possible maximum matching
M1 of it is shown in Fig. 5(b).

Relative to M1, we have a free node e.

For this free node, we will construct a virtual node e’, labeled
with e[(c, {(1, {b})}), (h, {(1, {g})})], as shown in Fig. 6(a). In
addition, two edges (b, e’) and (g, e’) are established according
to Definition 4. 

The graph shown in Fig. 6(a) is the second bipartite graph,
G(V3, V2’; C2’). Assume that the maximum matching M2’
found for this bipartite graph is a graph shown Fig. 6(b).

Relative to M2’, h is a free node, for which a virtual node h’
labeled with h[(g, {(1, { }), (3, {a})})] will be constructed as il-
lustrated in Fig. 6(c). This shows the third bipartite graph, G(V4,
V3’; C3’), which has a unique maximum matching M3’ shown
in Fig. 6(d). Consider M1 ∪ M2’ ∪ M3’. This is a set of three

chains as illustrated in Fig. 6(e).
From the above discussion, we can see that the algorithm

should be a two-phase process. In the first phase, we generate
virtual nodes and chains. In the second phase, we resolve all the

virtual nodes.

Algorithm chain-generation(G’s stratification)  (*phase 1*)
input: G’s stratification.
output: a set of chains
begin
1. find M1 of G(V2, V1; C1); M1’ := M1; V1’ := V1; C1’ := C1;
2. for i = 2 to h - 1 do
3. {construct virtual nodes for Vi according to Mi-1’;
4. let U be the set of the virtual nodes added into Vi;
5. let W be the newly generated edges incident to the new

nodes in Vi;
6. let W’ be a subset of W, containing the edges from Vi+1; to

U;
7. Vi’ := Vi ∪ U; Ci’ := Ci ∪ W’;
8. find a maximum matching Mi’ of G(Vi+1, Vi’; Ci’);
9. }
10. return M1 ∪ M2’ ∪ ... ∪ Mh -1’.
end

The algorithm works in two steps: an initial step (line 1) and
an iteration step (lines 2 -8). In the initial step, we find a M1 of
G(V2, V1; C1). In the iteration step, we repeatedly generate vir-
tual nodes for Vi and then find a Mi’ of G(Vi+1, Vi’; Ci’). The re-
sult is M1 ∪ M2’ ∪ ... ∪ Mh-1’.

After the chains for a DAG are generated, we will resolve all
the virtual nodes appearing on them.

We distinguish between two kinds of virtual nodes: anchored
virtual nodes and unanchored virtual nodes. An anchored virtu-
al node has a parent along the corresponding chain such as the
node h’ in Fig. 6(e). An unanchored virtual node does not have
a parent.

The virtual nodes will be resolved along the chains level by
level in a top-down way:
1. If v’ is an unanchored node, remove v’ from the correspond-

ing chain. If its child along the chain is also a virtual node,
then that virtual node becomes unanchored.

2. If v’ is an anchored node, resolve it according the following
rule.
(i) Assume that v’ is reached along an edge (u, v’). Assume

that v’ is labeled with
v[(w1, {(n11, S11), ..., ( , )}), ..., (wk, uk, {(nk1, Sk1),

..., ( , )})].

(ii)If there exists an nij such that u is a parent of the node
pointed to by nij, do the following operations:
- Transfer the edges on the alternating path starting at wi

and ending at the (nij + 1)th node w. Add (wi, v).
- Remove (u, v’) and v’.
- Add (u, w).
Otherwise, remove v’ and connect u to the child node of
v’ along the chain.

See the following example for a better understanding.
Example 3. Searching the chains shown in Fig. 6(e), we will
first meet h’ along the edge (a, h’), whose label is h[(g, {(1, {
}), (3, {a})})]. Since a appears in the set indexed with 3, we will
(i) transfer the edges on the alternating path starting at g and
ending at the 4th node (which is node c) and add edge (g, h), (ii)
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remove (a, h’) and h’, and (iii) add (a, c) (see Fig. 7(a) for illus-
tration). 

Next we will meet e’ along the edge (b, e’), whose label is
e[(c, {(1, {b})}), (h, {(1, {g})})]. Since b appears in the set in-
dexed with 1, we will (i) transfer the edges on the alternating
path starting at c and ending at the 2nd node (which is node d)
and add edge (c, e), (ii) remove (b, e’) and e’, and (iii) add (b,
d). The result is shown in Fig. 7(b). 

The following is a formal description of this process, in
which we use Ui to stand for all the chain node on the ith level
and represent all the chains as U1 ∇ ... ∇ Uh.

Algorithm virtual-resolution(C) (*phase 2*)
input: C - a chain set obtained by executing the algorithm chain-

generation, represented as U1 ∇ ... ∇ Uh.
output: a set of chains containing no virtual nodes.
begin
1. for i = h downto 2 do
2. { for each v ∈ Ui do
3. { if v is unanchored virtual node then remove it;
4.  if v is anchored virtual node then resolve it according to

2-(i) and (ii) given above;
5. }}
end

B. On the Construction of Virtual Nodes
The construction of virtual nodes dominates the cost. Espe-

cially, the label of a virtual node may contain redundant data,
which can be easily removed. To have a clear picture, let’s have
a look at the label associated with i’ in Fig. 4(a) once again. It
is i[(b, {(3, {d, g}), (h, {(5, {d, g})})]. To generate the first entry
(b, {(3, {d, g}), we will search an alternating path starting at b
shown in Fig. 3(d). To generate the second entry (h, {(5, {d,
g})}), we will search an alternating path as shown in Fig. 8, by
which the first alternating path is searched for a second time.

To eliminate this kind of redundancy, we do the following:

(i) When we establish a label α for a virtual node, we assign an
order number to each entry in α when it is created.

(ii)Each entry in α is augmented with an index. That is, an entry
of the form (wi, {(ni1, Si1), ..., ( , )}) in α will be

changed to (wi, {(ni1, Si1), ..., ( , )}, (ai, bi)), where ai

(< i) is a number for some entry in α and bi is a number in-
dicating the position on the corresponding alternating path,
which shares the alternating path related to the entry num-
bered with ai.
For example, the label i[(b, {(3, {d, g})}), (h, {(5, {d, g})})]

will be changed to

i[(b, {(3, {d, g})}, (_, _)), (h, {(1, 3)})].

In the first entry of this label, the index is (_, _) since when
we generate it we find no other alternating path sharing an seg-
ment with its alternating path. In the second entry, the index is
(1, 3), indicating that part of the alternating path related to this
entry (from the 3rd position to the end) is the same as the alter-
nating path related to the entry numbered with 1.

Note that bi can be a negative integer. To see this, assume that
in the above label the entry (h, {(5, {d, g})}) is created before
(b, {(3, {d, g})}). Then, the real label should be

i[(h, {(5, {d, g})}, (_, _)), (b, {(1, -3)})].
The negative integer -3 in the second entry indicates that the

second alternating path starts from the 3rd position on the first
alternating path.

In this way, any redundancy can be avoided. In the following,
we consider the edge inheritance.

As with the data structure ∪ ... ∪ associated

with node v to store its child nodes, we can associate v with an-
other data structure ∪ ... ∪ to store its parents,

where  (1 ≤ r ≤ l) represents a set of links with each point-

ing to one of v’s parents, which appears in . Both child and

parent links can be organized into linked lists as illustrated in
Fig. 9(a).

When we create a virtual node v’ for v (at level j1 - 1), all the
edges incident to v, except the edges from the nodes at level j1
to v, will be inherited to v’. To do this, we simply graft part of
the linked list associated with v to v’ as illustrated in Fig. 9(b).
Obviously, this operation needs only a constant time.

C. Correctness and Computational Complexities
In this section, we prove the correctness of the algorithm and

analyze its computational complexities.
Proposition 1. The number of the chains generated by Algo-
rithm chain-generation(G’s stratification) is minimum.
Proof. Let S = {l1, ..., lg} be the set of the chains generated by
chain-generation(G). For any chain li and any two nodes a and
b on li, if a is above b, there must be a path from a to b. By the
virtual node resolution, this property is not changed. Let S’ =
{l1’, ..., lg’} be the chain set after the virtual node resolution.
Then, for any a’ and b’ on li’, if a’ is above b’, we have a path
from a’ to b’. 

Now we show that g is minimum.
First, we notice that the number of the chains produced by

the algorithm chain-generation is equal to

Nh = |V1| + + + ... 

+ .

We will prove by induction on h that Nh is minimum.
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Initial step. When h = 1, 2, the proof is trivial.
Induction step. Assume that for any DAG of height k, Nk is min-
imum. Now we consider the case when h = k + 1:

Nk+1 = |V1| + + + ... 

+ .

If = 0, no virtual node will be added into V2.

Therefore, V2 = V2’. In this case,

 Nk+1= |V2| + + + ... + 

.

In terms of the induction hypothesis, it is minimum.

If > 0, we have |V1| > |V2|. In this case, we con-

sider another graph G’ constructed from G(V, E) as follows:

1. Divide into two groups: g1 and g2. In g1, each

node has at least one parent in V2. In g2, each node has no
parent in V2. 

2. Let g1’ and g2’ be the virtual nodes generated for g1 and g2
with the newly created edges E1 and E2, respectively. Con-
struct G’(V’, E’) such that V’ = (V/V1) ∪ g1’ ∪ g2’ and E’ =
(E/{(u, v) | u ∈ V2, v ∈ V1}) ∪ E1 ∪ E2.   
We show that each decomposition of G’ corresponds to a de-

composition of G and they have the same size. Let U1 ∇ ... ∇
Uk be a decomposition of G’. We note that U1 = V2 ∪ g1’ ∪ g2’.
If any node in g1’ does not have a parent in the decomposition,
we connect a node u in V2 to a node v in V1 if (u, v) ∈ M1. Then,
(V1 ∪ g1’ ∪ g2’) ∇ V2 ∇ U2... ∇Uk is a decomposition of G with
the same size as that of G’. Otherwise, let uj be the parent of vj
∈ g1 (j = 1, ..., l for some l). We change the edges in M1 by re-
solving each vj. In this way, we will have a decomposition of G
with the same size as that of G’.   

In a similar way, we can also show that each decomposition
of G corresponds to a decomposition of G’ and they have the
same size.

G’ is of height k. For G’, the number of the chains produced
by the algorithm chain-generation is equal to

Nk’ = |V2’| + + + ... 

+ .

Let V2’ = W1, V3 = W2, ..., Vk+1 = Wk. We have 

Nk’ = |W1| + |+ |+ ... 

+ ,

where L1 = M2’ and Li’ = M(i+1)’ (i = 2, ..., k - 1).
In terms of the induction hypothesis, Nk’ is minimum. So

Nk+1= Nk’ is minimum. This completes the proof.
In the following, we analyze the computational complexities

of the algorithm. The cost of the whole process can be divided
into four parts:
- cost1: the time spent on establishing virtual nodes and the

corresponding new edges.
- cost2: the time for edge inheritance.
- cost3: the time for finding a maximum matching for every

G(Vi+1, Vi’; Ci).

-cost4: the time for resolving virtual nodes.

We claim that cost1 is bounded by O(n2) since for each actual
node v at most h virtual nodes will be constructed and the num-
ber of the new edges incident to a virtual node added to Vi is
bounded by |Vi+1|. So the number of the new edges incident to
these virtual nodes (related to v) is on the order of 

O( ) = O(n).

cost2 is the time for edge inheritance, which is bounded by

O( ) = O(nh).

The time for finding a maximum matching of G(Vi+1, Vi’; Ci)
is bounded by

O( ). (see [13])

Therefore, cost3 is bounded by

O( )

≤ O( ) = O(bn ). 

During the virtual-resolution process, the virtual nodes are
resolved level by level. At each level, only O(|Ci’|) edges are
visited. Therefore, cost4 is bounded by

O( ) = O(bn).

From the above analysis, we get the following proposition.
Proposition 2. The time complexity for the whole process to
decompose a DAG into a minimized set of chains is bounded by

O(n2 + bn ).
The space complexity of the whole process is bounded by

O(e + bn) since the number of the newly added edges in each
bipartite graph G(Vi+1, Vi’; Ci’) is bounded by O(b|Vi+1|). (After
the edges incident to a virtual node v’ are inherited to v’’, the
virtual node of v’, they are not incident to v’ any more.)

V. EXPERIMENTS

In this section, we report the test results. We conducted our
experiments on a DELL desktop PC equipped with Pentium III
1.0 Ghz processor, 512 MB RAM and 20GB hard disk. The pro-
grams are written in C++, running standalone.

A. On the Tested Methods
In the experiments, we have tested six methods:

- DAG decomposition - Jagadish’s heuristic (DD for short)
[14],

- Tree encoding by Chen (TE for short) [6],
- 2-hop labeling by Cohn et al. (2-hop for short) [9]
- Dual labeling by Wang et al. (Dual-II for short) [28],
- Matrix multiplication by Warren (MM for short) [27], 
- ours (discussed in this paper).

The theoretical computational complexities of these meth-
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ods, as well as the graph traversal are shown below.

In this experiment, we use Jagadish’s heuristic algorithm for
tests since it needs much less time than O(n3), but with a com-
mensurate sacrifice in space overhead. In addition, we imple-
mented Dual-II, instead of Dual-I for tests. It is because for
non-sparse graphs, Dual-I needs even more space than any tra-
ditional matrix-based method; no compression in any sense.

B. Test Results
The tests are organized into three groups. In the first group,

we test large but sparse DAGs. In the second group, we test
large and non-sparse DAGs. In the third group, we test very
dense DAGs, but with relatively small number of nodes. In
these tests, we measured the space overhead, the time spent on
the generation of compressed transitive closures, as well as the
time on checking reachability. 

1) Tests on Sparse Graphs: In this group of experiments, we
tested a series of graphs with 15000 nodes. The edges are ran-
domly generated, ranging from 16000 edges to 20000 edges.
For each generated graph, Tarjan’s algorithm is used to find
SCCs as a preprocessor. All SCCs are then removed.

In Table 1, we show the average size of the data structures
generated by the different methods, and the average times spent
on generating such data structures.

From this table, we can see that Chen’s tree encoding method
has the best performance both in space overhead and time for
generating compressed transitive closures. It is because for this
kind of graphs, the pair sequences associated with the nodes are
quite short. Dual-II also has very good performance since the
TLC search trees are very small, which are proportional to the
number of non-tree edges. Our method is much better than Jag-
adish’s heuristic method since the number of chains generated
by Jagadish’s is significant larger than the minimum number of
chains. 2-hop can somehow reduce the size of the transitive clo-
sure. But it took too much time (more than 6 hours) for the task.

Fig. 10 shows the average query time over the tested graphs.
Each query is a pair (x, y) to check whether node x is an ancestor
of node y. For each graph, we have checked up to 100,000 que-
ries randomly generated and recorded the accumulated time. 

From this figure, we can see that Warren’s method is best. (In
our implementation, a boolean matrix is simply stored as bit
strings.) The tree encoding method is slightly better than Dual-

II since each time to check reachability the TLC search tree may
be explored by Dual-II. But by the tree encoding method, a
quite short pair sequence is visited in a binary searching way.
Again, our method is better than Jagadish’s heuristic method
since the index sequences by ours (which is exactly the mini-
mum number of disjoint chains) are averagely shorter than
those generated by Jagadish’s. 

2) Test on Non-sparse Graphs: In the second group of experi-
ments, we mainly tested two types of DAGs:
(1) DAG systematically generated (DSG)

A DAG of 640 roots with about four children per non-leaf;
about three parents per non-root, eight levels, 31525 nodes
and 71786 edges.

(2) DAG semi-randomly generated (DSRG)
Any graph of this type is generated as follows:
(i) construct a tree with each node having a random num-

ber of children from zero to six;
(ii) the tree contains a minimum of 20000 nodes; and
(iii)add randomly up to 10000 edges to the tree while en-

suring that no cycle is formed.
The graph parameters are summarized in Table 2.

In Table 3, 2-hop is not included since it took too long to gen-
erate labels. We only report the results of the other five meth-
ods. 

From this table, it can be seen that our method uniformly out-
performs all the other methods. Especially, our method is better
than Chen’s tree encoding, which shows that the number of the
leaf nodes of the found spanning tree can be much larger than
the graph’s width although a theoretical explanation can not be
delivered. However, Chen’s tree encoding is much better than
Jagadish’s heuristic method. On the one hand, the number of the
chains found by Jagadish’s is still large. On the other hand, find-

Table 1: Size of sparse graphs’ TC and time for generating it
size of data structures (16 bits) time for generating TC (sec.)

ours 39126 15.764

DD 170786 67.683

TE 30357 12.025

Dual-II 36389 42.227

2-hop 801217 24145

MM 14063750 675.812

query time

graph-traversal
DAG-decomposition
tree-labeling
dual-II
2-hop
matrix-multiplication

labeling time space overhead

O(e)
O(logb)
O(logβ)
O(logt)
O(e1/2)
O(1)

0
O(n3)
O(βe)
O(n + m + t3)
O(n4)
O(n3)

0

ours O(logb) O(be)

O(bn)
O(βn)
O(n + t2)
O(ne1/2logn)
O(n2)
O(bn)

Table 2: Graph parameters for Group II
number of nodes number of arcs average out-degree of 

internal nodes average path length

DSG 31525 71786 3 8.0

DSRG 20004 30003 2.3 10.11

Table 3: Size of DSG’s TC and time for generating it
size of data structures (16 bits) time for generating TC (sec.)

ours 169853 21.572

DD 307460 182.261

TE 267831 53.253

Dual-II 77182041 1269.359

MM 62114102 789.703
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ing paths which can be connected to form a chain is very costly.
Dual-II even needs more space and more time than Warren’s.
This shows that this method is totally not suitable for non-
sparse graphs since the space complexity O((e - n)2) and the
time complexity O((e - n)3) of this method become respectively
O(n2) and O(n3) or more when a graph is not sparse. Although
both Dual-II and Warren’s are of the same theoretical space and
time complexities, the boolean operations by Warren’s make it
more efficient than Dual-II.

In Fig. 11, we show the time spent on the query evaluation.

For the DSG, the query time of our method is not much
worse than Warren’s and better than all the other three methods.
The reason for this is that the index sequence associated with a
node by our method is shorter than both Jagadish’s and Chen’s.
The query time of Dual-II is the worst among all the approach-
es. In fact, the claim that the query time is bounded by logt [28]
may not be true since there is no guarantee that a TLC search
tree is balanced.

Table 4 shows the sizes of the data structures generated by
the different methods for storing the compressed transitive clo-
sure of DSRG, and the times spent on generating such data
structures.

Form this table, it can be observed that the time used by our
method to generate a data structure for the DSRG’s transitive
closure is again much less than all the other graph labeling strat-
egies, as well as Warren’s. More importantly, the discrepancy of
the space overhead between ours and all the other strategies is
huge. It is just a little larger than the original graph while Jaga-
dish’s needs more than 8 times of space, Chen’s about 5 times,
and Warren’s about 800 times. Dual-II even needs more space
and time than Warren’s.

We show the time for the query evaluation in Fig. 12. This
figure demonstrates that our method needs slightly more time
than Warren’s for checking reachability, but better than all the
other graph labeling approaches. Together with Table 4, this
shows that trading time for space by our method pays off.

 

3) Tests on Dense Graphs: In the third group of experiments, we
have tested some DAGs with density near 0.25 (referred to as
0.25-DAG)

Any graph of this type contains 3000 nodes connected by
2230196 edges generated randomly. The density of the graph is

 = 2230196/9000000 = 0.247.

In Table 5, we show the sizes of the data structures generated
by the different methods for storing the transitive closure of a
0.25-DAG, and the times spent on generating such data struc-
tures.

As we can see, even for very dense graphs our method works
well and effectively compacts the transitive closures. The time
for generating data structures is also very low. In fact, a dense
graph tends to have a smaller width. This may explain why our
method has an advantage over the others. We also notice that
the space overhead of the tree-encoding method is not much
worse than ours. The reason for this is that the more dense a
graph is, the more reachability is “covered” by the spanning tree
of that graph.

Fig. 13 shows the query time. Again, our method works
much more efficiently than all the other graph labeling ap-
proaches although it is a little bit inferior to Warren’s. For a
dense graph, the average size of an index sequence by ours is
smaller than the number of the leaf nodes of the spanning tree,
as well as the number of chains found by Jagadish’s heuristic
method, and much smaller than the numbers of the nodes and
edges of the graph. 

VI. CONCLUSION
In this paper, a new algorithm for finding a chain decompo-

sition of a DAG is proposed, which is useful for compressing

transitive closures. The algorithm needs only O(n2 + bn )
time and O(e + bn) space, where n and e are the number of the
nodes and the edges of the DAG, respectively; and b is the
DAG’s width. The main idea of the algorithm is a DAG stratifi-
cation that divides the DAG into a series of bipartite graphs.

Table 4: Size of DSRG’s TC and time for generating it
size of data structures (16 bits) time for generating TC (sec.)

ours 68167 7.813

DD 356310 100.989

TE 200278 27.432

Dual-II 31613640 591.015

MM 25010001 286.235
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Table 5: Size of 0.25-DAG’s TC and time for generating it
size of data structures (16 bits) time for generating TC (sec.)

ours 96000 23.000

DD 444420 235.354

TE 209784 101.000

Dual-II 1402622 2554.218

MM 562500 141.99
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Then, by using Hopcroft-Karp’s algorithm for finding a maxi-
mum matching for each bipartite graph, a set of disjoint chains
with virtual nodes involved can be produced in an efficient way.
Finally, by resolving the virtual nodes on the chains, we will get
the final result. Based on this algorithm, we can generate a com-
pressed transitive closure in O(be) time and store it in O(be)
space. The query time is bounded by O(logb). A wide range of
graphs is tested, including sparse graphs, non-sparse graphs,
and very dense graphs. This shows that our method significant-
ly outperforms the existing graph labeling methods. 
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Fig. 13. Time for query evaluation - Group III
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