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Abstract—In this paper, we discuss an efficient and effective 

index mechanism to support the matching of massive reads 

(short DNA strings) in DNA databases. It is very important to the 

next generation sequencing in the biological research. The main 

idea behind it is to construct a trie structure over all the reads, 

and search the trie against a BWT-array L created for a genome 

sequence s to locate all the occurrences of every read in s once for 

all. In addition, we change a single-character checking against L 

to a multiple-character checking, by which multiple searches of L 

are reduced to a single scanning of L. In this way, high efficiency 

can be achieved. Experiments have been conducted, which show 

that our method for this problem is promising. 

Keywords—string matching; DNA sequences; tries; BWT-

transformation 

I. INTRODUCTION 

The recent development of next-generation sequencing has 
changed the way we carry out the molecular biology and 
genomic studies. It has allowed us to sequence a DNA 
(Deoxyribonucleic acid) sequence at a significantly increased 
base coverage, as well as at a much faster rate. This facilitates 
building an excellent platform for the whole genome 
sequencing, and for a variety of sequencing-based analysis, 
including gene expressions, mapping DNA-protein interactions, 
whole-transcriptome sequencing, and RNA (Ribonucleic acid) 
splicing profiles. For example, the RNA-Seq protocol, in which 
processed mRNA is converted to cDNA and sequenced, is 
enabling the identification of previously unknown genes and 
alternative splice variants. The whole-genome sequencing of 
tumour cells can uncover previously unidentified cancer-
initiating mutations. 

The core and the first step to take advantage of the new 
sequencing technology is termed as read aligning, where a 
read is a short nucleotide sequence of 30 - 1000 base pairs (bp) 
generated by a high throughput sequencing machine made by 
Illumina, Roche, ABI/Life Technologies, which is in fact a 
sequence fragment fetched from a longer DNA molecule 
present in a sample that is fed into the machine. Most of the 
next-generation sequencing projects begin with a reference 
sequence which is a previously well studied, known genome. 
The process of a read aligning is to find the meaning of reads, 
or in other words, to determine their positions within a 
reference sequence, which will then be used for an effective 
statistical analysis. 

Compared to the traditional pattern matching problems, the 
new challenge from the read aligning is its enormous volume, 
usually millions to billions of reads need to be aligned within 

a same reference sequence. For example, to sequence a human 
molecule sample with 15X coverage, one may need to align 
1.5 billion reads of length about 100 characters (bps).  

In general, three kinds of alignment algorithms are 
practically applied: hash-based, string-matching-based, as 
well as inexact matching (including edit-distance computation 
and k-mismatching). By the hash-based methods, short 
subsequences called seeds are extracted from a pattern 
sequence and their hash values are computed, which are used 
to search against a reference genome sequence. By the string-
matching-based methods, different efficient algorithms are 
utilized, such as Knuth-Morris-Pratt [22], Boyer-Moore [9], 
and Apostolico-Giancarlo [3], as well as the algorithms based 
on different indexes like suffix trees [37][45], suffix arrays [35], 
and BWT-transformation (Burrows-Wheeler Transform) [10, 
16, 40]. By the edit-distance computation, a score matrix to 
represent the relevance between characters is defined and an 
alignment with the highest total score is searched, for which 
the dynamical programming paradigm is typically employed. 
However, a recent research shows that the BWT can also be 
used as an index structure for the k-mismatching problem [30]. 

All the methods mentioned above are single-pattern 
oriented, by which a single string pattern is checked against an 
entire database to find all the alignments in all the sequences 
stored in the database. In the current research of the molecular 
biology, however, we need to check a bunch of string patterns 
each time and the size of all string patterns can be even much 
larger than the database itself. This requires us considering all 
the string patterns as a whole, rather than separately check 
them one by one. By the Aho-Corasick algorithm [1], the 
multiple patterns are handled. However, it cannot be utilized 
in an indexing environment since it has to search a target 
sequence linearly while by using indexes to expedite a search  
this is not expected.   

In this paper, we address this issue and present a holistic 
string matching algorithm to handle million-billion reads. Our 
experiment shows that it can be more than 40% faster than 
single-pattern oriented methods when multi-million reads are 
checked. The main idea behind our method is: 
1. Construct a trie T over all the pattern sequences, and check 

T against a BWT-array created as an index for a target 
(reference) sequence. This enables us to avoid repeated 
search of the same part of different reads. 

2. Change a single-character checking to a multiple-character 
checking. (That is, each time a set of characters 
respectively from more than one read will be checked 
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against a BWT-array in one scan, instead of checking them 
separately one by one in multiple scans.)  
In this way, high efficiency has been achieved. 
The remainder of the paper is organized as follows. In 

Section II, we review the related work. In Section III, we 
briefly describe a string matching algorithm based on the 
BWT-transformation. In Section IV, we discuss our basic 
algorithm in great detail. In Section V, we improve the basic 
method by using multiple-character checkings. Section VI is 
devoted to the test results. Finally, a short conclusion is set 
forth in Section VII. 

II. RELATED WORK 

The matching of DNA sequences is just a special case of 
the general string matching problem, which has always been 
one of the main focuses in the computer science. All the 
methods developed up to now can be roughly divided into two 
categories: exact matching and inexact matching. By the 
former, all the occurrences of a pattern string p in a target 
string s will be searched. By the latter, a best alignment 
between p and s (i.e., a correspondence with the highest score) 
is searched in terms of a given score matrix M, which is 
established to indicate the relevance between characters (more 
exactly, the meanings represented by them).  

A. Exact Matching 

Scanning-based By this kind of algorithms, both pattern p 
and s are scanned from left to right, but often with an auxiliary 
data structure used to speed up the search, which is typically 
constructed by a pre-processor. The first of them is the famous 
Knuth-Morris-Pratt algorithm [22], which employs an 
auxiliary next-table (for p) containing the so-called  shift 
information (or say, failure function values) to indicate how 
far to shift the pattern from right to left when the current 
character in p fails to match the current character in s. Its time 
complexity is bounded by O(m + n), where m = |p| and n = |s|. 
The Boyer-Moore approach [9] works a little bit better than 
the Knuth-Morris-Pratt. In addition to the next-table, a skip-
table (also for p) is kept. For a large alphabet and small 
pattern, the expected number of character comparisons is 
about n/m, and is O(m + n) in the worst case. Although these 
two algorithms have never been used in practice, they sparked 
a series of research on this problem, and improved by different 
researchers in different ways, such as the algorithms discussed 
in [1][27]. However, the worst-case time complexity remains 
unchanged. The idea of the ‘shift information’ has also been 
adopted by Aho and Corasick [1] for the multiple-string 
matching, by which s is searched for an occurrence of any one 
of a set of k patterns: {p1, p2, …, pk}. Their algorithm needs 

only O( 


k

i
im

1

 + n) time, where mi = |pi| (i = 1, …, k). However, 

this algorithm cannot be adapted to an index environment due 
its working fashion totally unsuitable for indexes. 

Index-based In situations where a fixed string s is to be 
searched repeatedly, it is worthwhile constructing an index 
over s [46], such as suffix trees [37][45], suffix arrays [35], 
and more recently the BWT-transformation 
[10][16][30][31][40]. A suffix tree is in fact a trie structure 
[21] over all the suffixes of s; and by using the Weiner’s 

algorithm it can be built in O(n) time [37]. However, in 
comparison with suffix trees, the BWT-transformation is more 

suitable for DNA sequences due to its small alphabet  since 

the smaller  is, the smaller space will be occupied by the 
corresponding BWT index. According to a survey done by Li 
and Homer [30] on sequence alignment algorithms for next-
generation sequencing, the average space required for each 
character is 12 - 17 bytes for suffix trees while only 0.5 - 
2 byte for the BWT. Our experiments also confirm this 
distinction. For example, the file size of chromosome 1 of 
human is 270 Mb. But its suffix tree is of 26 Gb in size while 
its BWT needs only 390 Mb – 1 Gb for different compression 
rates of auxiliary arrays, completely handlable on PC or laptop 
machines. The huge size of a suffix tree may greatly affect the 
computation time. For example, for the Zebra fish and Rat 
genomes (sizes 1,464,443,456 pb, and 2,909,701,677 pb, 
respectively), we cannot finish the construction of their suffix 
trees within two days in a computer with 32GB RAM. 

Hash-based Intrinsically, all hash-table-based algorithms [18, 
20] extract short subsequences called 'seeds' from a pattern 
sequence p and create a signature (a bit string) for each of 
them. The search of a target sequence s is similar to that of the 
Brute Force searching, but rather than directly comparing the 
pattern at successive positions in s, their respective signatures 
are compared. Then stick each matching seed together to form 
a complete alignment. Its expected time is O(m + n), but in the 

worst case, which is extremely unlikely, it takes O(mn) time. 
The hash technique has also been extensively used in the DNA 
sequence research [19, 28, 29, 34, 39], and all experiments 
shows that they are generally inferior to the suffix tree and the 
BWT index in both running time and space requirements.    

B. Inexact Matching 

The inexact matching ranges from the score-based to the k-
mismatching, as well as the k-error. By the score-based 

method, a score matrix M of size ||  || is used to indicate 
the relevance between characters. The algorithm designed is to 
find the best alignment (or say, the alignment with the highest 
scores) between two given strings, which can be DNA 
sequences, protein sequences, or XML documents; and the 
dynamic programming paradigm is often utilized to solve the 
problem [14]. By the k-mismatching, we will find all those 

subsequences q of s such that d(p, q)  k, where d( ) is a 
distance function. When it is the Hemming distance, the 
problem is known as sequence matching with k mismatches 
[4]. When it is the Levenshtein distance, the problem is known 
as sequence matching with k errors [6]. There is a bunch of 
algorithms proposed for this problem, such as [4, 5, 24, 25, 42, 
43] for the k-mismatch; and [6, 11, 15, 44] for the k-error. All 

the methods for the k-mismatch needs quadratic time O(mn) 
in the worst case. However, the algorithm discussed in [2] has 

the best expected time complexity O(n k logm). Especially, 

for small k and large , the search requires sublinear time on 
average. In addition, the BWT can also be used as an index 
structure for this problem [30]. For the k-error, the worst case 
time complexity is the same as the k-mismatching. But the 

expected time can reach O(kn) by an algorithm discussed in 
[11]. As a different kind of inexact matching, the string 
matching with Don’t-Cares (or wild-cards) has also been an 



active research topic for decades, by which we may have wild-
cards in p, in s, or in both of them. A wild card matches any 
character. Due to this property, the ‘match’ relation is no 
longer transitive, which precludes straightforward adaption of 
the shift information used by Knuth-Morris-Pratt and Boyer-
Moore. All the methods proposed to solve this problem also 
needs quadratic time [38]. But using a suffix array as the 
index, however, the searching time can be reduced to O(logn) 
for some patterns, which contain only a sequence of 
consecutive Don’t Cares [36]. 

III. BWT-TRANSFORMATION 

In this section, we give a brief description of the BWT 
transformation to provide a discussion background. 

A. BWT and String Compression 

We use s to denote a string that we would like to transform. 
Assume that s terminates with a special character $, which 
does not appear elsewhere in s and is alphabetically prior to all 
other characters. In the case of DNA sequences, we have $ < A 
< C < G < T. As an example, consider s = acagaca$. We can 
rotate s consecutively to create eight different strings as shown 
in Figure 1(a). 

 

By writing all these strings stacked vertically, we generate 

an n  n matrix, where n = |s| (see Figure 1(a).) Here, special 

attention should be paid to the first column, denoted as F, and 

the last column, denoted as L. For them, the following 

equation, called the LF mapping, can be immediately observed: 

  F[i] = L[i]’s successor, (1) 

where F[i] (L[i]) is the i
th

 element of F (resp. L). 

From this property, another property, the so-called rank 

correspondence can be derived, by which we mean that for 

each character, its ith
 
appearance in F corresponds to its ith 

appearance in L, as demonstrated in Figure 1(b), in which the 

position of a character (in s) is represented by its subscript. 

(That is, we rewrite s as a1c1a2g1a3c2a4$.) For example, a2 

(representing the 2nd
 
appearance of a in s) is in the second 

place among all the a-characters in both F and L while c1 the 

first apperance in both F and L among all the c-characters. In 

the same way, we can check all the other appearances of 

different characters.  

Now we sort the rows of the matrix alphabetically. We 

will get another matrix, called the Burrow-Wheeler Matrix [7] 

[12][23] and denoted as BWM(s), as demonstrated in Figure 

1(c). Especially, the last column of BWM(s), read from top to 

bottom, is called the BWT-transformation (or the BWT-array) 

and denoted as BWT(s). So for s = acagaca$, we have BWT(s) 

= acg$caaa. 

By the BWM matrix, the LF-mapping is obviously not 

changed. Surprisingly, the rank correspondence also remains. 

Even though the ranks of different appearances of a certain 

character (in F or in L) may be different from before, their 

rank correspondences are not changed as shown in Figure 2(b), 

in which a2 now appears in both F and L as the fourth element 

among all the a-characters, and c1 the second element among 

all the c-characters.  

 

The first purpose of BWT(s) is for the string compression 

since same characters with similar right-contexts in s tend to 

be clustered together in BWT(s), as shown by the following 

example [10][16][40]: 

  BWT(tomorrow and tomorrow and tomorrow) 

 = wwwdd  nnoooaatttmmmrrrrrrooo  $ooo 

Such a transformed string can be effectively compressed 
and then decompressed. Due to the LF-mapping and the rank 
correspondence, it can also be easily restored to the original 
string. 

The second purpose is for the string search, which will be 
discussed in the next subsection in great detail. We need this 
part of knowledge to develop our method. 

B. String Search Using BWT 

For the purpose of the string search, the character 

clustering in F has to be used. Especially, for any DNA 

sequence, the whole F can be divided into five or less 

segments: $-segment, A-segment, C-segment, G-segment, and 

T-segment, denoted as F$, FA, FC, FG, FT, respectively. In 

addition, for each segment in F, we will rank all its elements 

from top to bottom, as illustrated in Figure 2(a). $ is not 

ranked since it appears only once. 

From Figure 2(a), we can see that the rank of a4, denoted 

as rkF(a4), is 1 since it is the first element in FA. For the same 

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) = 

1, rkF(c1) = 2, and rkF(g1) = 1. 

It can also be seen that each segment in F can be 

effectively represented as a triplet of the form: <; x, y>, 

where     {$}, and x, y are the positions of the first 

and last appearance of  in F, respectively. So the whole F 

Figure 2. LF-mapping and tank-correspondence 
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can be effectively compacted and represented as a set of || + 

1 triplets, as illustrated in Figure 2(b).  

Now, we consider j (the jth
 
appearance of  in s). 

Assume that rkF(j) = i. Then, the position where j appears in 

F can be easily determined: 

 F[x + i - 1] = j. (2) 

Besides, if we rank all the elements in L top-down in such a 

way that an j is assigned i if it is the ith appearance among all 

the appearances of  in L. Then, we will have 

 rkF(j) = rkL(j), (3) 

where rkL(j) is the rank assigned to j in L. 

This equation is due to the rank correspondence between F 

and L. (See [10][16][40] for a detailed discussion. Also see 

Figure 2(a) for ease of understanding.) 

With the ranks established, a string matching can be very 

efficiently conducted by using the formulas (2) and (3). To see 

this, let’s consider a pattern string p = aca and try to find all 

its occurrences in s = acagaca$.  

We work on the characters in p in the reverse order. 

First, we check p[3] = a in the pattern string p, and then 

figure out a segment in L, denoted as L, corresponding to Fa = 

<a; 2, 5>. So L = L[2 .. 5], as illustrated in Figure 3(a), where 

we still use the non-compact F for explanation. In the second 

step, we check p[2] = c, and then search within L to find the 

first and last c in L. We will find rkL(c2) = 1 and rkL(c1) = 2. 

By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2. Then, by 

using (2), we will figure out a sub-segment F in F: F[xc + 1 - 

1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7]. (Note that 

xc = 6. See Figure 2(b) and Figure 3(b).) In the third step, we 

check p[1] = a, and find L  = L[6 .. 7] corresponding to F = 

F[6 .. 7]. Repeating the above operation, we will find rkL(a3) = 

2 and rkL(a1) = 3. See Figure 3(c). Since now we have 

exhausted all the characters in p and F[xa + 2 – 1, xa + 3 – 1] = 

F[3, 4] contains only two elements, two occurrences of p in s 

are found. They are a1 and a3 in s, respectively. 

 

C. RankAll 

The dominant cost of the above process is the searching of 
L in each step. However, this can be dramatically reduced by 

arranging || arrays each for a character    such that [i] 

(the ith
 
entry in the array for ) is the number of appearances 

of  within L[1 .. i]. See Figure 4(a) for illustration. 

Now, instead of scanning a certain segment L[x .. y] (x  y) 

to find a subrange for a certain   , we can simply look up 

the array for  to see whether [x - 1] = [y]. If it is the case, 

then  does not occur in L[x .. y]. Otherwise, [[x - 1] + 1, 

[y]] should be the found range. For example, to find the first 

and the last appearance of c in L[2 .. 5], we only need to find 

c[2 – 1] = c[1] = 0 and c[5] = 2. So the corresponding range is 

[c[2 - 1] + 1,  c[5]] = [1, 2]. 

 
In this way, the searching of L can be saved and we need 

only a constant time to determine a subrange for a character 

encountered during a pattern searching.  

The problem of this method is its high space requirement, 

which can be mitigated by replacing [] with a compact array 

A for each   , in which, rather than for each L[i] (i  

{1, …, n}), only for some entries in L the number of their 

appearances will be stored.  For example, we can divide L into 

a set of buckets of the same size and only for each bucket a 

value will be stored in A. Obviously, doing so, more search 

will be required. In practice, the size  of a bucket (referred to 

as a compact factor) can be set to different values. For 

example, we can set  = 4, indicating that for each four 

contiguous elements in L a group of || integers (each in an A) 

will be stored. That is, we will not store all the values in 

Figure 4(a), but only store $[4], a[4], c[4], g[4], t[4], and $[8], 

a[8], c[8], g[8], t[8] in the corresponding compact arrays, as 

shown in Figure 4(b). However, each [j] for    can be 

easily derived from A by using the following formulas: 

 [j] = A[i] + , (4) 

where i = j/ and  is the number of ’s appearances within 

L[i + 1 .. j], and 

 [j] = A[i] - , (5) 

where i = j/ and  is the number of ’s appearances within 

L[j + 1 .. i]. 

Thus, we need two procedures: sDown(L, j, , ) and 

sUp(L, j, , ) to find  and , respectively. In terms of 

whether j - i   i - j, we will call sDown(L, j, , ) or 

sUp(L, j, , ) so that fewer entries in L will be scanned to 

find [j]. 
Finally, we notice that the column for $ can always be 

divided into two parts. In the first part, each entry is 0 while in 
the second part each entry is 1 (see Figure 4(a)). So we can 
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Figure 4. LF-mapping and rank-correspondence 
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simply keep a number to indicate where it is divided, instead 
of storing the whole column. 

D. Construction of BWT arrays 

For self-explanation, we describe how a BWT array is 
constructed [10][16][26][40] in this subsection. 

As mentioned above, a string s = a0a1 ... an−1 is always 

ended with $ (i.e., ai   for i = 0, …, n – 2, and an−1 = $). Let 
s[i] = ai (i = 0,1, …, n – 1) be the ith character of s, s[i.. j] = 
ai ... aj a substring and s[i .. n − 1] a suffix of s. Suffix array H 
of s is a permutation of the integers 0, ..., n − 1 such that H[i] is 
the start position of the ith smallest suffix. The relationship 
between H and the BWT array L can be determined by the 
following formulas: 

 
Once L is determined. F can also be created immediately 

by using formula (1). 

IV. MAIN ALGORITHM 

In this section, we present our algorithm to search a bunch 

of reads against a genome s. Its main idea is to organize all the 

reads into a trie T and search T against L to avoid any possible 

redundancy. First, we present the concept of tries in 

Subsection A. Then, in Subsection B, we discuss our basic 

algorithm for the task. We improve this algorithm in Section 

V.  

A. Tries over Reads 

Let D = {s1, …, sn} be a DNA database, where each si (i = 

1, …, n) is a genome, a very long string  
* 

( = {A, T, C, 

G}). Let R = {r1, …, rm} be a set of reads with each rj being a 

short string  
*
. The problem is to find, for every rj’s (j = 

1, …, m), all their occurrences in an si (i = 1, …, n) in D. 

A simple way to do this is to check each rj against si one by 

one, for which different string searching methods can be used, 

such as suffix trees [37][45], BW-transformation [10], and so 

on. Each of them needs only a linear time (in the size of si) to 

find all occurrences of rj in si. However, in the case of very 

large m, which is typical in the new genomic research, one-by-

one search of reads against an si is no more acceptable in 

practice and some efforts should be spent on reducing the 

running time caused by huge m. 

Our general idea is to organize all rj’s into a trie structure 

T and search T against si with the BW-transformation being 

used to check the string matching. For this purpose, we will 

first attach $ to the end of each si (i = 1, …, n) and construct 

BWT(si). Then, attach $ to the end of each rj (j = 1, …, m) to 

construct T = trie(R) over R as below. 

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R) 

is a single node. If |R| > 1, R is split into || = 5 (possibly 

empty) subsets R1, R2, …, R5 so that each Ri (i  {1, …, 5}) 

contains all those sequences with the same first character i  

{A, T, C, G}  {$}. The tries: trie(R1), trie(R2), …, trie(R5) 

are constructed in the same way except that at the kth step, the 

splitting of sets is based on the kth characters in the sequences. 

They are then connected from their respective roots to a single 

node to create trie(R). 

Example 1 As an example, consider a set of four reads: 

 r1: ACAGA 

 r2: AG 

 r3: ACAGC 

 r4: CA 

For these reads, a trie can be constructed as shown in Figure 

5(a). In this trie, v0 is a virtual root, labeled with an empty 

character  while any other node v is labeled with a real 

character, denoted as l(v). Therefore, all the characters on a 

path from the root to a leaf spell a read. For instance, the path 

from v0 to v8 corresponds to the third read r3 = ACAGC$. Note 

that each leaf node v is labelled with $ and associated with a 

read identifier, denoted as (v). 

 C  

The size of a trie can be significantly reduced by replacing 

each branchless path segment with a single edge. By a 

branchless path we mean a path P such that each node on P, 

except the starting and ending nodes, has only one incoming 

and one outgoing edge. For example, the trie shown in Figure 

5(a) can be compacted to a reduced one as shown in Figure 

5(b). 

B. Integrating BWT Search with Trie Search 

It is easy to see that exploring a path in a trie T over a set 

of reads R corresponds to scanning a read r  R. If we explore, 

at the same time, the L array established over a reversed 

genome sequence s , we will find all the occurrences of r 

(without $ involved) in s. This idea leads to the following 

algorithm, which is in essence a depth-first search of T by 

using a stack S to control the process. However, each entry in 

S is a triplet <v, a, b> with v being a node in T and a  b, used 

to indicate a subsegment in Fl(v)[a .. b]. For example, when 

searching the trie shown in Figure 5(a) against the L array 

shown in Figure 2(a), we may have an entry like <v1, 1, 4> in 

S to represent a subsegment FA[1 .. 4] (the first to the fourth 

entry in FA) since l(v1) = A. In addition, for technical 

convenience, we use F to represent the whole F. Then, F[a .. 

b] represents the segment from the ath
 
to the bth entry in F. 

In the algorithm, we first push <root(T), 1, |s|> into stack S 

(lines 1 – 2). Then, we go into the main while-loop (lines 3 – 

16), in which we will first pop out the top element from S, 

stored as a triplet <v, a, b> (line 4). Then, for each child vi of v, 

(6)
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g
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c

 

a

 

$

  

L[i] = $, if H[i] = 0; 

L[i] = s[H[i] – 1], otherwise. 

Figure 5. A trie and its compact version 
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we will check whether it is a leaf node. If it is the case, a 

quadruple <(vi), l(v), a, b> will be added to the result  (see 

line 7), which records all the occurrences of a read represented 

by (vi) in s. (In practice, we store compressed suffix arrays 

[35, 40] and use formulas (1) and (6) to calculate positions of 

reads in s.) Otherwise, we will determine a segment in L by 

calculating x and y (see lines 8 – 9). Then, we will use 

sDown(L, x - 1, , ) or sUp(L, x - 1, , ) to find [x - 1] as 

discussed in the previous section. (See line 10.) Next, we will 

find [y] in a similar way. (See line 11.) If [y] > [x - 1], 

there are some occurrences of  in L[x .. y] and we will push 

<vi, [x - 1] + 1, [y]>) into S, where [x - 1] + 1 and [y] 

are the first and last rank of ’s appearances within L[x .. y], 

respectively. (See lines 12 – 13.) If [y] = [x - 1],  does 

not occur in L[x .. y] at all and nothing will be done in this 

case. The following example helps for illustration.   

ALGORITHM readSearch(T, LF, ) 

begin 

1. v  root(T);   ; 

2. push(S, <v, 1, |s|>); 

3. while S is not empty do { 

4. <v, a, b>  pop(S); 

5. let v1, …, vk be the children of v; 

6. for i =  k  downto 1 do { 

7. if vi is a leaf then     {<(vi), l(v), a, b>}; 

8. else{assume that Fl(v) = <l(v); x, y>; 

9. x  x + a - 1; y  x + b - 1;   l(vi); 

10. find [x - 1] by sDown(L, x-1, , ) or sUp(L, x-1, , ); 

11. find [y] by sDown(L, y, , ) or sUp(L, y, , ); 

12. if [ y] > [ x - 1] then 

13. push(S, <vi, [x - 1] + 1, [y]>); 

14. } 

15. } 

16. } 

end  

Figure 6. Algorithm readSearch( ) 

 

Example 2 Consider all the reads given in Example 1 again. 

The trie T over these reads are shown in Figure 5(a). In order 

to find all the occurrences of these reads in s = ACAGACA$, 

we will run readSearch( ) on T and the LF of s shown in 

Figure 7(b). (Note that s = s for this special string, but the 

ordering of the subscripts of characters is reversed. In Figure 

7(a), we also show the corresponding BWM matrix for ease of 

understanding.) 

In the execution of readSearch( ), the following steps will be 

carried out. 

Step 1: push <v0, 1, 8> into S, as illustrated in Figure 7(c). 

Step 2: pop out the top element <v0, 1, 8> from S. Figure out 

the two children of v0: v1 and v11. First, for v11, we will use Ac 

to find the first and last appearances of l(v11) =  C in L[1 .. 8] 

and their respective ranks: 1 and 2. Assume that  = 4 (i.e., for 

each 4 consecutive entries in L a rankAll value is stored.) 

Further assume that for each A (  {a, c, g, t}) A[0] = 0. 

The ranks are calculated as follows. 

 

 To find the rank of the first appearance of C in L[1 .. 8], 

we will first calculate C[0] by using formula (4) or (5) 

(i.e., by calling sDown(L, 0, 4, C) or sUp(L, 0, 4, C)). Recall 

that whether (4) or (5) is used depends on whether j - i 

 i - j, where i = j/ and i = j/. For C[0], j = 0. 

Then, i = i = 0 and (4) will be used: 

 C[0] = Ac[0/4] + . 

 Since Ac[0/4] = Ac[0] = 0 and the search of L[i .. j] = 

L[0 .. 0] finds  = 0,  C[0] is equal to 0. 

 To find the rank of the last appearance of C in L[1 .. 8], 

we will calculate C[8] by using (4) for the same reason as 

above. For C[8], we have j = 8 and i  = 2. So we have 

 C[8] = Ac[8/4] + . 

 Since Ac[8/4] = Ac[2] = 2, and the search of L[i .. j] = 

L[8 .. 8] finds  = 0, we have C[8] = 2. 

So the ranks of the first and the last appearances of C are 

C[0] + 1 = 1, and C[8] = 2, respectively.  Push <v11, 1, 2> into 

S. 

Next, for v1, we will do the same work to find the first and 

last appearances of l(v1) = A and their respective ranks: 1 and 

4; and push <v1, 1, 4> into S. Now S contains two entries as 

shown in Figure 8(a) after step 2. 

Step 3: pop out the top element <v1, 1, 4> from S. v1 has two 

children v2 and v9. Again, for v9 with l(v9) = G, we will use Ag 

to find the first and last appearances of G in L[2 .. 5] 

(corresponding to FA[1 .. 4]) and their respective ranks: 1 and 

1. In the following, we show the whole working process. 

 To find the rank of the first appearance of G in L[2 .. 5], 

we will first calculate G[1]. We have j = 1, i = j/ = 

1/4 = 0 and i = 1/4 = 1. Since j - i = 0 < i - j =  3, 

formula (4) will be used: 

 G[1] = Ag[1/4] + . 

 Since Ag[0/4] = Ag[0] = 0 and search of L[i .. j] = L[0 .. 

0] finds  = 0,  G[1] is equal to 0. 

 To find the rank of the last appearance of G in L[2 .. 5], 

we will calculate G[5] by using (4) based on an analysis  

similar to above. For G[5], we have j = 5 and i = j/ = 1. 

So we have 

 G[5] = Ag[5/4] + . 

<v0, 1, 8> 
(a) 

S: 

Figure 7. Illustration for Step 1 
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 Since Ag[5/4] = Ag[1] = 1, and search of L[i .. j] = 

L[4 .. 5] finds  = 0, we have G[5] = 1. 

We will push <v9, G[1]  + 1, G[5] >  = <v9, 1, 1> into S. 

For v2 with l(v2) = C, we will find the first and last 

appearances of C in L[2 .. 5] and their ranks: 1 and 2. Then, 

push <v2, 1, 2> in to S. After this step, S will be changed as 

shown in Figure 8(b). 

 

In the subsequent steps 4, 5, and 6, S will be consecutively 

changed as shown in Figure 8(c), (d), and (e), respectively. 

In step 7, when we pop the top element <v5, 4, 4>, we meet a 
node with a single child v6 labeled with $. In this case, we will 
store <(v6), l(v5), 4, 4> = <r1, A, 4, 4> in  as part of the 
result (see line 7 in readSearch( ).) From this we can find that 
rkL(A3) = 4 (note that the same element in both F and L has 

the same rank), which shows that in s the substring of length 

|r1| staring from A3 is an occurrence of r1.  

C. Time Complexity and Correctness Proof 

In this subsection, we analyze the time complexity of 

readSearch(T, LF, ) and prove its correctness.  

C.1 Time complexity 

In the main while-loop, each node v in T is accessed only 

once. If the rankAll arrays are fully stored, only a constant 

time is needed to determine the range for l(v). So the time 

complexity of the algorithm is bounded by O(|T|). If only the 

compact arrays (for the rankAll information) are stored, the 

running time is increased to O(|T|), where  is the 

corresponding compact factor. It is because in this case, for 

each encountered node in T, O(
2

1
) entries in L may be 

checked in the worst case. 

C.2 Correctness 

Proposition 1 Let T be a trie constructed over a collections of 

reads: r1, …, rm, and LF a BWT-mapping established for a 

reversed genome s . Let  be the compact factor for the 

allRank arrays, and  the result of readSearch(T, LF, ). 

Then, for each rj, if it occurs in s, there is a quadruple {<(vi), 

l(v), a, b>}   such that (vi) = rj, , and Fl(v)[a], Fl(v)[a + 1], …, 

Fl(v)[b] show all the occurrences of rj in s. 

Proof. We prove the proposition by induction on the height h 

of T. 

Basic step. When h = 1. The proposition trivially holds. 

Induction hypothesis. Suppose that when the height of T is h, 
the proposition holds. We consider the case that the height of 

T is h + 1. Let v0 be the root with l(v0) = . Let v1, …, vk be the 

children of v0. Then, height(T[vi])  h (i = 1, …, k), where T[vi] 
stands for the subtree rooted at vi and height(T[vi]) for the 

height of T[vi]. Let l(vi) =  and F = <; a, b>. Let vi1, …, vil 
be the children of vi. Assume that x and y be the ranks of the 

first and last appearances of  in L. According to the induction 
hypothesis, searching T[vij] against L[a′ .. b′], where a′ = a + x  
- 1 and b′ = a + y - 1, the algorithm will find all the locations 
of all those reads with l(vi) as the first character. This 

completes the proof.  

V. IMPROVEMENTS 

The algorithm discussed in the previous section can be 

greatly improved by rearranging the search of a segment of L 

when we visit a node v in T. Such a search has to be done once 

for each of its children by calling sDown( ) or sUp( )  (see 

lines 10 - 11 in readSearch( ).) Instead of searching the 

segment for each child separately, we can manage to search 

the segment only once for all the children of v. To this end, we 

will use integers to represent characters in . For example, we 

can use 1, 2, 3, 4, 5 to represent A, C, G, T, $ in a DNA 

sequence. In addition, two kinds of simple data structures will 

be employed:  

- Bv: a Boolean array of size ||  {$} associated with node 

v in T, in which, for each i  , Bv[i] = 1 if there exists a 

child node u of v such that l(u) = i; otherwise, Bv[i] = 0. 

- ci: a counter associated with i   to record the number of 

i’s appearances during a search of some segment in L. 

See Figure 9 for illustration. 

With these data structures, we change sDown(L, j, , ) 

and sUp(L, j, , ) to sDown(L, j, , v) and sUp(L, j, , v), 

respectively, to search L for all the children of v, but only in 

one scanning of L.  

 

In sDown(L, j, , v), we will search a segment L[j/ + 

1 .. j] from top to bottom, and store the result in an array D 

of length ||, in which each entry D[i] is the rank of i 

(representing a character), equal to ci + Ai[j/], where ci  is 

the number of i’s appearances within L[j/ + 1 .. j]. 

In the algorithm, L[j′ .. j] is scanned only once in the main 

while-loop (see lines 3 – 6), where j′ = j/ + 1 (see line 2.) 

(a) 

Figure 8. Illustration for stack changes 
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For each encountered entry L[l] (j′  l  j), we will check 

whether Bv[L[l]] = 1 (see line 4.) If it is the case, cL[l] will be 

increased by 1 to count encountered entries which are equal to 

L[l]. After the while-loop, we compute the ranks for all the 

characters respectively labeling the children of v (see lines 7 – 

8). 

FUNCTION sDown(L, j, , v) 

begin 

1. ci  0 for each i  ; 

2. l  j/ + 1; 

3. while l  j do {  

4. if Bv[L[l]] = 1 then cL[l]  cL[l] + 1; 

5. l  l + 1; 

6. } 

7. for k = 1 to || do { 

8. if Bv[k] = 1 then D[k]  Ak[j/] + ck; 

9. } 

10. return D; 

end  

Figure 10. Algorithm sDown( ) 

 

sUp(L, j, , v) is dual to sDown(L, j, , v), in which a 

segment of L will be search bottom-up. 

FUNCTION sUp(L, j, , v) 

begin 

1. ci  0 for each i  ; 

2. l  j/; 

3. while l  j + 1do { 

4. if Bv[L[l]] = 1 then cL[l]  cL[l] + 1; 

5. l  l - 1; } 

6. } 

7. for k = 1 to || do { 

8. if Bv[k] = 1 then D[k]  Ak[j/] - ck; 

9. } 

10. return D; 

end  
 

Figure 11. Algorithm sUp( ) 

See the following example for illustration. 

Example 3 In this example, we trace the working process to 

generate ranges (by scanning L[2 .. 5]) for the two children v2 

and v9 of v1. For this purpose, we will calculate C[1], C[5] for 

l(v2) = C, and G[1], G[5] for l(v9) = G. First, we notice that 

1vB = [0, 1, 1, 0, 0] and all the counters c1, c2, c3, c4, c5 are set 

to 0. 

By running  sDown(L, 1, 4, v1) to  get C[1] and G[1], part 

of L will be scanned once, during which only one entry L[1] = 

A (represented by 1) is accessed. Since 
1v

B [L[1]] = 
1v

B [1] = 

0, c1 remains unchanged. Especially, both c2 (for C) and c3 

(for G) remain 0. Then, C[1] = Ac[1/4] + c2 = 0 and G[1] = 

Ag[1/4] + c3 = 0. 

By running sDown(L, 5, 4, v1) to get C[5] and G[5], 

another part of L will be scanned, also only once, during 

which merely one entry L[5] = C (represented by 2) is 

accessed. Since 
1v

B [L[5]] = 
1v

B [2] = 1, c2 will be changed to 

1. But c3 (for G) remain 0. Then, we have C[5] = Ac[5/4] + 

c2 = 2 and G[5] = Ag[5/4] + c3 = 1. 

Thus, the range for l(v2) = C is [C[1] + 1, C[5] = [1, 2], 

and the range for l(v9) = G is [G[1] + 1, G[5] = [1, 1].   

By using the above two procedures, our improved 

algorithm can be described as follows. 

ALGORITHM rS(T, LF, ) 

begin 

1. v  root(T); 

2. push(S, <v, 1, ||>); 

3. while S is not empty do { 

4. <v, a, b>  pop(S); 

5. let v1, …, vk be all those children of v, which are labeled with $; 

6. let u1, …, uj be all the rest children of v; 

7. for each j  {1, …, k} do {    {<(vj), l(v), a, b>}; 

8. assume that Fl(v) = <l(v); x, y>; 

9. x  x + a - 1; y  x + b - 1; 

10. call sDown(L, x - 1, , v) or sUp(L, x - 1, , v) to find the 

ranks of the first appearances of all the labels of the 

children of v: r(u1), …, r(uj); 

11. call sDown(L, y, , v) or sUp(L, y, , v) to find the 

ranks of the last appearances of all the labels of the 

children of v: r(u1), …, r(uj); 

12. for l = j downto 1 do { push(S, <ul, r(ul), r(uj)>) }; 

13. } 

end  

Figure 12. Algorithm rR( ) 

 

The main difference of the above algorithm from 

readSearch( ) consists in the different ways to search L[a .. b]. 

Here, to find the ranks of the first appearances of all the labels 

of the children of v, sDown( ) or sUp( ) is called to scan part of 

L only once (while in readSearch( ) this has to be done once 

for each different child.) See line 10. Similarly, to find the 

ranks of the last appearances of these labels, another part of L 

is also scanned only once. See line 11. All the other operations 

are almost the same as in readSearch( ). 

VI. EXPERIMENTS 

In our experiments, we have tested altogether five different 

methods: 

- Burrows Wheeler Transformation (BWT for short), 

- Suffix tree based (Suffix for short), 

- Hash table based (Hash for short), 

- Trie-BWT (tBWT for short, discussed in this paper),  

- Improved Trie-BWT (itBWT for short, discussed in this 

paper).  

Among them, the codes for the suffix tree based and hash 

based methods are taken from the gsuffix package [7] while all 

the other three algorithms are implemented by ourselves. All 

of them are able to find all occurrences of every read in a 

genome. The codes are written in C++, compiled by GNU 

make utility with optimization of level 2. In addition, all of 

our experiments are performed on a 64-bit Ubuntu operating 

system, run on a single core of a 2.40GHz Intel Xeon E5-2630 

processor with 32GB RAM.  



The test results are categorized in two groups: one is on a 

set of synthetic data and another is on a set of real data. For 

both of them, five reference genomes are used: 

TABLE I. CHARACTERISTICS OF GENOMES 

Genomes Genome sizes (bp) 

Rat chr1 (Rnor_6.0) 290,094,217 

C. merolae  (ASM9120v1) 16,728,967 

C. elegans  (WBcel235) 103,022,290 

Zebra fish (GRCz10) 1,464,443,456 

Rat (Rnor_6.0) 2,909,701,677 

 

A. Tests on Synthetic Data Sets  

All the synthetic data are created by simulating reads from 

the five genomes shown in Table I, with varying lengths and 

amounts. It is done by using the wgsim program included in 

the SAMtools package [33] with default model for single reads 

simulation. 

Over such data, the impact of five factors on the searching 

time are tested: number n of reads, length l of reads, size s of 

genomes, compact factors f1 of rankAlls (see Subsection C in 

III) and compression factors f2 of suffix arrays [35][40], which 

are used to find locations of matching reads (in a reference 

genome) in terms of formula (6) (see Subsection D in III).  

A.1 Tests with varying amount of reads 

In this experiment, we vary the amount n of reads with n = 

5, 10, 15, … , 50 millions while the reads are 50 bps or 100 

bps in length extracted randomly from Rat chr1 and C. merlae 

genomes. For this test, the compact factors f1 of rankAlls are 

set to be 32, 64, 128, 256, and the compression factors f2 of 

suffix arrays are set to 8, 16, 32, 64, respectively. These two 

factors are increasingly set up as the amount of reads gets 

increased.   

In Figures 13(a) and (b), we report the test results of 

searching the Rat chr1 for matching reads of 50 and 100 bps, 

respectively. From these two figures, it can be clearly seen 

that the hash based method has the worst performance while 

ours works best. For short reads (of length 50 bps) the suffix-

based is better than the BWT, but for long reads (of length 100 

bps) they are comparable. The poor performance of the hash-

based is due to its inefficient brute-force searching of genomes 

while for both the BWT and the suffix-based it is due to the 

huge amount of reads and each time only one read is checked.  

In the opposite, for both our methods tBWT and itBWT, the 

use of tries enables us to avoid repeated checkings for similar 

reads.  

In these two figures, the time for constructing tries over 

reads is not included. It is because in the biological research a 

trie can be used repeatedly against different genomes, as well 

as often updated genomes. However, even with the time for 

constructing tries involved, our methods are still superior 

since the tries can be established very fast as demonstrated in  

 
Table II, in which we show the times for constructing tries 

over different amounts of reads.  

TABLE II. TIME FOR TRIE CONSTRUCTION OVER READS OF 

LENGTH 100 BPS 

No. of reads 30M 35M 40M 45M 50M 

Time for Trie Con. 51s 63s 82s 95s 110s 

The difference between tBWT and itBWT is due to the 

different number of BWT array accesses as shown in Table III. 

By an access of a BWT array, we will scan a segment in the 

array to find the first and last appearance of a certain character 

from a read (by tBWT) or a set of characters from more than 

one read (by itBWT). 

TABLE III. NO. OF BWT ARRAY ACCESSES 

No. of reads 30M 35M 40M 45M 50M 

tBWT  47856K 55531K 63120K 70631K 78062K 

itBWT 19105K 22177K 25261K 28227K 31204K 

 

Figures 14(a) and (b) show respectively the results for 

reads of length 50 bps and 100 bps over the C. merolae 

genome. Again, our methods outperform the other three 

methods. 

 

Figure 13. Test results on varying amount of reads 
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Figure 14. Test results on varying amount of reads 
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A.2 Tests with varying length of reads 

In this experiment, we test the impact of the read length on 

performance. For this, we fix all the other four factors but vary 

length l of simulated reads with l = 35, 50, 75, 100, 125, … , 

200. The results in Figure 15(a) shows the difference among 

five methods, in which each tested set has 20 million reads 

simulated from the Rat chr1 genome with f1  = 128 and f2 = 16.  

In Figure 15(b), the results show the the case that each set has 

50 million reads. Figures 16(a) and (b) show the results of the 

same data settings but on C. merlae genome.  

 
Again, in this test, the hash based performs worst while the 

suffix tree and the BWT method are comparable. Both our 

algorithms uniformally outperform the others when searching 

on short reads (shorter than 100 bps). It is because shorter 

reads tend to have multiple occurrences in genomes, which 

makes the trie used in tBWT and itBWT more beneficial. 

However, for long reads, the suffix tree beats the BWT since 

on one hand long reads have fewer repeats in a genome, and 

on the other hand higher possibility that variations occurred in 

long reads may result in earlier termination of a searching 

process. In practice, short reads are more often than long reads. 

 
A.3 Tests with varying sizes of genome 

To examine the impacts of varying sizes of genomes, we 

have made four tests with each testing a certain set of reads 

against different genomes shown in Table 1. To be consistent 

with foregoing experiments, factors except sizes of genomes 

remain the same for each test with f1 = 128 and f2 = 16. In 

Figure 17(a) and (b), we show the searching time on each 

genome for 20 million and 50 million reads of 50 bps, 

respectively. Figures 18(a) and (b) demonstrate the results of 

20 million and 50 million reads but with each read being of 

100 bps. 

These figures show that, in general, as the size of a 

genome increases the time of read aligning for all the tested 

algorithms become longer. We also notice that the larger the 

size of a genome, the bigger the gaps between our methods 

and the other algorithms. The hash-based is always much 

slower than the others. For the suffix tree, we only show the 

matching time for the first three genomes. It is because the 

testing computer cannot meet its huge memory requirement 

for indexing the Zebra fish and Rat genomes (which is the 

main reason why people use the BWT, instead of the suffix 

tree, in practice.) Details for the 50 bp reads in Figure 17 and 

Figure 18 show that the tBWT and the itBWT are at least 30% 

faster than the BWT and the suffix tree, which happened on 

the C. elegans genome. For the Rat genome, our algorithms 

are even more than six times faster than the others.  

 

Now let us have a look at Figures 18(a) and (b). Although 

our methods do not perform as good as for the 50 bp reads due 

to the increment of length of reads, they still gain at least 22% 

improvement on speed and nearly 50% acceleration in the best 

case, compared with the BWT. 
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Figure 16. Test results on varying length of reads 
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Figure 15. Test results on varying length of reads 
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A.4 Tests with varying compact and compression factors 

In the experiments, we focus only on the BWT method, 

since there are no compressions in both the suffix tree and the 

hash-based method. The following test results are all for 20 

million reads with 100 bps in length. We first show the impact 

of f1 on performance with f2 = 16, 64 in Figures 19(a) and (b), 

respectively. Then we show the effect when f2 is set to 64, 256 

in Figures 20(a) and (b). 

From these figures, we can see that the performance of all 

three methods degrade as f1 and f2 increase. Another noticeable 

point is that both the itBWT and the tBWT are not so sensitive 

to the high compression rate. Although doubling f1 or f2 will 

slow down their speed, they become faster compared to the 

BWT. For example, in Figure 19, the time used by the BWT 

grows 80% by increasing f1 from 8 to 64, whereas the growth 

of time used by the tBWT is only 50%. In addition, the factor 

f1 has smaller impact on the itBWT than the BWT and the 

tBWT, since the extra data structure used in the itBWT 

effectively reduced the processing time of the trie nodes by 

half or more.  

 

 

B. Tests on Real Data Sets  

For the performance assessment on real data, we obtain 

RNA-sequence data from the project conducted in an RNA 

laboritary at University of Manitoba [23]. This project 

includes over 500 million single reads produced by Illumina 

from a rat sample. Length of these reads are between 36 bps 

and 100 bps after trimming using Trimmomatic [8]. The reads 

in the project are divided into 9 samples with different amount 

ranging between 20 million and 75 million. Two tests have 

been conducted. In the first test, we mapped the 9 samples 

back to rat genome of ENSEMBL release 79 [13]. We were 

not able to test the suffix tree due to its huge index size. The 

hash-based method was ignored as well since its running time 

was too high in comparison with the BWT. In order to balance 

between searching speed and memory usage of the BWT 

index, we set f1 = 128, f2 = 16 and repeated the experiment 20 

times. Figure 17(a) shows the average time consumed for each 

algorithm on the 9 samples. 

 

Since the source of RNA-sequence data is the transcripts, 

the expressed part of the genome, we did a second test, in 

which we mapped the 9 samples again directly to the Rat 

transcriptome. This is the assembly of all transcripts in the Rat 

genome. This time more reads, which failed to be aligned in 

the first test, are able to be exactly matched. This result is 

showed in Figure 21(b).   

 

From Figures 21(a) and (b), we can see that the test results 

for real data set are consistent with the simulated data. Our 

algorithms are faster than the BWT on all 9 samples. Counting 

the whole data set together, itBWT is more than 40% faster 

compared with the BWT. Although the performance would be 

dropped by taking tries’ construction time into consideration, 

we are still able to save 35% time using itBWT. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a new method to search a large volume of 

pattern strings against a single long target string is proposed, 

aiming at efficient next-generation sequencing in DNA 

databases. The main idea is to combine the search of tries 

constructed over the patterns and the search of the BWT 

indexes over the target. Especially, the so-called multiple-

character checking has been introduced, which reduces the 

multiple scanning of a BWT array to a single search of it. 

Extensive experiments have been conducted, which show that 

our method improves the running time of the traditional 

methods by an order of magnitude or more. 

As a future work, we will extend the discussed method to 

handle inexact string matches, such as the string matching 

with k-mismatches and k-errors, as well as patterns containing 

Figure 21. Test results on real data 
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Figure 20. Test results on varying compact and compression factors 
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Figure 19. Test results on varying compact and compression factors 
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‘don’t-cares’. It is very challenging to integrate the existing 

techniques for treating mismatches into the BWT-

transformation.  
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