
An Efficient Algorithm for Read Matching in DNA Databases

Yangjun Chen, Yujia Wu

Dept. Applied Computer Science

University of Winnipeg, Canada

email: y.chen@uwinnipeg.ca, wyj1128@yahoo.com

Jiuyong Xie

Dept. Physiology &Pathophysiology, College of Medicine

University of Manitoba, Canada

email: xiej@umanitoba.ca

Abstract—In this paper, we discuss an efficient and effective

index mechanism to support the matching of massive reads

(short DNA strings) in DNA databases. It is very important to the

next generation sequencing in the biological research. The main

idea behind it is to construct a trie structure over all the reads,

and search the trie against a BWT-array L created for a genome

sequence s to locate all the occurrences of every read in s once for

all. In addition, we change a single-character checking against L

to a multiple-character checking, by which multiple searches of L

are reduced to a single scanning of L. In this way, high efficiency

can be achieved. Experiments have been conducted, which show

that our method for this problem is promising.

Keywords—string matching; DNA sequences; tries; BWT-

transformation

I. INTRODUCTION

The recent development of next-generation sequencing has
changed the way we carry out the molecular biology and
genomic studies. It has allowed us to sequence a DNA
(Deoxyribonucleic acid) sequence at a significantly increased
base coverage, as well as at a much faster rate. This facilitates
building an excellent platform for the whole genome
sequencing, and for a variety of sequencing-based analysis,
including gene expressions, mapping DNA-protein interactions,
whole-transcriptome sequencing, and RNA (Ribonucleic acid)
splicing profiles. For example, the RNA-Seq protocol, in which
processed mRNA is converted to cDNA and sequenced, is
enabling the identification of previously unknown genes and
alternative splice variants. The whole-genome sequencing of
tumour cells can uncover previously unidentified cancer-
initiating mutations.

The core and the first step to take advantage of the new
sequencing technology is termed as read aligning, where a
read is a short nucleotide sequence of 30 - 1000 base pairs (bp)
generated by a high throughput sequencing machine made by
Illumina, Roche, ABI/Life Technologies, which is in fact a
sequence fragment fetched from a longer DNA molecule
present in a sample that is fed into the machine. Most of the
next-generation sequencing projects begin with a reference
sequence which is a previously well studied, known genome.
The process of a read aligning is to find the meaning of reads,
or in other words, to determine their positions within a
reference sequence, which will then be used for an effective
statistical analysis.

Compared to the traditional pattern matching problems, the
new challenge from the read aligning is its enormous volume,
usually millions to billions of reads need to be aligned within

a same reference sequence. For example, to sequence a human
molecule sample with 15X coverage, one may need to align
1.5 billion reads of length about 100 characters (bps).

In general, three kinds of alignment algorithms are
practically applied: hash-based, string-matching-based, as
well as inexact matching (including edit-distance computation
and k-mismatching). By the hash-based methods, short
subsequences called seeds are extracted from a pattern
sequence and their hash values are computed, which are used
to search against a reference genome sequence. By the string-
matching-based methods, different efficient algorithms are
utilized, such as Knuth-Morris-Pratt [22], Boyer-Moore [9],
and Apostolico-Giancarlo [3], as well as the algorithms based
on different indexes like suffix trees [37][45], suffix arrays [35],
and BWT-transformation (Burrows-Wheeler Transform) [10,
16, 40]. By the edit-distance computation, a score matrix to
represent the relevance between characters is defined and an
alignment with the highest total score is searched, for which
the dynamical programming paradigm is typically employed.
However, a recent research shows that the BWT can also be
used as an index structure for the k-mismatching problem [30].

All the methods mentioned above are single-pattern
oriented, by which a single string pattern is checked against an
entire database to find all the alignments in all the sequences
stored in the database. In the current research of the molecular
biology, however, we need to check a bunch of string patterns
each time and the size of all string patterns can be even much
larger than the database itself. This requires us considering all
the string patterns as a whole, rather than separately check
them one by one. By the Aho-Corasick algorithm [1], the
multiple patterns are handled. However, it cannot be utilized
in an indexing environment since it has to search a target
sequence linearly while by using indexes to expedite a search
this is not expected.

In this paper, we address this issue and present a holistic
string matching algorithm to handle million-billion reads. Our
experiment shows that it can be more than 40% faster than
single-pattern oriented methods when multi-million reads are
checked. The main idea behind our method is:
1. Construct a trie T over all the pattern sequences, and check

T against a BWT-array created as an index for a target
(reference) sequence. This enables us to avoid repeated
search of the same part of different reads.

2. Change a single-character checking to a multiple-character
checking. (That is, each time a set of characters
respectively from more than one read will be checked

mailto:y.chen@uwinnipeg.ca

against a BWT-array in one scan, instead of checking them
separately one by one in multiple scans.)
In this way, high efficiency has been achieved.
The remainder of the paper is organized as follows. In

Section II, we review the related work. In Section III, we
briefly describe a string matching algorithm based on the
BWT-transformation. In Section IV, we discuss our basic
algorithm in great detail. In Section V, we improve the basic
method by using multiple-character checkings. Section VI is
devoted to the test results. Finally, a short conclusion is set
forth in Section VII.

II. RELATED WORK

The matching of DNA sequences is just a special case of
the general string matching problem, which has always been
one of the main focuses in the computer science. All the
methods developed up to now can be roughly divided into two
categories: exact matching and inexact matching. By the
former, all the occurrences of a pattern string p in a target
string s will be searched. By the latter, a best alignment
between p and s (i.e., a correspondence with the highest score)
is searched in terms of a given score matrix M, which is
established to indicate the relevance between characters (more
exactly, the meanings represented by them).

A. Exact Matching

Scanning-based By this kind of algorithms, both pattern p
and s are scanned from left to right, but often with an auxiliary
data structure used to speed up the search, which is typically
constructed by a pre-processor. The first of them is the famous
Knuth-Morris-Pratt algorithm [22], which employs an
auxiliary next-table (for p) containing the so-called shift
information (or say, failure function values) to indicate how
far to shift the pattern from right to left when the current
character in p fails to match the current character in s. Its time
complexity is bounded by O(m + n), where m = |p| and n = |s|.
The Boyer-Moore approach [9] works a little bit better than
the Knuth-Morris-Pratt. In addition to the next-table, a skip-
table (also for p) is kept. For a large alphabet and small
pattern, the expected number of character comparisons is
about n/m, and is O(m + n) in the worst case. Although these
two algorithms have never been used in practice, they sparked
a series of research on this problem, and improved by different
researchers in different ways, such as the algorithms discussed
in [1][27]. However, the worst-case time complexity remains
unchanged. The idea of the ‘shift information’ has also been
adopted by Aho and Corasick [1] for the multiple-string
matching, by which s is searched for an occurrence of any one
of a set of k patterns: {p1, p2, …, pk}. Their algorithm needs

only O(


k

i
im

1

 + n) time, where mi = |pi| (i = 1, …, k). However,

this algorithm cannot be adapted to an index environment due
its working fashion totally unsuitable for indexes.

Index-based In situations where a fixed string s is to be
searched repeatedly, it is worthwhile constructing an index
over s [46], such as suffix trees [37][45], suffix arrays [35],
and more recently the BWT-transformation
[10][16][30][31][40]. A suffix tree is in fact a trie structure
[21] over all the suffixes of s; and by using the Weiner’s

algorithm it can be built in O(n) time [37]. However, in
comparison with suffix trees, the BWT-transformation is more

suitable for DNA sequences due to its small alphabet  since

the smaller  is, the smaller space will be occupied by the
corresponding BWT index. According to a survey done by Li
and Homer [30] on sequence alignment algorithms for next-
generation sequencing, the average space required for each
character is 12 - 17 bytes for suffix trees while only 0.5 -
2 byte for the BWT. Our experiments also confirm this
distinction. For example, the file size of chromosome 1 of
human is 270 Mb. But its suffix tree is of 26 Gb in size while
its BWT needs only 390 Mb – 1 Gb for different compression
rates of auxiliary arrays, completely handlable on PC or laptop
machines. The huge size of a suffix tree may greatly affect the
computation time. For example, for the Zebra fish and Rat
genomes (sizes 1,464,443,456 pb, and 2,909,701,677 pb,
respectively), we cannot finish the construction of their suffix
trees within two days in a computer with 32GB RAM.

Hash-based Intrinsically, all hash-table-based algorithms [18,
20] extract short subsequences called 'seeds' from a pattern
sequence p and create a signature (a bit string) for each of
them. The search of a target sequence s is similar to that of the
Brute Force searching, but rather than directly comparing the
pattern at successive positions in s, their respective signatures
are compared. Then stick each matching seed together to form
a complete alignment. Its expected time is O(m + n), but in the

worst case, which is extremely unlikely, it takes O(mn) time.
The hash technique has also been extensively used in the DNA
sequence research [19, 28, 29, 34, 39], and all experiments
shows that they are generally inferior to the suffix tree and the
BWT index in both running time and space requirements.

B. Inexact Matching

The inexact matching ranges from the score-based to the k-
mismatching, as well as the k-error. By the score-based

method, a score matrix M of size ||  || is used to indicate
the relevance between characters. The algorithm designed is to
find the best alignment (or say, the alignment with the highest
scores) between two given strings, which can be DNA
sequences, protein sequences, or XML documents; and the
dynamic programming paradigm is often utilized to solve the
problem [14]. By the k-mismatching, we will find all those

subsequences q of s such that d(p, q)  k, where d() is a
distance function. When it is the Hemming distance, the
problem is known as sequence matching with k mismatches
[4]. When it is the Levenshtein distance, the problem is known
as sequence matching with k errors [6]. There is a bunch of
algorithms proposed for this problem, such as [4, 5, 24, 25, 42,
43] for the k-mismatch; and [6, 11, 15, 44] for the k-error. All

the methods for the k-mismatch needs quadratic time O(mn)
in the worst case. However, the algorithm discussed in [2] has

the best expected time complexity O(n k logm). Especially,

for small k and large , the search requires sublinear time on
average. In addition, the BWT can also be used as an index
structure for this problem [30]. For the k-error, the worst case
time complexity is the same as the k-mismatching. But the

expected time can reach O(kn) by an algorithm discussed in
[11]. As a different kind of inexact matching, the string
matching with Don’t-Cares (or wild-cards) has also been an

active research topic for decades, by which we may have wild-
cards in p, in s, or in both of them. A wild card matches any
character. Due to this property, the ‘match’ relation is no
longer transitive, which precludes straightforward adaption of
the shift information used by Knuth-Morris-Pratt and Boyer-
Moore. All the methods proposed to solve this problem also
needs quadratic time [38]. But using a suffix array as the
index, however, the searching time can be reduced to O(logn)
for some patterns, which contain only a sequence of
consecutive Don’t Cares [36].

III. BWT-TRANSFORMATION

In this section, we give a brief description of the BWT
transformation to provide a discussion background.

A. BWT and String Compression

We use s to denote a string that we would like to transform.
Assume that s terminates with a special character $, which
does not appear elsewhere in s and is alphabetically prior to all
other characters. In the case of DNA sequences, we have $ < A
< C < G < T. As an example, consider s = acagaca$. We can
rotate s consecutively to create eight different strings as shown
in Figure 1(a).

By writing all these strings stacked vertically, we generate

an n  n matrix, where n = |s| (see Figure 1(a).) Here, special

attention should be paid to the first column, denoted as F, and

the last column, denoted as L. For them, the following

equation, called the LF mapping, can be immediately observed:

 F[i] = L[i]’s successor, (1)

where F[i] (L[i]) is the i
th

 element of F (resp. L).

From this property, another property, the so-called rank

correspondence can be derived, by which we mean that for

each character, its ith

appearance in F corresponds to its ith

appearance in L, as demonstrated in Figure 1(b), in which the

position of a character (in s) is represented by its subscript.

(That is, we rewrite s as a1c1a2g1a3c2a4$.) For example, a2

(representing the 2nd

appearance of a in s) is in the second

place among all the a-characters in both F and L while c1 the

first apperance in both F and L among all the c-characters. In

the same way, we can check all the other appearances of

different characters.

Now we sort the rows of the matrix alphabetically. We

will get another matrix, called the Burrow-Wheeler Matrix [7]

[12][23] and denoted as BWM(s), as demonstrated in Figure

1(c). Especially, the last column of BWM(s), read from top to

bottom, is called the BWT-transformation (or the BWT-array)

and denoted as BWT(s). So for s = acagaca$, we have BWT(s)

= acg$caaa.

By the BWM matrix, the LF-mapping is obviously not

changed. Surprisingly, the rank correspondence also remains.

Even though the ranks of different appearances of a certain

character (in F or in L) may be different from before, their

rank correspondences are not changed as shown in Figure 2(b),

in which a2 now appears in both F and L as the fourth element

among all the a-characters, and c1 the second element among

all the c-characters.

The first purpose of BWT(s) is for the string compression

since same characters with similar right-contexts in s tend to

be clustered together in BWT(s), as shown by the following

example [10][16][40]:

 BWT(tomorrow and tomorrow and tomorrow)

 = wwwdd nnoooaatttmmmrrrrrrooo $ooo

Such a transformed string can be effectively compressed
and then decompressed. Due to the LF-mapping and the rank
correspondence, it can also be easily restored to the original
string.

The second purpose is for the string search, which will be
discussed in the next subsection in great detail. We need this
part of knowledge to develop our method.

B. String Search Using BWT

For the purpose of the string search, the character

clustering in F has to be used. Especially, for any DNA

sequence, the whole F can be divided into five or less

segments: $-segment, A-segment, C-segment, G-segment, and

T-segment, denoted as F$, FA, FC, FG, FT, respectively. In

addition, for each segment in F, we will rank all its elements

from top to bottom, as illustrated in Figure 2(a). $ is not

ranked since it appears only once.

From Figure 2(a), we can see that the rank of a4, denoted

as rkF(a4), is 1 since it is the first element in FA. For the same

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) =

1, rkF(c1) = 2, and rkF(g1) = 1.

It can also be seen that each segment in F can be

effectively represented as a triplet of the form: <; x, y>,

where     {$}, and x, y are the positions of the first

and last appearance of  in F, respectively. So the whole F

Figure 2. LF-mapping and tank-correspondence

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L

(a) (b)



1

1

2

1

4

2

3

rkF



1

2

1

4

2

3



By ranking the

elements in F,

each element in

L is also ranked

with the same
number.

rkL

F$ = <$; 1, 1>

Fa = <a; 2, 5>

Fc = <c; 6, 7>

Fg = <g; 8, 8>

Figure 1. Rotation of a string

$ a c a g a c a

a c a g a c a $

c a g a c a $ a

a g a c a $ a c

g a c a $ a c a
 a c a $ a c a g
 c a $ a c a g a

a $ a c a g a c

$ a c a g a c a
 a $ a c a g a c

c a $ a c a g a

a c a $ a c a g

g a c a $ a c a

a g a c a $ a c

c a g a c a $ a

a c a g a c a $

(a) (c)

a

g

a

c

a

$

(b)

a

g

a

c

a

$

a1 $

c1 a1

c2 a3

a2 c1

$ a4

a3 g1

a4 c2

g1 a2

F L

F L

can be effectively compacted and represented as a set of || +

1 triplets, as illustrated in Figure 2(b).

Now, we consider j (the jth

appearance of  in s).

Assume that rkF(j) = i. Then, the position where j appears in

F can be easily determined:

 F[x + i - 1] = j. (2)

Besides, if we rank all the elements in L top-down in such a

way that an j is assigned i if it is the ith appearance among all

the appearances of  in L. Then, we will have

 rkF(j) = rkL(j), (3)

where rkL(j) is the rank assigned to j in L.

This equation is due to the rank correspondence between F

and L. (See [10][16][40] for a detailed discussion. Also see

Figure 2(a) for ease of understanding.)

With the ranks established, a string matching can be very

efficiently conducted by using the formulas (2) and (3). To see

this, let’s consider a pattern string p = aca and try to find all

its occurrences in s = acagaca$.

We work on the characters in p in the reverse order.

First, we check p[3] = a in the pattern string p, and then

figure out a segment in L, denoted as L, corresponding to Fa =

<a; 2, 5>. So L = L[2 .. 5], as illustrated in Figure 3(a), where

we still use the non-compact F for explanation. In the second

step, we check p[2] = c, and then search within L to find the

first and last c in L. We will find rkL(c2) = 1 and rkL(c1) = 2.

By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2. Then, by

using (2), we will figure out a sub-segment F in F: F[xc + 1 -

1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7]. (Note that

xc = 6. See Figure 2(b) and Figure 3(b).) In the third step, we

check p[1] = a, and find L = L[6 .. 7] corresponding to F =

F[6 .. 7]. Repeating the above operation, we will find rkL(a3) =

2 and rkL(a1) = 3. See Figure 3(c). Since now we have

exhausted all the characters in p and F[xa + 2 – 1, xa + 3 – 1] =

F[3, 4] contains only two elements, two occurrences of p in s

are found. They are a1 and a3 in s, respectively.

C. RankAll

The dominant cost of the above process is the searching of
L in each step. However, this can be dramatically reduced by

arranging || arrays each for a character    such that [i]

(the ith

entry in the array for ) is the number of appearances

of  within L[1 .. i]. See Figure 4(a) for illustration.

Now, instead of scanning a certain segment L[x .. y] (x  y)

to find a subrange for a certain   , we can simply look up

the array for  to see whether [x - 1] = [y]. If it is the case,

then  does not occur in L[x .. y]. Otherwise, [[x - 1] + 1,

[y]] should be the found range. For example, to find the first

and the last appearance of c in L[2 .. 5], we only need to find

c[2 – 1] = c[1] = 0 and c[5] = 2. So the corresponding range is

[c[2 - 1] + 1, c[5]] = [1, 2].

In this way, the searching of L can be saved and we need

only a constant time to determine a subrange for a character

encountered during a pattern searching.

The problem of this method is its high space requirement,

which can be mitigated by replacing [] with a compact array

A for each   , in which, rather than for each L[i] (i 

{1, …, n}), only for some entries in L the number of their

appearances will be stored. For example, we can divide L into

a set of buckets of the same size and only for each bucket a

value will be stored in A. Obviously, doing so, more search

will be required. In practice, the size  of a bucket (referred to

as a compact factor) can be set to different values. For

example, we can set  = 4, indicating that for each four

contiguous elements in L a group of || integers (each in an A)

will be stored. That is, we will not store all the values in

Figure 4(a), but only store $[4], a[4], c[4], g[4], t[4], and $[8],

a[8], c[8], g[8], t[8] in the corresponding compact arrays, as

shown in Figure 4(b). However, each [j] for    can be

easily derived from A by using the following formulas:

 [j] = A[i] + , (4)

where i = j/ and  is the number of ’s appearances within

L[i + 1 .. j], and

 [j] = A[i] - , (5)

where i = j/ and  is the number of ’s appearances within

L[j + 1 .. i].

Thus, we need two procedures: sDown(L, j, , ) and

sUp(L, j, , ) to find  and , respectively. In terms of

whether j - i  i - j, we will call sDown(L, j, , ) or

sUp(L, j, , ) so that fewer entries in L will be scanned to

find [j].
Finally, we notice that the column for $ can always be

divided into two parts. In the first part, each entry is 0 while in
the second part each entry is 1 (see Figure 4(a)). So we can

Figure 3. Sample trace

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $ 

F L

(a) (b)

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $ 

F L

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $ 

F L

To find

the first c

to find

the last c
to find

the first a

to find

the last a

(c)

rkL

rkL

rkL

Figure 4. LF-mapping and rank-correspondence

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L



0

1

0

1

1

1



$

1

1

2

1

4

1

3

1

a

0

1

2

1

2

2

2

1

c

0

0

1

1

1

1

1

1

g

0

0

0

0

0

0

0

0

t

4

1

Aa

2

1

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0


2

6

3

8

5

7



j

(a) (b)

For each  = 4
values in L, a
rankAll value
is stored.

simply keep a number to indicate where it is divided, instead
of storing the whole column.

D. Construction of BWT arrays

For self-explanation, we describe how a BWT array is
constructed [10][16][26][40] in this subsection.

As mentioned above, a string s = a0a1 ... an−1 is always

ended with $ (i.e., ai   for i = 0, …, n – 2, and an−1 = $). Let
s[i] = ai (i = 0,1, …, n – 1) be the ith character of s, s[i.. j] =
ai ... aj a substring and s[i .. n − 1] a suffix of s. Suffix array H
of s is a permutation of the integers 0, ..., n − 1 such that H[i] is
the start position of the ith smallest suffix. The relationship
between H and the BWT array L can be determined by the
following formulas:

Once L is determined. F can also be created immediately

by using formula (1).

IV. MAIN ALGORITHM

In this section, we present our algorithm to search a bunch

of reads against a genome s. Its main idea is to organize all the

reads into a trie T and search T against L to avoid any possible

redundancy. First, we present the concept of tries in

Subsection A. Then, in Subsection B, we discuss our basic

algorithm for the task. We improve this algorithm in Section

V.

A. Tries over Reads

Let D = {s1, …, sn} be a DNA database, where each si (i =

1, …, n) is a genome, a very long string  
*

( = {A, T, C,

G}). Let R = {r1, …, rm} be a set of reads with each rj being a

short string  
*
. The problem is to find, for every rj’s (j =

1, …, m), all their occurrences in an si (i = 1, …, n) in D.

A simple way to do this is to check each rj against si one by

one, for which different string searching methods can be used,

such as suffix trees [37][45], BW-transformation [10], and so

on. Each of them needs only a linear time (in the size of si) to

find all occurrences of rj in si. However, in the case of very

large m, which is typical in the new genomic research, one-by-

one search of reads against an si is no more acceptable in

practice and some efforts should be spent on reducing the

running time caused by huge m.

Our general idea is to organize all rj’s into a trie structure

T and search T against si with the BW-transformation being

used to check the string matching. For this purpose, we will

first attach $ to the end of each si (i = 1, …, n) and construct

BWT(si). Then, attach $ to the end of each rj (j = 1, …, m) to

construct T = trie(R) over R as below.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R)

is a single node. If |R| > 1, R is split into || = 5 (possibly

empty) subsets R1, R2, …, R5 so that each Ri (i  {1, …, 5})

contains all those sequences with the same first character i 

{A, T, C, G}  {$}. The tries: trie(R1), trie(R2), …, trie(R5)

are constructed in the same way except that at the kth step, the

splitting of sets is based on the kth characters in the sequences.

They are then connected from their respective roots to a single

node to create trie(R).

Example 1 As an example, consider a set of four reads:

 r1: ACAGA

 r2: AG

 r3: ACAGC

 r4: CA

For these reads, a trie can be constructed as shown in Figure

5(a). In this trie, v0 is a virtual root, labeled with an empty

character  while any other node v is labeled with a real

character, denoted as l(v). Therefore, all the characters on a

path from the root to a leaf spell a read. For instance, the path

from v0 to v8 corresponds to the third read r3 = ACAGC$. Note

that each leaf node v is labelled with $ and associated with a

read identifier, denoted as (v).

 C

The size of a trie can be significantly reduced by replacing

each branchless path segment with a single edge. By a

branchless path we mean a path P such that each node on P,

except the starting and ending nodes, has only one incoming

and one outgoing edge. For example, the trie shown in Figure

5(a) can be compacted to a reduced one as shown in Figure

5(b).

B. Integrating BWT Search with Trie Search

It is easy to see that exploring a path in a trie T over a set

of reads R corresponds to scanning a read r  R. If we explore,

at the same time, the L array established over a reversed

genome sequence s , we will find all the occurrences of r

(without $ involved) in s. This idea leads to the following

algorithm, which is in essence a depth-first search of T by

using a stack S to control the process. However, each entry in

S is a triplet <v, a, b> with v being a node in T and a  b, used

to indicate a subsegment in Fl(v)[a .. b]. For example, when

searching the trie shown in Figure 5(a) against the L array

shown in Figure 2(a), we may have an entry like <v1, 1, 4> in

S to represent a subsegment FA[1 .. 4] (the first to the fourth

entry in FA) since l(v1) = A. In addition, for technical

convenience, we use F to represent the whole F. Then, F[a ..

b] represents the segment from the ath

to the bth entry in F.

In the algorithm, we first push <root(T), 1, |s|> into stack S

(lines 1 – 2). Then, we go into the main while-loop (lines 3 –

16), in which we will first pop out the top element from S,

stored as a triplet <v, a, b> (line 4). Then, for each child vi of v,

(6)

a

g

a

c

a

$

L[i] = $, if H[i] = 0;

L[i] = s[H[i] – 1], otherwise.

Figure 5. A trie and its compact version

A

(a) (b)

C

A

G

A

$

G

C

v0

v1

v2

v3

v4

v5

v6

v7

v9

C

A

v11

v12

r1

r3

r2

r4



A

CAG

A$

G$

C$

u0

u1

u2

u3

u4

u5

CA$

u6

r1

r3

r2

r4



$

v8

$

v10

v1

3

$

we will check whether it is a leaf node. If it is the case, a

quadruple <(vi), l(v), a, b> will be added to the result  (see

line 7), which records all the occurrences of a read represented

by (vi) in s. (In practice, we store compressed suffix arrays

[35, 40] and use formulas (1) and (6) to calculate positions of

reads in s.) Otherwise, we will determine a segment in L by

calculating x and y (see lines 8 – 9). Then, we will use

sDown(L, x - 1, , ) or sUp(L, x - 1, , ) to find [x - 1] as

discussed in the previous section. (See line 10.) Next, we will

find [y] in a similar way. (See line 11.) If [y] > [x - 1],

there are some occurrences of  in L[x .. y] and we will push

<vi, [x - 1] + 1, [y]>) into S, where [x - 1] + 1 and [y]

are the first and last rank of ’s appearances within L[x .. y],

respectively. (See lines 12 – 13.) If [y] = [x - 1],  does

not occur in L[x .. y] at all and nothing will be done in this

case. The following example helps for illustration.

ALGORITHM readSearch(T, LF, )

begin

1. v  root(T);   ;

2. push(S, <v, 1, |s|>);

3. while S is not empty do {

4. <v, a, b>  pop(S);

5. let v1, …, vk be the children of v;

6. for i = k downto 1 do {

7. if vi is a leaf then     {<(vi), l(v), a, b>};

8. else{assume that Fl(v) = <l(v); x, y>;

9. x  x + a - 1; y  x + b - 1;   l(vi);

10. find [x - 1] by sDown(L, x-1, , ) or sUp(L, x-1, , );

11. find [y] by sDown(L, y, , ) or sUp(L, y, , );

12. if [y] > [x - 1] then

13. push(S, <vi, [x - 1] + 1, [y]>);

14. }

15. }

16. }

end

Figure 6. Algorithm readSearch()

Example 2 Consider all the reads given in Example 1 again.

The trie T over these reads are shown in Figure 5(a). In order

to find all the occurrences of these reads in s = ACAGACA$,

we will run readSearch() on T and the LF of s shown in

Figure 7(b). (Note that s = s for this special string, but the

ordering of the subscripts of characters is reversed. In Figure

7(a), we also show the corresponding BWM matrix for ease of

understanding.)

In the execution of readSearch(), the following steps will be

carried out.

Step 1: push <v0, 1, 8> into S, as illustrated in Figure 7(c).

Step 2: pop out the top element <v0, 1, 8> from S. Figure out

the two children of v0: v1 and v11. First, for v11, we will use Ac

to find the first and last appearances of l(v11) =  C in L[1 .. 8]

and their respective ranks: 1 and 2. Assume that  = 4 (i.e., for

each 4 consecutive entries in L a rankAll value is stored.)

Further assume that for each A (  {a, c, g, t}) A[0] = 0.

The ranks are calculated as follows.

 To find the rank of the first appearance of C in L[1 .. 8],

we will first calculate C[0] by using formula (4) or (5)

(i.e., by calling sDown(L, 0, 4, C) or sUp(L, 0, 4, C)). Recall

that whether (4) or (5) is used depends on whether j - i

 i - j, where i = j/ and i = j/. For C[0], j = 0.

Then, i = i = 0 and (4) will be used:

 C[0] = Ac[0/4] + .

 Since Ac[0/4] = Ac[0] = 0 and the search of L[i .. j] =

L[0 .. 0] finds  = 0, C[0] is equal to 0.

 To find the rank of the last appearance of C in L[1 .. 8],

we will calculate C[8] by using (4) for the same reason as

above. For C[8], we have j = 8 and i = 2. So we have

 C[8] = Ac[8/4] + .

 Since Ac[8/4] = Ac[2] = 2, and the search of L[i .. j] =

L[8 .. 8] finds  = 0, we have C[8] = 2.

So the ranks of the first and the last appearances of C are

C[0] + 1 = 1, and C[8] = 2, respectively. Push <v11, 1, 2> into

S.

Next, for v1, we will do the same work to find the first and

last appearances of l(v1) = A and their respective ranks: 1 and

4; and push <v1, 1, 4> into S. Now S contains two entries as

shown in Figure 8(a) after step 2.

Step 3: pop out the top element <v1, 1, 4> from S. v1 has two

children v2 and v9. Again, for v9 with l(v9) = G, we will use Ag

to find the first and last appearances of G in L[2 .. 5]

(corresponding to FA[1 .. 4]) and their respective ranks: 1 and

1. In the following, we show the whole working process.

 To find the rank of the first appearance of G in L[2 .. 5],

we will first calculate G[1]. We have j = 1, i = j/ =

1/4 = 0 and i = 1/4 = 1. Since j - i = 0 < i - j = 3,

formula (4) will be used:

 G[1] = Ag[1/4] + .

 Since Ag[0/4] = Ag[0] = 0 and search of L[i .. j] = L[0 ..

0] finds  = 0, G[1] is equal to 0.

 To find the rank of the last appearance of G in L[2 .. 5],

we will calculate G[5] by using (4) based on an analysis

similar to above. For G[5], we have j = 5 and i = j/ = 1.

So we have

 G[5] = Ag[5/4] + .

<v0, 1, 8>
(a)

S:

Figure 7. Illustration for Step 1

(b) (c)

$ A4 C2 A3 G1 A2 C1 A1

 A1 $ A4 C2 A3 G1 A2 C1

C1 A1 $ A4 C2 A3 G1 A2

A2 C1 A1 $ A4 C2 A3 G1

G1 A2 C1 A1 $ A4 C2 A3

A3 G1 A2 C1 A1 $ A4 C2

C2 A3 G1 A2 C1 A1 $ A4

A4 C2 A3 G1 A2 C1 A1 $

$ A4

A4 C2

C2 A3

A3 G1

G1 A2

A2 C1

C1 A1

A1 $

F L



2

6

3

8

5

7



j

 Since Ag[5/4] = Ag[1] = 1, and search of L[i .. j] =

L[4 .. 5] finds  = 0, we have G[5] = 1.

We will push <v9, G[1] + 1, G[5] > = <v9, 1, 1> into S.

For v2 with l(v2) = C, we will find the first and last

appearances of C in L[2 .. 5] and their ranks: 1 and 2. Then,

push <v2, 1, 2> in to S. After this step, S will be changed as

shown in Figure 8(b).

In the subsequent steps 4, 5, and 6, S will be consecutively

changed as shown in Figure 8(c), (d), and (e), respectively.

In step 7, when we pop the top element <v5, 4, 4>, we meet a
node with a single child v6 labeled with $. In this case, we will
store <(v6), l(v5), 4, 4> = <r1, A, 4, 4> in  as part of the
result (see line 7 in readSearch().) From this we can find that
rkL(A3) = 4 (note that the same element in both F and L has

the same rank), which shows that in s the substring of length

|r1| staring from A3 is an occurrence of r1. 

C. Time Complexity and Correctness Proof

In this subsection, we analyze the time complexity of

readSearch(T, LF, ) and prove its correctness.

C.1 Time complexity

In the main while-loop, each node v in T is accessed only

once. If the rankAll arrays are fully stored, only a constant

time is needed to determine the range for l(v). So the time

complexity of the algorithm is bounded by O(|T|). If only the

compact arrays (for the rankAll information) are stored, the

running time is increased to O(|T|), where  is the

corresponding compact factor. It is because in this case, for

each encountered node in T, O(
2

1
) entries in L may be

checked in the worst case.

C.2 Correctness

Proposition 1 Let T be a trie constructed over a collections of

reads: r1, …, rm, and LF a BWT-mapping established for a

reversed genome s . Let  be the compact factor for the

allRank arrays, and  the result of readSearch(T, LF, ).

Then, for each rj, if it occurs in s, there is a quadruple {<(vi),

l(v), a, b>}   such that (vi) = rj, , and Fl(v)[a], Fl(v)[a + 1], …,

Fl(v)[b] show all the occurrences of rj in s.

Proof. We prove the proposition by induction on the height h

of T.

Basic step. When h = 1. The proposition trivially holds.

Induction hypothesis. Suppose that when the height of T is h,
the proposition holds. We consider the case that the height of

T is h + 1. Let v0 be the root with l(v0) = . Let v1, …, vk be the

children of v0. Then, height(T[vi])  h (i = 1, …, k), where T[vi]
stands for the subtree rooted at vi and height(T[vi]) for the

height of T[vi]. Let l(vi) =  and F = <; a, b>. Let vi1, …, vil
be the children of vi. Assume that x and y be the ranks of the

first and last appearances of  in L. According to the induction
hypothesis, searching T[vij] against L[a′ .. b′], where a′ = a + x
- 1 and b′ = a + y - 1, the algorithm will find all the locations
of all those reads with l(vi) as the first character. This

completes the proof. 

V. IMPROVEMENTS

The algorithm discussed in the previous section can be

greatly improved by rearranging the search of a segment of L

when we visit a node v in T. Such a search has to be done once

for each of its children by calling sDown() or sUp() (see

lines 10 - 11 in readSearch().) Instead of searching the

segment for each child separately, we can manage to search

the segment only once for all the children of v. To this end, we

will use integers to represent characters in . For example, we

can use 1, 2, 3, 4, 5 to represent A, C, G, T, $ in a DNA

sequence. In addition, two kinds of simple data structures will

be employed:

- Bv: a Boolean array of size ||  {$} associated with node

v in T, in which, for each i  , Bv[i] = 1 if there exists a

child node u of v such that l(u) = i; otherwise, Bv[i] = 0.

- ci: a counter associated with i   to record the number of

i’s appearances during a search of some segment in L.

See Figure 9 for illustration.

With these data structures, we change sDown(L, j, , )

and sUp(L, j, , ) to sDown(L, j, , v) and sUp(L, j, , v),

respectively, to search L for all the children of v, but only in

one scanning of L.

In sDown(L, j, , v), we will search a segment L[j/ +

1 .. j] from top to bottom, and store the result in an array D

of length ||, in which each entry D[i] is the rank of i

(representing a character), equal to ci + Ai[j/], where ci is

the number of i’s appearances within L[j/ + 1 .. j].

In the algorithm, L[j′ .. j] is scanned only once in the main

while-loop (see lines 3 – 6), where j′ = j/ + 1 (see line 2.)

(a)

Figure 8. Illustration for stack changes

(b)

<v1, 1, 4>

<v11, 1, 2>

S:

<v5, 4, 4>

<v9, 1, 1>

<v11, 1, 2>

<v3, 2, 3>

<v9, 1, 1>

<v11, 1, 2>

<v4, 1, 1>

<v9, 1, 1>

<v11, 1, 2> (c) (d) (e)

<v2, 1, 2>

<v9, 1, 1>

<v11, 1, 2>

Figure 9. Illustration for extra data structures

Bv: 1 1 0 1 0

A C G T $

1 2 3 4 5 T A C

c1 c2 c3 c4 c5 L:

L[l]

Bv[L[l]] = 1?

.

.
.

For each encountered entry L[l] (j′  l  j), we will check

whether Bv[L[l]] = 1 (see line 4.) If it is the case, cL[l] will be

increased by 1 to count encountered entries which are equal to

L[l]. After the while-loop, we compute the ranks for all the

characters respectively labeling the children of v (see lines 7 –

8).

FUNCTION sDown(L, j, , v)

begin

1. ci  0 for each i  ;

2. l  j/ + 1;

3. while l  j do {

4. if Bv[L[l]] = 1 then cL[l]  cL[l] + 1;

5. l  l + 1;

6. }

7. for k = 1 to || do {

8. if Bv[k] = 1 then D[k]  Ak[j/] + ck;

9. }

10. return D;

end

Figure 10. Algorithm sDown()

sUp(L, j, , v) is dual to sDown(L, j, , v), in which a

segment of L will be search bottom-up.

FUNCTION sUp(L, j, , v)

begin

1. ci  0 for each i  ;

2. l  j/;

3. while l  j + 1do {

4. if Bv[L[l]] = 1 then cL[l]  cL[l] + 1;

5. l  l - 1; }

6. }

7. for k = 1 to || do {

8. if Bv[k] = 1 then D[k]  Ak[j/] - ck;

9. }

10. return D;

end

Figure 11. Algorithm sUp()

See the following example for illustration.

Example 3 In this example, we trace the working process to

generate ranges (by scanning L[2 .. 5]) for the two children v2

and v9 of v1. For this purpose, we will calculate C[1], C[5] for

l(v2) = C, and G[1], G[5] for l(v9) = G. First, we notice that

1vB = [0, 1, 1, 0, 0] and all the counters c1, c2, c3, c4, c5 are set

to 0.

By running sDown(L, 1, 4, v1) to get C[1] and G[1], part

of L will be scanned once, during which only one entry L[1] =

A (represented by 1) is accessed. Since
1v

B [L[1]] =
1v

B [1] =

0, c1 remains unchanged. Especially, both c2 (for C) and c3

(for G) remain 0. Then, C[1] = Ac[1/4] + c2 = 0 and G[1] =

Ag[1/4] + c3 = 0.

By running sDown(L, 5, 4, v1) to get C[5] and G[5],

another part of L will be scanned, also only once, during

which merely one entry L[5] = C (represented by 2) is

accessed. Since
1v

B [L[5]] =
1v

B [2] = 1, c2 will be changed to

1. But c3 (for G) remain 0. Then, we have C[5] = Ac[5/4] +

c2 = 2 and G[5] = Ag[5/4] + c3 = 1.

Thus, the range for l(v2) = C is [C[1] + 1, C[5] = [1, 2],

and the range for l(v9) = G is [G[1] + 1, G[5] = [1, 1]. 

By using the above two procedures, our improved

algorithm can be described as follows.

ALGORITHM rS(T, LF, )

begin

1. v  root(T);

2. push(S, <v, 1, ||>);

3. while S is not empty do {

4. <v, a, b>  pop(S);

5. let v1, …, vk be all those children of v, which are labeled with $;

6. let u1, …, uj be all the rest children of v;

7. for each j  {1, …, k} do {    {<(vj), l(v), a, b>};

8. assume that Fl(v) = <l(v); x, y>;

9. x  x + a - 1; y  x + b - 1;

10. call sDown(L, x - 1, , v) or sUp(L, x - 1, , v) to find the

ranks of the first appearances of all the labels of the

children of v: r(u1), …, r(uj);

11. call sDown(L, y, , v) or sUp(L, y, , v) to find the

ranks of the last appearances of all the labels of the

children of v: r(u1), …, r(uj);

12. for l = j downto 1 do { push(S, <ul, r(ul), r(uj)>) };

13. }

end

Figure 12. Algorithm rR()

The main difference of the above algorithm from

readSearch() consists in the different ways to search L[a .. b].

Here, to find the ranks of the first appearances of all the labels

of the children of v, sDown() or sUp() is called to scan part of

L only once (while in readSearch() this has to be done once

for each different child.) See line 10. Similarly, to find the

ranks of the last appearances of these labels, another part of L

is also scanned only once. See line 11. All the other operations

are almost the same as in readSearch().

VI. EXPERIMENTS

In our experiments, we have tested altogether five different

methods:

- Burrows Wheeler Transformation (BWT for short),

- Suffix tree based (Suffix for short),

- Hash table based (Hash for short),

- Trie-BWT (tBWT for short, discussed in this paper),

- Improved Trie-BWT (itBWT for short, discussed in this

paper).

Among them, the codes for the suffix tree based and hash

based methods are taken from the gsuffix package [7] while all

the other three algorithms are implemented by ourselves. All

of them are able to find all occurrences of every read in a

genome. The codes are written in C++, compiled by GNU

make utility with optimization of level 2. In addition, all of

our experiments are performed on a 64-bit Ubuntu operating

system, run on a single core of a 2.40GHz Intel Xeon E5-2630

processor with 32GB RAM.

The test results are categorized in two groups: one is on a

set of synthetic data and another is on a set of real data. For

both of them, five reference genomes are used:

TABLE I. CHARACTERISTICS OF GENOMES

Genomes Genome sizes (bp)

Rat chr1 (Rnor_6.0) 290,094,217

C. merolae (ASM9120v1) 16,728,967

C. elegans (WBcel235) 103,022,290

Zebra fish (GRCz10) 1,464,443,456

Rat (Rnor_6.0) 2,909,701,677

A. Tests on Synthetic Data Sets

All the synthetic data are created by simulating reads from

the five genomes shown in Table I, with varying lengths and

amounts. It is done by using the wgsim program included in

the SAMtools package [33] with default model for single reads

simulation.

Over such data, the impact of five factors on the searching

time are tested: number n of reads, length l of reads, size s of

genomes, compact factors f1 of rankAlls (see Subsection C in

III) and compression factors f2 of suffix arrays [35][40], which

are used to find locations of matching reads (in a reference

genome) in terms of formula (6) (see Subsection D in III).

A.1 Tests with varying amount of reads

In this experiment, we vary the amount n of reads with n =

5, 10, 15, … , 50 millions while the reads are 50 bps or 100

bps in length extracted randomly from Rat chr1 and C. merlae

genomes. For this test, the compact factors f1 of rankAlls are

set to be 32, 64, 128, 256, and the compression factors f2 of

suffix arrays are set to 8, 16, 32, 64, respectively. These two

factors are increasingly set up as the amount of reads gets

increased.

In Figures 13(a) and (b), we report the test results of

searching the Rat chr1 for matching reads of 50 and 100 bps,

respectively. From these two figures, it can be clearly seen

that the hash based method has the worst performance while

ours works best. For short reads (of length 50 bps) the suffix-

based is better than the BWT, but for long reads (of length 100

bps) they are comparable. The poor performance of the hash-

based is due to its inefficient brute-force searching of genomes

while for both the BWT and the suffix-based it is due to the

huge amount of reads and each time only one read is checked.

In the opposite, for both our methods tBWT and itBWT, the

use of tries enables us to avoid repeated checkings for similar

reads.

In these two figures, the time for constructing tries over

reads is not included. It is because in the biological research a

trie can be used repeatedly against different genomes, as well

as often updated genomes. However, even with the time for

constructing tries involved, our methods are still superior

since the tries can be established very fast as demonstrated in

Table II, in which we show the times for constructing tries

over different amounts of reads.

TABLE II. TIME FOR TRIE CONSTRUCTION OVER READS OF

LENGTH 100 BPS

No. of reads 30M 35M 40M 45M 50M

Time for Trie Con. 51s 63s 82s 95s 110s

The difference between tBWT and itBWT is due to the

different number of BWT array accesses as shown in Table III.

By an access of a BWT array, we will scan a segment in the

array to find the first and last appearance of a certain character

from a read (by tBWT) or a set of characters from more than

one read (by itBWT).

TABLE III. NO. OF BWT ARRAY ACCESSES

No. of reads 30M 35M 40M 45M 50M

tBWT 47856K 55531K 63120K 70631K 78062K

itBWT 19105K 22177K 25261K 28227K 31204K

Figures 14(a) and (b) show respectively the results for

reads of length 50 bps and 100 bps over the C. merolae

genome. Again, our methods outperform the other three

methods.

Figure 13. Test results on varying amount of reads

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

Suf f ix Hash BWT

t BWT it BWT

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30 35 40 45 50

time (s)
time (s)

amount of reads (million)

(b) (a)

amount of reads (million)

Figure 14. Test results on varying amount of reads

time (s)

amount of reads (million) amount of reads (million)

(b) (a)

0

300

600

900

1200

1500

1800

5 10 15 20 25 30 35 40 45 50

time (s)

A.2 Tests with varying length of reads

In this experiment, we test the impact of the read length on

performance. For this, we fix all the other four factors but vary

length l of simulated reads with l = 35, 50, 75, 100, 125, … ,

200. The results in Figure 15(a) shows the difference among

five methods, in which each tested set has 20 million reads

simulated from the Rat chr1 genome with f1 = 128 and f2 = 16.

In Figure 15(b), the results show the the case that each set has

50 million reads. Figures 16(a) and (b) show the results of the

same data settings but on C. merlae genome.

Again, in this test, the hash based performs worst while the

suffix tree and the BWT method are comparable. Both our

algorithms uniformally outperform the others when searching

on short reads (shorter than 100 bps). It is because shorter

reads tend to have multiple occurrences in genomes, which

makes the trie used in tBWT and itBWT more beneficial.

However, for long reads, the suffix tree beats the BWT since

on one hand long reads have fewer repeats in a genome, and

on the other hand higher possibility that variations occurred in

long reads may result in earlier termination of a searching

process. In practice, short reads are more often than long reads.

A.3 Tests with varying sizes of genome

To examine the impacts of varying sizes of genomes, we

have made four tests with each testing a certain set of reads

against different genomes shown in Table 1. To be consistent

with foregoing experiments, factors except sizes of genomes

remain the same for each test with f1 = 128 and f2 = 16. In

Figure 17(a) and (b), we show the searching time on each

genome for 20 million and 50 million reads of 50 bps,

respectively. Figures 18(a) and (b) demonstrate the results of

20 million and 50 million reads but with each read being of

100 bps.

These figures show that, in general, as the size of a

genome increases the time of read aligning for all the tested

algorithms become longer. We also notice that the larger the

size of a genome, the bigger the gaps between our methods

and the other algorithms. The hash-based is always much

slower than the others. For the suffix tree, we only show the

matching time for the first three genomes. It is because the

testing computer cannot meet its huge memory requirement

for indexing the Zebra fish and Rat genomes (which is the

main reason why people use the BWT, instead of the suffix

tree, in practice.) Details for the 50 bp reads in Figure 17 and

Figure 18 show that the tBWT and the itBWT are at least 30%

faster than the BWT and the suffix tree, which happened on

the C. elegans genome. For the Rat genome, our algorithms

are even more than six times faster than the others.

Now let us have a look at Figures 18(a) and (b). Although

our methods do not perform as good as for the 50 bp reads due

to the increment of length of reads, they still gain at least 22%

improvement on speed and nearly 50% acceleration in the best

case, compared with the BWT.

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebraf ish Rat

suf f ix hash BWT t BWT it BWT

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebraf ish Rat

Figure 18. Test results on varying sizes of genomes

time (s) time (s)

(b) (a)

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebraf ish Rat

Figure 17. Test results on varying sizes of genomes

time (s) time (s)

(b) (a)

Figure 16. Test results on varying length of reads

0

200

400

600

800

1000

1200

35 50 75 100 125 150 175 200

time (s) time (s)

read length (pb)

(b) (a)

read length (pb)

Figure 15. Test results on varying length of reads

0

300

600

900

1200

1500

1800

35 50 75 100 125 150 175 200

time (s) time (s)

read length (pb)

(b) (a)

0

500

1000

1500

2000

2500

3000

35 50 75 100 125 150 175 200

read length (pb)

C. merlae C. elegans Chr1 of Rat Zebrafish Rat

suff ix hash BWT tBWT itBWT

A.4 Tests with varying compact and compression factors

In the experiments, we focus only on the BWT method,

since there are no compressions in both the suffix tree and the

hash-based method. The following test results are all for 20

million reads with 100 bps in length. We first show the impact

of f1 on performance with f2 = 16, 64 in Figures 19(a) and (b),

respectively. Then we show the effect when f2 is set to 64, 256

in Figures 20(a) and (b).

From these figures, we can see that the performance of all

three methods degrade as f1 and f2 increase. Another noticeable

point is that both the itBWT and the tBWT are not so sensitive

to the high compression rate. Although doubling f1 or f2 will

slow down their speed, they become faster compared to the

BWT. For example, in Figure 19, the time used by the BWT

grows 80% by increasing f1 from 8 to 64, whereas the growth

of time used by the tBWT is only 50%. In addition, the factor

f1 has smaller impact on the itBWT than the BWT and the

tBWT, since the extra data structure used in the itBWT

effectively reduced the processing time of the trie nodes by

half or more.

B. Tests on Real Data Sets

For the performance assessment on real data, we obtain

RNA-sequence data from the project conducted in an RNA

laboritary at University of Manitoba [23]. This project

includes over 500 million single reads produced by Illumina

from a rat sample. Length of these reads are between 36 bps

and 100 bps after trimming using Trimmomatic [8]. The reads

in the project are divided into 9 samples with different amount

ranging between 20 million and 75 million. Two tests have

been conducted. In the first test, we mapped the 9 samples

back to rat genome of ENSEMBL release 79 [13]. We were

not able to test the suffix tree due to its huge index size. The

hash-based method was ignored as well since its running time

was too high in comparison with the BWT. In order to balance

between searching speed and memory usage of the BWT

index, we set f1 = 128, f2 = 16 and repeated the experiment 20

times. Figure 17(a) shows the average time consumed for each

algorithm on the 9 samples.

Since the source of RNA-sequence data is the transcripts,

the expressed part of the genome, we did a second test, in

which we mapped the 9 samples again directly to the Rat

transcriptome. This is the assembly of all transcripts in the Rat

genome. This time more reads, which failed to be aligned in

the first test, are able to be exactly matched. This result is

showed in Figure 21(b).

From Figures 21(a) and (b), we can see that the test results

for real data set are consistent with the simulated data. Our

algorithms are faster than the BWT on all 9 samples. Counting

the whole data set together, itBWT is more than 40% faster

compared with the BWT. Although the performance would be

dropped by taking tries’ construction time into consideration,

we are still able to save 35% time using itBWT.

VII. CONCLUSION AND FUTURE WORK

In this paper, a new method to search a large volume of

pattern strings against a single long target string is proposed,

aiming at efficient next-generation sequencing in DNA

databases. The main idea is to combine the search of tries

constructed over the patterns and the search of the BWT

indexes over the target. Especially, the so-called multiple-

character checking has been introduced, which reduces the

multiple scanning of a BWT array to a single search of it.

Extensive experiments have been conducted, which show that

our method improves the running time of the traditional

methods by an order of magnitude or more.

As a future work, we will extend the discussed method to

handle inexact string matches, such as the string matching

with k-mismatches and k-errors, as well as patterns containing

Figure 21. Test results on real data

0

300

600

900

1200

1500

S1 S2 S3 S4 S5 S6 S7 S8 S9

BWT it BWT t BWT

0

400

800

1200

1600

2000

2400

S1 S2 S3 S4 S5 S6 S7 S8 S9

time (s) time (s)

(b) (a)

Figure 20. Test results on varying compact and compression factors

0

200

400

600

800

1000

32 64 128 256

time (s) time (s)

(b) (a)

Figure 19. Test results on varying compact and compression factors

0

200

400

600

800

1000

8 16 32 64

BWT t BWT it BWT

0

200

400

600

800

1000

8 16 32 64

time (s)
time (s)

(b) (a)

0

200

400

600

800

1000

32 64 128 256

BWT tBWT itBWT

‘don’t-cares’. It is very challenging to integrate the existing

techniques for treating mismatches into the BWT-

transformation.

REFERENCES

[1] A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Communication of the ACM, Vol. 23, No. 1, pp.

333 -340, June 1975.
[2] A. Amir, M. Lewenstein and E. Porat, “Faster algorithms for string

matching with k mismatches,” Journal of Algorithms, Vol. 50, No.

2, Feb.2004, pp. 257-275.
[3] A. Apostolico and R. Giancarlo, “The Boyer-Moore-Galil string

searching strategies revisited,” SIAM Journal on Computing, Vol. 15,

No. 1, pp. 98 – 105, Feb. 1986.
[4] R.A. Baeza-Yates and G.H. Gonnet, “A new approach to text

searching,” in N.J. Belkin and C.J. van Rijsbergen (eds.) SIGIR 89, Proc.

12th Annual Intl. ACM Conf. on Research and Development in
Information Retrieval, pp. 168 – 175, 1989.

[5] R.A. Baeza-Yates and G.H. Gonnet, “A new approach in text

searching,” Communication of the ACM, Vol. 35, No. 10, pp. 74 – 82,
Oct. 1992.

[6] R.A. Baeza-Yates and C.H. Perleberg, “Fast and practical approximate

string matching,” in A. Apostolico, M. Crocchemore, Z. Galil, and U.
Manber (eds.) Combinatorial Pattern Matching, Lecture Notes in

Computer Science, Vol. 644, pp. 185 – 192, Springer-Verlag, Berlin.

[7] S. Bauer, M.H. Schulz, P.N. Robinson, gsuffix: http:://gsuffix.
 Sourceforge.net/, retrieved: April 2016.

[8] A.M.Bolger, M. Lohse and B. Usadel, “Trimmomatic Bolger: A

flexible trimmer for Illumina Sequence Data,” Bioinformatics, btu170,
2014.

[9] R.S. Boyer and J.S. Moore, “A fast string searching algorithm,”

Communication of the ACM, Vol. 20, No. 10, pp. 762 -772, Oct. 1977.

[10] M. Burrows and D.J. Wheeler, “A block-sorting lossless data

compression algorithm,” http://citeseer.ist.psu.edu/viewdoc/summary?

doi=10.1.1.121.6177, 1994, retrieved: 2016.
[11] W.L. Chang and J. Lampe, “Theoretical and empirical compaisons of

approximate string matching algorithms,” in A. Apostolico, M.

Crocchemore, Z. Galil, and U. Manber (eds.) Combinatorial Pattern
Matching, Lecture Notes in Computer Science, Vol. 644, pp. 175 – 184,

Springer-Verlag, Berlin, 1994.

[12] L. Colussi, Z. Galil, and R. Giancarlo, “On the exact complexity of
string matching,” Proc. 31st Annual IEEE Symposium of Foundation of

Computer Science, Vol. 1, pp. 135 – 144, 1990.

[13] F. Cunningham, et al., “Nucleic Acids Research,” 2015, 43, Database
issue:D662-D669.

[14] S.R. Eddy, “What is dynamic programming?” Nature Biotechnology 22,

909 - 910, (2004) doi:10.1038/nbt0704-909.
[15] A. Ehrenfeucht and D. Haussler, “A new distance metric on strings

computable in linear time,” Discrete Applied Mathematics, Vol. 20, pp.

191 – 203, 1988.
[16] P. Ferragina and G. Manzini, “Opportunistic data structures with

applications,” In Proc. 41st Annual Symposium on Foundations of
Computer Science, pp. 390 - 398. IEEE, 2000.

[17] Z. Galil, “On improving the worst case running time of the Boyer-

Moore string searching algorithm,” Communication of the ACM, Vol.
22, No. 9, pp. 505 -508, 1977.

[18] M.C. Harrison, “Implementation of the substring test by hashing,”

Communication of the ACM, Vol. 14, No. 12, pp. 777- 779, 1971.
[19] H. Jiang, and W.H. Wong, “SeqMap: mapping massive amount of

oligonucleotides to the genome,” Bioinformatics, 24, 2395–2396, 2008.

[20] R.L. Karp and M.O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, Vol. 31, No. 2,

pp. 249 – 260, March 1987.

[21] D.E. Knuth, The Art of Computer Programming, Vol. 3, Massachusetts,

Addison-Wesley Publish Com., 1975.

[22] D.E. Knuth, J.H. Morris, and V.R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, Vol. 6, No. 2, pp. 323 – 350,

June 1977.

[23] lab website: http://home.cc.umanitoba.ca/~xiej/, retrieved: April 2016.

[24] G.M. Landau and U. Vishkin, “Efficient string matching in the presence
of errors,” Proc. 26th Annual IEEE Symposium on Foundations of

Computer Science, pp. 126 – 136, 1985.

[25] G.M. Landau and U. Vishkin, “Efficient string matching with k
mismatches,” Theoretical Computer Science, Vol. 43, pp. 239 – 249,

1986.

[26] B. Langmead, “Introduction to the Burrows-Wheeler Transform,”
www.youtube.com/watch?v=4n7N Pk5lwbI, retrieved: April 2016.

[27] T. Lecroq, “A variation on the Boyer-Moore algorithm,” Theoretical

Computer Science, Vol. 92, No. 1, pp. 119 – 144, Jan. 1992.
[28] H. Li, et al., “Mapping short DNA sequencing reads and calling

variants using mapping quality scores,” Genome Res., 18, 1851–1858,

2008.
[29] R. Li, et al., “SOAP: short oligonucleotide alignment program,”

Bioinformatics, 24, 713–714, 2008.

[30] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler Transform,” Bioinformatics, Vol. 25 no. 14 2009, pp.
1754–1760.

[31] H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows–Wheeler Transform,” Bioinformatics, Vol. 26 no. 5 2010, pp.
589–595.

[32] H. Li and. Homer, “A survey of sequence alignment algorithms for next-
generation sequencing,” Briefings in Bioinformatics. 2010;11(5):473-

483. doi:10.1093/bib/bbq015.

[33] H. Li, “wgsim: a small tool for simulating sequence reads from a
reference genome,” https://github.com/lh3/wgsim/, 2014.

[34] H. Lin, et al., “ZOOM! Zillions of oligos mapped,” Bioinformatics, 24,

2431–2437, 2008.
[35] U. Manber and E.W. Myers, “Suffix arrays: a new method for on-line

string searches,” Proc. the 1st Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 319 – 327, SIAM, Philadelphia, PA, 1990.
[36] U. Manber and R.A. Baeza-Yates, “An algorithm for string matching

with a sequence of don’t cares,” Information Processing Letters, Vol. 37,

pp. 133 – 136, Feb. 1991.
[37] E.M. McCreight, “A space-economical suffix tree construction

algorithm,” Journal of the ACM, Vol. 23, No. 2, pp. 262 – 272, April

1976.
[38] R.Y. Pinter, “Efficient string matching with don’t’ care patterns,” in A.

Apostolico and Z. Galil (eds.) Combinatorial Algorithms on Words,

NATO ASI Series, Vol. F12, pp. 11 – 29, Springer-Verlag, Berlin, 1985.
[39] M. Schatz, “Cloudburst: highly sensitive read mapping with

mapreduce,” Bioinformatics, 25, 1363–1369, 2009.

[40] J. Seward, “bzip2 and libbzip2, version 1.0. 5: A program and library for
data compression,” URL http://www. bzip. org, 2007.

[41] A.D. Smith, et al, “Using quality scores and longer reads improves

accuracy of Solexa read mapping,” BMC Bioinformatics, 9, 128, 2008.
[42] J. Tarhio and E. Ukkonen, “Boyer-Moore approach to approximate

string matching,” in J.R. Gilbert and R. Karlssion (eds.) SWAT 90, Proc.

2nd Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Computer Science, Vol. 447, pp. 348 – 359, Springer-Verlag, Berlin,

1990.

[43] J. Tarhio and E. Ukkonen, “Approximate Boyer-Moore String
Matching,” SIAM Journal on Computing, Vol. 22, No. 2, pp. 243 -260,

1993.

[44] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, Vol. 92, pp. 191 – 211, 1992

[45] P. Weiner, “Linear pattern matching algorithm,” Proc. 14th IEEE
Symposium on Switching and Automata Theory, pp. 1 – 11, 1973.

[46] Y. Chen, D. Che and K. Aberer, “On the Efficient Evaluation of Relaxed

Queries in Biological Databases,” in Proc. 11th Int. Conf. on
Information and Knowledge Management, Virginia, U.S.A.: ACM, Nov.

2002, pp. 227 – 236.

http://citeseer.ist.psu.edu/viewdoc/summary?%20doi=10.1.1.121.6177
http://citeseer.ist.psu.edu/viewdoc/summary?%20doi=10.1.1.121.6177
https://email.uwinnipeg.ca/owa/redir.aspx?SURL=UG8Grx3Juz3qjv7lcRu4ZLDdGqP4Yk29dvp3XOxXA-N4p4iIhc_SCGgAdAB0AHAAOgAvAC8AaABvAG0AZQAuAGMAYwAuAHUAbQBhAG4AaQB0AG8AYgBhAC4AYwBhAC8AfgB4AGkAZQBqAC8A&URL=http%3a%2f%2fhome.cc.umanitoba.ca%2f%7exiej%2f
http://www.youtube.com/
https://email.uwinnipeg.ca/owa/redir.aspx?SURL=PQRIrVkTR23TYE9yls6FNwsDyNKXyGLVAR_j9kDEf6OcUC2PIszSCGgAdAB0AHAAcwA6AC8ALwBnAGkAdABoAHUAYgAuAGMAbwBtAC8AbABoADMALwB3AGcAcwBpAG0ALwA.&URL=https%3a%2f%2fgithub.com%2flh3%2fwgsim%2f

