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Abstract— We consider the following tree-matching problem: 
Given labeled, ordered trees P and T, can P be obtained from T 
by deleting nodes? Deleting a node v entails removing all edges 
incident to v and, if v has a parent u, replacing the edges from u 
to v by edges from u to the children of v. The best known 
algorithm for this problem needs O(|T|⋅⋅⋅⋅|leaves(P)|) time and 
O(|leaves(P)|⋅⋅⋅⋅min{DT, |leaves(T)|} + |T| + |P|) space, where 
leaves(T) (resp. leaves(P)) stands for the set of the leaves of T 
(resp. P), and DT (resp. DP) for the height of T (resp. P). In this 
paper, we present an efficient algorithm that requires 
O(|T|⋅⋅⋅⋅|leaves(P)|) time and O(|T| + |P|) space. 

I. INTRODUCTION 

Let T be a tree and v be a node different of root in T with 
parent node u. Denote by delete(T, v) the tree obtained from T 
by removing the node v. The children of v become the 
children of u as illustrated in Fig. 1. 

 
Given two ordered labeled trees P and T, called the 

pattern and the target, respectively. An interesting problem is: 
Can we obtain pattern P by deleting some nodes from target 
T? That is, is there a sequence v1, ..., vk of nodes such that for 

 T0 = T and 
 Ti+1 = delete(Ti, vi+1) for i = 0, ..., k - 1, 

we have Tk = P? If this is the case, we say, P is included in T 
[9]. Such a problem is called the tree inclusion problem. 
Ordered labeled trees appear in various research fields, 
including programming language implementation, natural 
language processing, and molecular biology. 

As an example [9], consider querying grammatical 
structures as shown in Fig. 2(a), which is the parse tree of a 
natural language sentence. 

One might want to locate, say, those sentences that 
include a verb phrase containing the verb “reads” and after it 
a noun “book” followed by any adverb. This is exactly the 
sentences whose parse tree can be obtained by deleting some 
nodes from the tree shown in Fig. 2(a). See Fig. 2(b) for 

illustration. The ordered tree inclusion problem was initially 
introduced by Knuth [10], where only a sufficient condition 
for this problem is given. The tree inclusion has been 
suggested as an important primitive for expressing queries on 
structured document databases [4, 5, 6, 12]. A structured 
document database is considered as a collection of parse trees 
that represent the structure of the stored texts and the tree 
inclusion is used as a means of retrieving information from 
them. Another application of the ordered tree matching is the 
video content-based retrieval. According to Rui et al. [14], a 
video can be successfully decomposed into a hierarchical tree 
structure, in which each node represents a scene, a group, a 
shot, a frame, a feature, and so on. Especially, such a tree is 
an ordered one since the temporal order is very important for 
video. In addition, the ordered tree matching can also be 
applied in the scene analysis, the computational biology (such 
as the RNA structure matching [11]), as well as in the data 
mining (such as the tree mining [15]). 

 
This problem has been the attention of much research. 

Kilpeläinen and Mannila [9] presented the first polynomial 
time algorithm using O(|T|⋅|P|) time and space. Most of the 
later improvements are refinements of this algorithm. In [13], 
Richter gave an algorithm using O(|α(P)|⋅|T| + m(P, T)⋅DT) 
time, where α(P) is the alphabet of the labels of P, m(P, T) is 
the size of a set called matches, defined as all the pairs (v, w) 
∈ P × T such that label(v) = label(w), and DT (resp. DP) is the 
depth of T (resp. P). Hence, if the number of matches is small, 
the time complexity of this algorithm is better than O(T|⋅|P|). 
The space complexity of the algorithm is O(|α(P)|⋅|T| + m(P, 
T)). In [3], a more sophisticated algorithm was presented 
using O(|T|⋅|leaves(P)|) time and O(|leaves(P)|⋅min{ DT, 
|leaves(T)|} + |T| + |P|) space. In [1], an efficient average case 
algorithm was discussed. Its average time complexity is O(|T| 
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+ C(P, T)⋅|P|), where C(P, T) represents the number of T’s 
nodes that have been examined during the inclusion search. 
However, its worst time complexity is still O(|T|⋅|P|). In [2], 
another bottom-up algorithm is proposed. The time 
complexity of the algorithm is bounded by 

But it is claimed that the algorithm needs only O(|T| + |P|) 
space. A careful analysis reveals that the space complexity of 
the algorithm is the same as that of [3]. In the algorithm, a 
data structure EMB(v) for each v in P is used to record deep 
occurrences of P[v] in T. It is of size O(|leaves(T)|) in the 
worst case. EMB(v) is generated recursively and works in a 
way similar to the concept of shell discussed in [3]. So the 
analysis of shell applies to EMB(v)’s. 

In our earlier work [7], a top-down algorithm was 
proposed with O(|T| + |P|) space requirement. However, its 
time complexity is not polynomial, as shown in [11]. 

In this paper, we revisit this issue and present a new top-
down algorithm to remove any redundancy of [10]. The time 
complexity of the new one is bounded by O(|T|⋅|leaves(P)|). 
Although the time complexity of our algorithm is comparable 
to Chen’s algorithm [3], it is more efficient than Chen’s since 
in Chen’s algorithm each node in T will be checked against, 
besides some internal nodes, all the leaf nodes in P. But in 
our algorithm, a node in T may be checked so many times 
only when some conditions are satisfied. 

More importantly, our algorithm needs only linear space 
O(|T| + |P|). 

The tree inclusion problem on unordered trees is NP-
complete [9] and not discussed in this paper. 

II. BASIC DEFINIION 

We concentrate on labeled trees that are ordered, i.e., the 
order between siblings is significant. Technically, it is 
convenient to consider a slight generalization of trees, namely 
forests. A forest is a finite ordered sequence of disjoint finite 
trees. A tree T consists of a specially designated node root(T) 
called the root of the tree, and a forest <T1, ..., Tk>, where k 
≥ 0. The trees T1, ..., Tk are the subtrees of the root of T or the 
immediate subtrees of tree T, and k is the outdegree of the 
root of T. A tree with the root t and the subtrees T1, ..., Tk is 
denoted by <t; T1, ..., Tk>. The roots of the trees T1, ..., Tk are 
the children of t and siblings of each other. Also, we call 
T1, ..., Tk the sibling trees of each other. In addition, T1, ..., Ti-1 
are called the left sibling trees of Ti, and Ti-1 the immediate 
left sibling tree of Ti. The root is an ancestor of all the nodes 
in its subtrees, and the nodes in the subtrees are descendants 
of the root. The set of descendants of a node v is denoted by 
desc(v). A leaf is a node with an empty set of descendants. 

Sometimes we treat a tree T as the forest <T>. We may 
also denote the set of nodes in a forest F by V(F). For 
example, if we speak of functions from a forest G to a forest 
F, we mean functions mapping the nodes of G onto the nodes 
of F. The size of a forest F, denoted by |F|, is the number of 
the nodes in F. The restriction of a forest F to a node v with 

its descendants desc(v) is called a subtree of F rooted at v, 
denoted by F[v]. 

Let F = <T1, ..., Tk> be a forest. The preorder of a forest F 
is the order of the nodes visited during a preorder traversal. A 
preorder traversal of a forest <T1, ..., Tk> is as follows. 
Traverse the trees T1, ..., Tk in ascending order of the indices 
in preorder. To traverse a tree in preorder, first visit the root 
and then traverse the forest of its subtrees in preorder. The 
postorder is defined similarly, except that in a postorder 
traversal the root is visited after traversing the forest of its 
subtrees in postorder. We denote the preorder and postorder 
numbers of a node v by pre(v) and post(v), respectively. 

Using preorder and postorder numbers, the ancestorship 
can be easily checked. If there is path from node u to node v, 
we say, u is an ancestor of v and v is a descendant of u. In this 
paper, by ‘ancestor’ (‘descendant’), we mean a proper 
ancestor (descendant), i.e., u ≠ v. 
Lemma 1 Let v and u be nodes in a forest F. Then, v is an 
ancestor of u if and only if pre(v) < pre(u) and post(u) < 
post(v). 
Proof. See Exercise 2.3.2-20 in [10] (page 347). 
Similarly, we check the left-to-right ordering as follows. 

Lemma 2 Let v and u be nodes in a forest F. v is said to be to 
the left of u if they are not related by the ancestor-descendant 
relationship and u follows v when we traverse F in preorder. 
Then, v is to the left of u if and only if pre(v) < pre(u) and 
post(v) < post(u). 

Proof. The proof is trivial. � 
In the following, we use the postorder numbers to define 

an ordering of the nodes of a forest F given by v p v’ iff 
post(v) < post(v’). Also, v p v’ iff v p v’ or v = v’. 
Furthermore, we extend this ordering with two special nodes  
7 p v p  6. The left relatives, lr(v), of a node v ∈ V(F) is the 
set of nodes that are to the left of v and similarly the right 
relatives, rr(v), are the set of nodes that are to the right of v. 

The following definition is due to [9]. 
Definition 1 Let F and G be labeled ordered forests. We 
define an ordered embedding (ϕ, G, F) as an injective 
function ϕ: V(G) → V(F) such that for all nodes v, u ∈ V(G), 

i) label(v) = label(ϕ(v)); (label preservation condition) 

ii)  v is an ancestor of u iff ϕ(v) is an ancestor of ϕ(u), i.e., 
pre(v) < pre(u) and post(u) < post(v) iff pre(ϕ(v)) < 
pre(ϕ(u)) and post(ϕ(u)) < post(ϕ(v)); (ancestor condition) 

iii) v is to the left of u iff ϕ(v) is to the left of ϕ(u), i.e., pre(v) 
< pre(u) and post(v) < post(u) iff pre(ϕ(v)) < pre(ϕ(u)) 
and post(ϕ(v)) < post(ϕ(u)). (Sibling condition) 
If there exists such an injective function from V(G) to 

V(F), we say, F includes G, F contains G, F covers G, or say, 
G can be embedded in F. 

Fig. 3 shows an example of an ordered inclusion. 
Let P and T be two labeled ordered trees. An embedding 

ϕ of P in T is said to be root-preserving if ϕ(root(P)) = 
root(T). If there is a root-preserving embedding of P in T, we 
say that the root of T is an occurrence of P. 

Fig. 3(b) also shows an example of a root preserving 
embedding. According to [9], restricting to root-preserving 

min 

O(|T|⋅|leaves(P)|) 

O(|leaves(T)|⋅|leaves(P)| ⋅loglog|leaves(P)| + |leaves(P))| 

O(|T|⋅|P|/(log|T|) + |T|log|T|) 
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embedding does not lose generality. In fact, what can be 
found by the top-down algorithm to be discussed is a root-
preserving tree embedding. 

 
Throughout the rest of the paper, we refer to the labeled 

ordered trees simply as trees. 

III.  ALGORITHM DESCRIPTION 

Let T = <t; T1, ..., Tk> (k ≥ 0) be a tree and G = <P1, ..., 
Pq> (q ≥ 0) be a forest. We handle G as a tree P = <pv; P1, ..., 
Pq>, where pv represent a virtual node, matching any node in 
T. Note that even though G contains only one single tree it is 
considered to be a forest. So a virtual root is added. Therefore, 
each node in G, except the virtual node, has a parent. 

Consider a node v in G = <P1, ..., Pq> with children v1, ..., 
vj. We use a pair <i, v> (i ≤ j) to represent an ordered forest 
containing the first i subtrees of v: <G[v1], ..., G[vi]>. If v is pv, 
or a node on the left-most path in P1, <i, v> is called a left 
corner of G. Especially, <i, pv> is a left corner, representing 
the first i trees in G: P1, ..., Pi.  

In addition, δ(v) represents a link from a node v to the 
left-most leaf node in G[v], as illustrated in Fig. 4. 

Let v’ be a leaf node in G. δ(v’) is defined to be a link to 
v’ itself. So in Fig. 5, we have δ(v1) = δ(v2) = δ(v3) = v3. We 
also denote by δ-1(v’) a set of nodes x such that for each v ∈ x 
δ(v) = v’. Therefore, in Fig. 5, δ-1(v3) = {v1, v2, v3}, δ-1(v4) = 
{ v4}, and δ-1(v5) = {v5}. The out-degree of v in a tree is 
denoted by d(v) while the height of v is denoted by h(v), 
defined to be the number of edges on the longest downward 
path from v to a leaf. The height of a leaf node is set to be 0. 

As with [7], we arrange two functions: top-down(T, G) 
and bottom-up(T’, G) to check tree inclusion, where T is a 
tree, and T’ and G are two forests. However, different from 
[7], each of the two functions returns a left corner <i, v> of G 
with the following properties: 
• Let v’ be the left-most leaf in G[v]. If i > 0, it shows that 

the first i subtrees of v in G can be embedded in T (or in T’), 
and for any i’ > i, <i’ , v> cannot be embedded in T (or in 
T’), and for any v’s ancestor u ∈ δ-1(v’) there exists no j > 0 
such that <j, u> is able to be embedded in T (or in T’). 

• If i = 0, v is the left-most leaf in G, indicating that no left 
corner of G can be embedded in T (or in T’).    

In this sense, we say, <i, v> is the highest and widest left cor-
ner which can be embedded in T (or in T’). 

 
We notice that if v = pv and i > 0, it shows that P1, ..., Pi 

can be included. 
In [7], both top-down(T, G) and bottom-up(T’, G) return 

an integer i to indicate that T embeds the first i trees in G. 
Although our algorithm follows the arrangement of [7], the 
main idea is quite different. It is not necessary to refer to [7] 
to understand the following discussion. 

If the target is a tree and the pattern is a forest, we call the 
function top-down. If both the target and the pattern are for-
ests, we call the function bottom-up. But during the computa-
tion, they will be called from each other. 

In top-down(T, G), we need to handle two cases. 
Case 1: G = <P1> ; or G = <P1, ..., Pq> (q > 1), but |T | ≤ |P1| 
+ |P2|. In this case, to find the highest and widest left corner 
<i, v> that can be embedded in T = <t; T1, ..., Tk>, the 
following checkings will be conducted: 
i) If t is a leaf node, we will check whether label(t) = la-

bel(δ(p1)), where p1 is the root of P1. If it is the case, 
return <1, parent of δ(p1)>. Otherwise, return <0, δ(p1)>. 

ii) If |T| < |P1| or h(t) < h(p1), we will make a recursive call 
top-down(T , <P11, ..., P1j>), where <P11, ..., P1j> is a for-
est of the subtrees of p1. The return value of top-down(T , 
<P11, ..., P1j>) is used as the return value of top-down(T, 
G). 

iii) If | T| ≥ |P1| and h(t) ≥ h(p1), we further distinguish 
between two subcases: 

• label(t) = label(p1). In this case, we will call bottom-
up(<T1, ..., Tk>, <P11, ..., P1j>). 

• label(t) ≠ label(p1). In this case, we will call bottom-
up(<T1, ..., Tk>, <P1> ).  

 In both cases, assume that the return value of bottom-up( ) 
is <i, v>. We need to perform a further checking: 

- If label(t) = label(v) and i = d(v), the return value of 
top-down(T, G) is set to be <1, v’s parent>. 

- Otherwise, the return value of top-down(T, G) is the 
same as <i, v>. 

Case 2: G = <P1, ..., Pq> (q > 1), and |T | > |P1| + |P2|. In this 
case, we will call bottom-up(<T1, ..., Tk>, G). Assume that the 
return value of bottom-up(<T1, ..., Tk>, G) is <i, v>. The 
following checkings will be continually conducted. 

iv) If v ≠ p1’s parent, check whether label(t) = label(v) and i 
= d(v). If so, the return value of top-down(T, G) will be 
set to <1, v’s parent>. Otherwise, the return value of top-
down(T, G) is the same as <i, v>. 

v) If v = p1’s parent, the return value of top-down(T, G) is the 
same as <i, v>.  

v3 

v1 

v2 v5 

v4 

P: δ(v1) 
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Fig. 4 A pattern tree 
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embedding corresponding to (a). 
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The following is a formal description of the algorithm. In 
the process, each node t in T is associated with a data 
structure, referred to as κ(t). Initially, each κ(t) is set to φ. 
Each time a call of the form top-down(T[t], G’) returns a left 
corner <i, v>, κ(t) will be changed to <i, v>, where G’ is a 
forest made up of a set of subtrees rooted respectively at a set 
of consecutive child nodes (starting from a specific child to 
the last child) of a certain node in G. This value is mainly 
used in bottom-up( ) to avoid redundancy. However, for 
simplicity, in the following algorithm κ(t) is not explicitly 
represented. 
function top-down(T, G) 
input: T = <t; T1, ..., Tk>, G = <P1, ..., Pq>. 
output: <i, v> specified above. 
begin 
1. if (q = 1 or |T | ≤ |P1| + |P2|) 
2. then 
 { let P1 = <p1; P11, ..., P1j>; (*Case 1*) 
3.  if t is a leaf then { 
  { let δ(p1) = v;  (*Case 1 - (i)*) 
4.  if label(t) = label(v) then return <1, v’s parent> 
   else return <0, v>; } 
5. if (|T| < |P1| or h(t) < h(p1)) 
 then return top-down(T , <P11, ..., P1j>);  (*Case 1 - (ii)*) 
6. if label(t) = label(p1)  (*Case 1 - (iii)*) 
7. then { if p1 is a leaf then { v := p1’s parent; i := 1;} 
8. else {< i, v> := bottom-up(<T1, ..., Tk>, <P11, ..., P1j>); 
9.  if label(t) = label(v) and i = d(v) 
  then {v := v’s parent; i := 1; } 
10. } 
11. else <i, v> := bottom-up(<T1, ..., Tk>, <P1>); 
 (*If label(t) ≠ label(p1), call bottom-up( ).*) 
12. return <i, v>; 
13. } 
14. else 
 {< i, v> := bottom-up(<T1, ..., Tk>, G); (*Case 2*) 
15. if v ≠ p1’s parent then (*Case 2 - (iv)*) 
16. if (label(t) = label(v)) and i = d(v) then return <1, v’s parent>; 
17. return <i, v>;  (*Case 2 - (v)*) 
18. } 
end 

In the above algorithm, we first check whether q = 1 or |T 

| ≤ |P1| + |P2| (see line 1). If it is the case we have Case 1 and 
then lines 2 - 13 are executed. In this process, all the three 
subcases (i), (ii), and (iii) are checked. If q > 1 and |T | > |P1| 
+ |P2|, we have Case 2 and lines 14 - 18 will be carried out, in 
which we first call bottom-up(<T1, ..., Tk>, G). Depending on 
its return value, (vi) or (v) is conducted.   

bottom-up(T’, G) is designed to handle the case that both 
T’ and G are forests made up of a set of subtrees rooted at 
nodes that are consecutive siblings in T and P, respectively. 
Let T’ = <T1, ..., Tk> and G = <P1, ..., Pq>. Denote by tl the 
root of Tl (l = 1, ..., k). Denote by pj the root of Pj (j = 1, ..., q). 
In bottom-up(T’, G), we will make a series of calls top-
down(Tl, < lj

P , ..., Pq>), where l = 1, ..., k, j1 = 1, and j1 ≤ j2 ≤ ... 

≤ jh ≤ q (for some h ≤ k), controlled as follows.  
1. Two index variables l, j are used to scan T1, ..., Tk and 

P1, ..., Pq, respectively. (Initially, l is set to 1, and j is set 
to 0.) They also indicate that <P1, ..., Pj> has been 
successfully embedded in <T1, ..., Tl>. 

2. Let <i l, vl> be the return value of top-down(Tl, <Pj+1, ..., 
Pq>). If vl = p1’s parent, set j to be j + i l. Otherwise, j is 
not changed. Set l to be l + 1. Go to (2). 

3. The loop terminates when all Tl’s or all Pj’s are examined.    
If j > 0 when the loop terminates, bottom-up(T’, G) returns <j, 
p1’s parent>, indicating that T’ contains P1, ..., Pj. 

Otherwise, j = 0, indicating that even P1 alone cannot be 
embedded in any Tl (l ∈ {1, ..., k}). However, in this case, we 
need to continue to search for a highest and widest left corner 
<i, v> in G, which can be embedded in T’. This is done as 
described below. 
i) Let <i1, v1>, ..., <ik, vk> be the return values of top-

down(T1, <P1, ..., Pq>), ..., top-down(Tk, <P1, ..., Pq>), 
respectively. Since j = 0, each vl ∈ δ-1(v’) (l = 1, ..., k), 
where v’ is the left-most leaf in P1. 

ii) If each i l = 0, return <0, left-most leaf of P1>. Otherwise, 
there must be some vl’s such that i l > 0. We call such a 
node a non-zero point. Find the first non-zero point vf 
with children w1, ..., ws such that vf is not a descendant of 
any other non-zero point. Then, we will check <Tf+1, ..., 
Tk> against <P[ 1+fi

w ], ..., P[ws]>. Let x (0 ≤ x ≤ s - if) be a 

number such that <P[ 1+fi
w ], ..., P[ xi f

w + ]> can be embed-

ded in <Tf+1, ..., Tk>. The return value of bottom-up(T’, G) 
should be set to <i f + x, vf>. 
In the bottom-up process, κ(t) can be used to avoid 

redundant computation. Concretely, each time before we 
make a call of the form top-down(Tl, <Pj, ..., Pq>), we will 
calculate a function κ-checking(tl, pj) defined below to 
determine whether this call can be skipped over, where tl and 
pj are the roots of Tl and Pj, respectively. 
function κ-checking(t, p) 
input: t - a node in T; p - a node in G. 
output: φ or <i, v> specified above. 
begin 
1. if κ(tl) ≠ φ then { 
2. let κ(tl) = <i, v>; 
3. if i = 0 then return φ; 
4. if i > 0, δ(v) = δ(p), and p is equal to v’s first child or an ancestor  
  of v’s first child 
5. then return <i, v>; 
6. if i > 0, δ(v) = δ(p), and p is a descendant of v’s first child 
7. then return <d(p’s parent), p’s parent>. 
8. else return φ. 
end 
Only when κ-checking(tl, pj) returns φ, top-down(Tl, <Pj, ..., 
Pq>) will be carried out. Otherwise, we use the value of κ-
checking(tl, pj) as the return value of top-down(Tl, <Pj, ..., 
Pq>).  
In terms of the above discussion, we arrange a new subproce-
dure to check a Tl against a forest <Pj, ..., Pq>, doing the same 
work as the top-down process but with κ-checking(tl, pj) 
being used to avoid unnecessary checkings.  

function top-down-κ(T, <P1, ..., Pq>) 
input: T - a tree; <P1, ..., Pq> - a forest. 
output: <v, i> specified above. 
begin 
1. if κ-checking(t, p1) = φ 
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 then  <i, v> := top-down(T, <P1, ..., Pq>) 
2. else <i, v> = κ-checking(t, p1); 
3. return <i, v>; 
end 

In the following algorithm, we use top-down-κ( ), instead 
of top-down( ), to check a tree against a forest. 

function bottom-up(T’, G) 
input: T’ = <T1, ..., Tk>, G = <P1, ..., Pq> 
output: <i, v> specified above. 
begin 
1. l := 1; j := 0; 
2. while (j < q and l ≤ k) do (*main checking*) 
3. { <i l, vl> := top-down-κ(Tl, <Pj+1, ..., Pq>) 
4.  if (vl = p1’s parent and i l > 0) then j := j + i l; 
5. l := l + 1; } 
6. if j > 0 then return <j, p1’s parent>; 
7. if for all <i l, vl>’s i l = 0 then return <0, left-most leaf in G> 
8. else { let vf be the first non-zero point such that it is not a 
  descendant of any other non-zero point; 
9.  let w1, ..., ws be the children of vf; 
10.  l := f + 1; j := if ; 
11. while (j < s and l ≤ k) do (*supplement checking*) 
12.  { <i l, vl> := top-down-κ(Tl, <G[wj+1], ..., G[ws]>); 
13.  if (vl = vf and i l > 0) then j := j + i l; 
14.  l := l + 1; } 
15.  return <j, vf>; 
16. } 
end  

In bottom-up(T’, G), we have two while-loops: one from 
line 2  to 5 and another from line 11 to 14. In the first while-
loop, we check <T1, ..., Tk> against <P1, ..., Pq>, referred to as 
the main bottom-up checking (or simply the main checking). 
In this checking, each Tl is checked one by one, by repeatedly 
calling top-down-κ(Tl, <Pj+1, ..., Pq>) (line 3), by which κ-
checking(tl, pj+1) is used to remove redundancy (see lines 1 - 
2 in top-down-κ( )).  

In the second while-loop, we do a supplement checking. 
This is carried out only when the following two conditions 
are satisfied (see lines 6 and 7): 
(1) j = 0, and 
(2) There exists at least a non-zero point <i l, vl> (return value 

of top-down-κ(Tl, <P1, ..., Pq>) such that i l > 0.  
We refer to these two conditions as the supplement checking 
condition. 

Let vf be the first non-zero point such that vf is not a 
descendant of any other non-zero point. Let w1, ..., ws be the 
children of vf. In the supplement checking, we will check 
<Tf+1, ..., Tk> against <G[ 1+fi

w ], ..., G[ws]> (see lines 10 - 16.) 

IV. CONCLUSION 

In this paper, a new algorithm is proposed to improve the 
algorithm discussed in [7]. The main idea behind it is to let 
any subprocedure call return a pair to indicate a subtree 
(subforest) embedding while in [7], only a single integer is 
returned to indicate whether a whole forest (or the first 
several subtrees of the forest) is embedded by the 
corresponding target subtree. Together with a simple data 
structure associated with each node in the target tree to 
transfer the result obtained in a previous step to the next step 

computation to avoid any useless effort, high performance is 
achieved. The time complexity of the new algorithm is 
bounded by O(|T|⋅|leaves(P)|) while the space requirement is 
bounded by O(|T| + |P|), where T and P are a target and a 
pattern tree, respectively. 
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