A Linear-Space Top-down Algorithm for Tree
Inclusion Problem

Yangjun Cheh Yibin Cherf
Dept. Applied Computer Science, University of Winnipeg, Canada

!y.chen@uwinnipeg.céchenyibin@gmail.com

Abstract— We consider the following tree-matching problem:
Given labeled, ordered treesP and T, can P be obtained from T
by deleting nodes? Deleting a node v entails removing all edges
incident to v and, if v has a parent u, replacing the edges from u
to v by edges from u to the children of v. The best known
algorithm for this problem needs O(|T|[leaves(P)|) time and
O(|leaves(P)|min{Dy, |leaves(T)[} + [T| + |P|) space, where
leaves(T) (resp. leaves(P)) stands for the set of the leaves of T
(resp. P), and D+ (resp. Dp) for the height of T (resp. P). In this
paper, we present an efficient algorithm that requires
O(|T|Meaves(P)|) timeand O(|T| + |P]) space.

I. INTRODUCTION

Let T be a treeandv be a node different of root ifi with
parent nodel. Denote bydelet€T, v) the tree obtained frofm
by removing the nodes. The children ofv become the
children ofu as illustrated in Fig. 1.

T a deletdT,v) (2
T AH T e @%fob\@ ®)

®©

Fig. 1 The effect of removing a node from a tree

Given two ordered labeled treds and T, called the

pattern and the target, respectively. An interesting problem is:
Can we obtain patterR by deleting some nodes from target

T? That is, is there a sequengeg..., Vi of nodes such that for

To=Tand
Ti+l = delethi, Vi+l) fori = 0, ,k - 1,

we haveT, = P? If this is the case, we sa,is included inT
[9]. Such a problem is called theee inclusion problem

illustration. The ordered tree inclusion problem was initially
introduced by Knuth [10], where only a sufficient condition
for this problem is given. The tree inclusion has been
suggested as an important primitive for expressing queries on
structured document databases [4, 5, 6, 12]. A structured
document database is considered as a collection of parse trees
that represent the structure of the stored texts and the tree
inclusion is used as a means of retrieving information from
them. Another application of the ordered tree matching is the
video content-based retrieval. According to Rual [14], a

video can be successfully decomposed into a hierarchical tree
structure, in which each node represents a scene, a group, a
shot, a frame, a feature, and so on. Especially, such a tree is
an ordered one since the temporal order is very important for
video. In addition, the ordered tree matching can also be
applied in the scene analysis, the computational biology (such
as the RNA structure matching [11]), as well as in the data
mining (such as the tree mining [15]).

S

np/ \VP
/
a6 v rimdv
| e
‘“The” ‘Student” ‘reads” det adj n ‘intensively”
/\
vp ‘the” ‘interesting” ‘book” @

)
T B

v ‘book” adv

‘reads” Fig. 2 lllustration for ordered tree inclusion

This problem has been the attention of much research.
Kilpeldinen and Mannila [9] presented the first polynomial
time algorithm using OT|JP|) time and space. Most of the
later improvements are refinements of this algorithm. In [13],

Ordered labeled trees appear in various research fieldRichter gave an algorithm using ®@@)|T| + m(P, T)D-)
including programming language implementation, naturalime wheren(P) is the alphabet of the labels@fm(P, T) is
language processing, and molecular biology. __the size of a set calledatchesdefined as all the pairs, ()

As an example [9], consider querying grammaticaly p Tgch thatabelv) = label(w), andDr (resp.Ds) is the
structures as shown in Fig. 2(a), which is the parse tree of @ v ofT (resp.P). Hence, if the number of matches is small,
natural Ianguage sentence. the time complexity of this algorithm is better thanT|JR)).

. One might want to locate, say, those sentences thihe space complexity of the algorithm is c@@)[T| +m(P,
include a verb phrase containing the verb “reads” and afterﬁt))_ In [3], a more sophisticated algorithm was presented
a noun “book” followed by any adverb. This is exactly theusing O(i'|[[leavesl?)|) time and O(|leaveB)[min{ D
sentences whose parse tree can be obtained by deleting s gves@l} +[T| + P|) space. In [1], an efficient averageTé:ase

nodes from the tree shown in Fig. 2(a). See Fig. 2(b) fo Igorithm was discussed. Its average time complexity if O(|

978-1-4673-0719-2/12/$26.00 ©2012 IEEE
2127

+ C(P,)UP]), whereC(P, T) represents the number ofs its descendantdes¢v) is called a subtree df rooted atv,
nodes that have been examined during the inclusion searatenoted byF[v].

However, its worst time complexity is still @[JP]). In [2], LetF = <Ty, ..., Ty> be a forest. The preorder of a forést
another bottom-up algorithm is proposed. The timds the order of the nodes visited during a preorder traversal. A
complexity of the algorithm is bounded by preorder traversal of a forestTg ..., T,> is as follows.
Traverse the tre€E, ..., T in ascending order of the indices
O([Tlllleavesk))) in preorder. To traverse a tree in preorder, first visit the root
min{ O(|leavesT)|l|leavesP)| loglog|leaves?)| + |leaves®))] and then traverse the forest of its subtrees in preorder. The
postorder is defined similarly, except that in a postorder

O([TliIPI/(logT]) + [TlogT]) traversal the root is visited after traversing the forest of its

o .) subtrees in postorder. We denote the preorder and postorder
But it is claimed that the algorithm needs onlyTD& [P) numbers of a nodeby pre(v) andpostv), respectively.
space. A careful analysis reveals that the space complexity of ysing preorder and postorder numbers, the ancestorship
the algorithm is the same as that of [3]. In the algorithm, &an be easily checked. If there is path from notte nodev,
data structuré&MB(v) for eachv in P is used to record deep e sayuis an ancestor ofandv is a descendant of In this
occurrences oP[v] in T. It is of size O(|leave$]|) in the paper, by ‘ancestor (‘descendant), we mean a proper
worst caseEMB(v) is generated recursively and works in agncestor (descendant), i.e# v.
way similar to the concept afhell discussed in [3]. So the | qnma 1 Let v andu be nodes in a forest. Then,v is an

analysis ofhellapplies tcEMB(V)'s. ; ;
In our earlier work [7], a top-down algorithm was Sggf\?)tor ofu if and only if pre(v) < pre(u) and pos(u) <

roposed with O] + |P]) space requirement. However, its . :
Fimg complexity isT"not |p(lglynpomial, aqs shown in [11]. Proof. See Exercise 2.3.2-20 in [10] (page 347).

In this paper, we revisit this issue and present a new tofimilarly, we check the left-to-right ordering as follows.
down algorithm to remove any redundancy of [10]. The timg emma 2 Let v andu be nodes in a foregt v is said to be to
complexity of the new one is bounded by[KpleavesR)|). the left ofu if they are not related by the ancestor-descendant
Although the time complexity of our algorithm is comparable g|ationship andi follows vwhen we travers€ in preorder.

to Chen’s algorithm [3], it is more efficient than Chen’s sinceyy, : he | fu if lv if <
in Chen’s algorithm each node inhwill be checked against, pose(nv,)vii)ctg(tu)e eft ofu if and only if pre(v) < pre{u) and

besides some internal nodes, all the leaf nodda iBut in
our algorithm, a node i may be checked so many times Proof. The proof is trivial. 0

only when some conditions are satisfied. , In the following, we use the postorder numbers to define
More importantly, our algorithm needs only linear space,, ordering of the nodes of a foréstgiven byv < v' iff

o + PD. : os{v) < pos(v’). Also, v < V' iff v <V orv =V
The tree inclusion problem on unordered treedN® P P ' V= v =V
complete [9] and not discussed in this paper. Furthermore, we extend this ordering with two special nodes
1 < Vv =<T. Theleft relatives Ir(v), of a nodev 00 V(F) is the
[I. BASIC DEFINIION set of nodes that are to the leftyofind similarly theright

We concentrate on labeled trees that are ordered, i.e., tHaatves 1"(v), are the set of nodes that are to the rigit of
order between siblings is significant. Technically, it is '_I'he_ following definition is due to [9].
convenient to consider a slight generalization of trees, name‘gefl'n't'On 1 Let F and G be labeled ordered forests. We
forests. A forest is a finite ordered sequence of disjoint finitélefine an ordered embedding, (G, F) as an injective
trees. A tredl consists of a specially designated noofet(T) function ¢: V(G) - V(F) such that for all nodes u I V(G),
called the root of the lree, and a foreSL.<.., Ti>, wherek i) label() = label(i(v)): (label preservation condition)
20. The treedy, ..., T are the subtrees of the rootTobr the
immediate subtrees of tree andk is the outdegree of the i) vis an ancestor ai iff &(v) is an ancestor of(u), i.e.,

root of T. A tree with the root and the subtre€F, ..., Ty is pre(v) < pre(u) and postu) < posty) iff pre(¢(v)). <
denoted by & T, ..., T, The roots of the treé;,l ...,Tklélre pre(#(u)) andpostg(u)) < pos(4(v)); (ancestor condition)
the children oft and siblings of each other. Also, we call iii) vis to the left olu iff ¢(v) is to the left ofg(u), i.e., pre(v)
T,, ..., Tcthe sibling trees of each other. In additiog, ..., Ti; < pre(u) and postv) < postu) iff pre(g(v)) < pre(¢(u))
are called the left sibling trees ®f andT;; the immediate andpos{¢#(v)) < pos(g(u)). (Sibling condition)

left sibling tree ofT;. The root is an ancestor of all the nodes ¢ {hare exists such an injective function fro(G) to

of the root. The set of descendants of a noedenoted by Qg‘znv%isea%gégggjdd%ﬁ, F containsG, F coversG, or say,

desqv). A leaf is a node with an empty set of descendants. Fig. 3 shows an example of an ordered inclusion.

| Sodmeti;nefhwe trteatfa trg’eas_ the l;or%stb'b.vvl\:/e nl;nay Let P andT be two labeled ordered trees. An embedding
also denote the set of nodes in a foresby V(F). For @ of Pin T is said to beroot-preservingif @(root(P)) =

example, if we speak of functions from a for€sto a forest r ; : : .
. . oot(T). If there is a root-preserving embeddingPah T, we
F, we mean functions mapping the nodesSainto the nodes say that the root oF is an occurrence .

of F. The size of a foredt, denoted byH|, is the number of : .
. L : Fig. 3(b) also shows an example of a root preserving
the nodes ir. The restriction of a fores$t to a nodev with embedding. According to [9], restricting to root-preserving

2128

embedding does not lose generality. In fact, what can bk this sense, we sayi,«> is thehighestandwidestleft cor-
found by the top-down algorithm to be discussed is a rootrer which can be embeddedTirfor in T").
preserving tree embedding.

@) Fig. 4 A pattern tree

We notice that ifv = p, andi > 0, it shows thaPy, ..., P,
(b) can be included.
In [7], bothtop-dowr{T, G) andbottom-ugT’, G) return
an integer to indicate thaff embeds the first trees inG.
Although our algorithm follows the arrangement of [7], the
Fig. 3: (a) The tree on the left can be included in the tree on main idea is quite different. It is not necessary to refer to [7]
the right by deleting the nodes labellet) e, andb; (b) the to understand the following discussion.

embedding corresponding to (a). . .
Ing corresponding to (a) If the target is a tree and the pattern is a forest, we call the
function top-down.If both the target and the pattern are for-
Throughout the rest of the paper, we refer to the Iabeleéjsts, we cgll the functiobottom-u% But during Ft)he computa-
ordered trees simply as trees. tion, they will be called from each other.

lll. ALGORITHM DESCRIPTION In top-dowr{T, G), we need to handle two cases.

LetT=<t; Ty, .., T (k= 0) be a tree an® = <Py, Casel: G = <Py>; or G = <Py, ...,Pg> (0> 1), but | < [Py

P.> (q 2 0) be a forest. We hand@as a tre® = <p,; Py, . * [Pl In this case, to find the highest and widest left corner

P>, wherep, represent a virtual node, matching any node iril, V> that can be embedded i = <t/ Ty, ..., Ti>, the
T. Note that even thoug® contains only one single tree it is following checkings will be conducted:
considered to be a forest. So a virtual root is added. Therefore, If tis a leaf node, we will check whether lalbek la-

each node i3, except the virtual node, has a parent. bel®(py)), wherep; is the root ofP;. If it is the case,
Consider a nodein G = <Py, ...,P;> with childrenv, ..., return <1, parent ai(p,)>. Otherwise, return <@(py)>.

vi. We use a pairisv> (i <j) to represent an ordered forestii) If |T| <[P, orh(t) < h(p,), we will make a recursive call

containing the first subtrees of. <G[v1]: Q[vi]>. If vis py, top-dowr(T, <Py, ..., P;;>), where €15, ..., P> is a for-

or a node on the left-most path #, <i, v> is called deft est of the subtrees pf. The return value abp-down(T,

corner of G. Especially, p,> is a left corner, representing <Py, ...,Py>) is used as the return valuetop-dowrT,
the firsti trees inG: Py, ..., P.. .

In addition, &(v) represents a link from a nodeto the
left-most leaf node i®[V], as illustrated in Fig. 4.

Let v’ be a leaf node ie. &(v') is defined to be a link to
V' itself. So in Fig. 5, we hav&(v;) = 8(v,) = 8(v3) = va. We
also denote by?(v') a set of nodes such that for each x
&(v) = Vv'. Therefore, in Fig. 55*(vs) = {va, Vo, Vg}, 8(vs) =
{vs}, and &*(vs) = {vs}. The out-degree of/ in a tree is
denoted byd(v) while the height ofv is denoted byh(v),
defined to be the number of edges on the longest downward
path fromv to a leaf. The height of a leaf node is set to be 0.
As with [7], we arrange two functionsop-dowr{T, G)

i)y If |T| 2|P:] and h(t) = h(p,), we further distinguish

between two subcases:

« labelf) = labelf,). In this case, we will calbottom-
Up(<T1, v 1>, <Py, ...,Plj>).

« labelf) # labelf,). In this case, we will calbottom-
up(<Ty, ..., T,>, <Py>).

In both cases, assume that the return valimtdm-ug)

is <i, v>. We need to perform a further checking:
- If label) = label@) andi = d(v), the return value of

top-dowr{T, G) is set to be <lv's parent>.

and bottom-ugT’, G) to check tree inclusion, whefgis a - Otherwise, the return value tafp-dowr(T, G) is the
tree, andl” andG are two forests. However, different from same as Kv>.

[7], each of the two functions returns a left corngnv of G~ Case2: G=<Py, ...,P;> (@>1), and T| > P4| + P2l In this
with the following properties: case, we will calbottom-ug<Ty, ..., Ty>, G). Assume that the

+ Let v’ be the left-most leaf iG[v]. If i > 0, it shows that return value ofbottom-ug<Ts, ..., Ty>, G) is <, v>. The
the firsti subtrees of in G can be embedded h(or inT'), following checkings will be continually conducted.
and for anyi” > i, <i’, v> cannot be embedded Th(or in iv) If v # p,’s parent, check whether labl€ labelf) andi

T'), and for any's ancestou [§*(v’) there exists np> 0 = d(v). If so, the return value dbp-dowrT, G) will be

such that § u> is able to be embeddedir(or in T"). set to <1y's parent>. Otherwise, the return valugas-
e If i =0, vis the left-most leaf i, indicating that no left down(T, G) is the same as >.

corner ofG can be embedded h(or inT’). V) If v=p;s parent, the return value tifp-dowr(T, G) is the

same as Kv>.

2129

The following is a formal description of the algorithm. In 2.

the process, each nodein T is associated with a data
structure, referred to agt). Initially, eachk(t) is set tog
Each time a call of the fortop-dowr{T[t], G’) returns a left
corner <, v>, K(t) will be changed to isv>, whereG’ is a

forest made up of a set of subtrees rooted respectively at a 6% parent>, indicating that’ containsP;,
of consecutive child nodes (starting from a specific child to

the last child) of a certain node . This value is mainly
used inbottom-ug) to avoid redundancy. However, for
simplicity, in the following algorithmk(t) is not explicitly
represented.

function top-dowr(T, G)

input: T=<; Ty, ..., >, G= <Py, ...,P>.

output: 4, v> specified above.

begin
1 if(@=1orT|< P+ Pal)
2. then

{let Py = <py; Pay, ..., Py>;
3. iftis aleafthen {
{let &(p,) =v; (*Casel - (i)*)
4. if labelf) = label{) then return <1yv's parent>
elsereturn <0v>; }
5. if ([T <|P4f orh(t) < h(py))
then returntop-down(T, <Pyy, ...,Py>);

(*Casel®)

(*Case 1 - (ii)*)

6. if labelf) = labelf,) (*Casel - (iii)*)
7. then { if pis a leafthen {v:=p,'s parentj := 1;}
8. else {<i, v>:= bottom-ug<Ty, ..., Ty>, <P1y, ...,P3;>);
9. if labelf) = labelf) andi = d(v)
then {v :=v's parentj :=1; }

10.
11. dse<i,v>:=bottom-ug<Ty, ..., T>, <P>);

(*If label(t) # labelf,), callbottom-ug).*)
12. return § v>;
13.}
14.else

{<i, v>:=bottom-ug<Ty, ..., T,>, G);
15. if v# p,'s parenthen

(*Case2¥)
(*Case2 - (iv)¥)

16. if (labelg) = label§)) andi = d(v) then return <1\'s parent>;
17. return § v>; (*Case2 - (v)¥)
18.}

end

In the above algorithm, we first check whether 1 or [
| < |P1] + P2| (see line 1). If it is the case we havasel and

then lines 2 - 13 are executed. In this process, all the thrée

subcases (i), (ii), and (iii) are checkedqlf 1 and T| > P4|

+ |P,|, we haveCase? and lines 14 - 18 will be carried out, in
which we first callbottom-ug<T,, ..., T,>, G). Depending on
its return value, (vi) or (v) is conducted.

Let <€, vi> be the return value dbp-dowr(T,, <Pj,4, ...,
Py>). If vi = p,'s parent, sej to bej + i;. Otherwisej is
not changed. Séto bel + 1. Go to (2).

3. The loop terminates when @ls or allP;'s are examined.
If j > 0 when the loop terminatdspttom-ugT’, G) returns «;
e Py

Otherwisej = 0, indicating that eveR; alcj)ne cannot be
embedded in any; (I O {1, ..., kK}). However, in this case, we
need to continue to search for a highest and widest left corner
<i, v> in G, which can be embedded . This is done as
described below.

i) Let <iy, vi>, ..., <9y V> be the return values dbp-
down(Ty, <Py, ..., Pg>), ..., top-dowr{Ty, <Py, ..., Pg>),
respectively. Sincg¢ = 0, eachvy, O &) (I = 1, ...,K),
whereV’ is the left-most leaf ;.

If eachi; = 0, return <0, left-most leaf &f;>. Otherwise,
there must be som&'s such that; > 0. We call such a
node anon-zero point Find the first non-zero poing
with childrenwy, ...,ws such that; is not a descendant of
any other non-zero point. Then, we will check.s ...,
T> againskP[w,], ..., P[wgd>. Letx (0<x<s-i) be a

number such thatP[w,], ..., Pl w .]> can be embed-

ded in gy, ..., Ty>. Thereturn value obottom-ugT’, G)

should be set toig+ x, vi>.

In the bottom-up process,k(t) can be used to avoid
redundant computation. Concretely, each time before we
make a call of the formop-dowr(T,, <P;, ..., Pg>), we will
calculate a functionk-checkingt, p) defined below to
determine whether this call can be skipped over, wheaired
p; are the roots of, andP;, respectively.
function k-checkingt, p)
input:t - a node irl; p - a node irG.
output: gor <, v> specified above.
begin
1. if k() # gthen {

2. letk(t) = <, v>;

3. ifi=0then returng

4. ifi>0,8(v) =&(p), andp is equal tor's first child or an ancestor
of v's first child

5. thenreturn 4, v>;

if i >0,8(v) =8(p), andp is a descendant s first child

7. then return<d(p’s parent)p’s parent>.

8. dsereturng

end

Only whenk-checkingt;, p;) returnsg, top-dowr(T,, <P, ...,

bottom-uiT’, G) is designed to handle the case that bottP¢>) will be carried out. Otherwise, we use the valuex-of

T and G are forests made up of a set of subtrees rooted
nodes that are consecutive siblingsTimnd P, respectively.
Let T' = <Ty, ..., k> andG = <Py, ..., P&>. Denote byt the
root of Ty (I = 1, ...,k). Denote byp; the root ofP;(j = 1, ...,0).
In bottom-ugT’, G), we will make a series of call®p-
down(T, <P , ...,Pg>), wherel =1, ...k j;= 1, andj; < jos ...
<jn < g (for someh < k), controlled as follows.

1. Two index variables$, j are used to scam, ..., Ty and
P, ..., Pq, respectively. (Initially] is set to 1, anglis set
to 0.) They also indicate thatPg ..., P> has been
successfully embedded ifg ..., T;>.

gheckingt,, p) as the return value dbp-dowrT,, <P, ...,

Ps>).

In terms of the above discussion, we arrange a new subproce-
dure to check &, against a forestR, ...,P;>, doing the same
work as thetop-down process but withk-checkingt, p;)
being used to avoid unnecessary checkings.

function top-downk(T, <Py, ...,Ps>)
input:T - a tree; @4, ...,P;> - a forest.
output: w, i> specified above.

begin

1. if k-checkingt, p;) = ¢

2130

then <i, v>:=top-dowdT, <P, ...
2. eése<i, v> =k-checkingt, py);
3. return €, v>;
end

In the following algorithm, we us@p-downk(), instead
of top-dowr{), to check a tree against a forest.

function bottom-ugT’, G)

Pg>)

input: T' = <Ty, ..., T,>, G = <Py, ...,Py> [1]
output: 4, v> specified above.

begin

1. 1:=1;j:=0; 2]
2. while(j <gandl <Kk) do (*main checking*)

3. { <ij, v> :=top-downk(T,, <Py, ...,Pg>)

4. if (v =py's parent and, > 0)thenj :=j +i; [3]
5. l:=1+1;}

6. if j > Othen return 4, p,’s parent>; (4]
7. if for all <), vy>'si; = Othen return <0, left-most leaf iG>

8. ese{let v be the first non-zero point such that it is not a

. 5
descendant of any other non-zero point; [51

9. letwy, ...,ws be the children o¥;
10. l:=f+1;j:=i;
11. while (j <sandl <k) do (*supplement checking*) [6]

12. { <, v> = top-downk (T, <G[Wj1], ..., G[W{>);

13. if (v =v;andi; > 0)thenj:=j +i; [7]
14. l:=1+1;}

15. return § ve>;

16. } [8]
end

In bottom-ugT’, G), we have twowhile-loops: one from
line 2 to 5 and another from line 11 to 14. In the fivktle-
loop, we check %, ..., Ti> against ®4, ...,P;>, referred to as
the main bottom-uphecking (or simply thenain checking
In this checking, each is checked one by one, by repeatedly(11]
calling top-downk(T;, <Pjs1, ..., P) (line 3), by whichk-
checkingt, pj+1) is used to remove redundancy (see lines 1 -

2 intop-downk()). [12]
In the secondvhile-loop, we do asupplement checking
This is carried out only when the following two conditions

are satisfied (see lines 6 and 7):

9]
[10]

(1) j =0, and s
(2) There exists at least a non-zero pointw> (return value
of top-downk(T,, <Py, ...,P¢>) such that, > 0. [14]
We refer to these two conditions as gupplement checking
condition
[15]

Let v; be the first non-zero point such thatis not a
descendant of any other non-zero point. Wegt..., ws be the
children of v. In the supplement checking, we will check
<Tt1, -, > @QAINSt G W, 41 |, ..., G[Wg> (see lines 10 - 16.)

IV. CONCLUSION

In this paper, a new algorithm is proposed to improve the
algorithm discussed in [7]. The main idea behind it is to let
any subprocedure call return a pair to indicate a subtree
(subforest) embedding while in [7], only a single integer is
returned to indicate whether a whole forest (or the first
several subtrees of the forest) is embedded by the
corresponding target subtree. Together with a simple data
structure associated with each node in the target tree to
transfer the result obtained in a previous step to the next step

2131

computation to avoid any useless effort, high performance is
achieved. The time complexity of the new algorithm is
bounded by dT|0leavesP)|) while the space requirement is
bounded by Of] + PJ|), whereT and P are a target and a
pattern tree, respectively.

REFERENCES

L. Alonso and R. Schott. On the tree inclusion problem. In
Proceedings of Mathematical Foundations of Computer Sejenc
pages 211-221, 1993.

P. Bille and I.L. Gartz, An Ordered Tree Inclusion Algorithm Based
on Dynamic Tree Labeling, ifProc32th Intl. Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer
Science, vol. 3580, 2005, pp. 66-77.

W. Chen. More efficient algorithm for ordered tree inclusiwurnal

of Algorithns, 26:370-385, 1998.

Y. Chen and Y.B. Chen, Subtree Reconstruction, Query Node
Intervals and Tree Pattern Query Evaluatidoyrnal of Information
Science and Engineerirg, 263-293 (2012).

Y. Chen and L. Zou, and Unordered tree matching and ordered tree
matching: the evaluation of tree pattern queries, Jninformation
Technology, Communications and ConvergeM®. 1, No. 3, 2011,

pp. 254-279.

Y. Chen, A New Algorithm for Twig Pattern Matching, iRroc. of

Int. Conf. on Enterprise Information Systems (ICEIS’200ZEE,
Funchal-madeira, Portugal, June 2007, pp. 44-51.

Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm,
Information Processing Letterd88(2006) 253-262, Elsevier Science
B.V.

H.L Cheng and B.F Wang, On Chen and Chen's new tree inclusion
algorithm, Information Processing Letter2007, Vol. 103, 14-18,
Elsevier Science B.V.

P. Kilpeldinen and H. Mannila. Ordered and unordered tree inclusion.
SIAM J. Compyt24:340-356, 1995.

D.E. Knuth,The Art of Computer Programming, Vol. 1 (1st editjon)
Addison-Wesley, Reading, MA, 1969.

R.B. Lyngs, M. Zuker & C.N.S. Pedersen, Internal loops in RNA sec-
ondary structure prediction, Proceedings of the 3rd annual interna-
tional conference on computational molecular biology (RECQMB)
260-267 (1999).

H. Mannila and K.-J. Raiha, On Query Languages for the p-string data
model, in “Information Modelling and Knowledge Bases” (H.
Kangassalo, S. Ohsuga, and H. Jaakola, Eds.), pp. 469-482, IOS Press,
Amsterdam, 1990.

Thorsten Richter. A new algorithm for the ordered tree inclusion prob-
lem. InProceedingof the 8th Annual Symposium on Combinatorial
Pattern Matching (CPM), irLecture Notes of Computer Science
(LNCS), volume 125 pages 150-166. Springer, 1997.

Y. Rui, T.S. Huang, and S. Mehrotra, Constructing table-of-content
for videos, ACM Multimedia Systems Journal, Special Issue
Multimedia Systems on Video Librarig$5):359-368, Sept 1999.

M. Zaki, Efficiently mining frequent trees in a forest.Rroc. of KDD
2002.

