
On Evaluation of Graph Pattern Matching in Large
Databases

1Yangjun Chen, 2Guo Bin, and 3Xinyue Huang
Dept. Applied Computer Science,

515 Portage Ave. University of Winnipeg, Canada
1y.chen@uwinnipeg, 2guo-b75@webmail.uwinnipeg.ca, 3huangxy19910321@163.com

Abstract—Recently, graph databases have been received
much attention in the research community due to their
extensive applications in practice, such as social networks,
biological networks and World Wide Web, which bring forth a
lot of challenging data management problems including
subgraph search, shortest-path queries, reachability
verification, pattern matching, and so on. Among them, the
graph pattern matching is to find all matches in a data graph G
for a given pattern graph Q and is more general and flexible
compared with other problems mentioned above. In this paper,
we address a kind of graph matching, the so-called graph
matching with , by which an edge in Q is allowed to match a
path of length ≤ in G. In order to reduce the search space
when exploring G to find matches, we propose a new index
structure and a novel pruning technique to eliminate a lot of
unqualified vertices before join operations are carried out.
Extensive experiments have been conducted, which show that
our approach makes great improvements in running time
compared to existing ones.

Keywords—graph matching, -transitive-closures, triangle
consistency, join ordering

I. INTRODUCTION

Nowadays, in numerous applications, including social
networks, biological networks, and WWW networks, as well
as geographical networks, data are normally organized into
graphs with vertices for objects and edges for their
relationships. The burgeoning size and heterogeneity of
networks have inspired extensive interests in querying a
graph in different ways, such as subgraph search [1],
shortest-path queries [2], reachability queries [3, 4], and
pattern matching queries. Among them, the pattern matching
is very challenging, by which we are asked to look for all
matches of a certain pattern graph Q in a data graph G, each
of which is isomorphic to Q or satisfies certain conditions
related to Q. As a key ingredient of many advanced
applications in large networks, the graph matching is
conducted in many different domains: (1) in the traditional
relational database research, a schema is often represented as
a graph. By matching of data instances we are required to
map a schema graph to part of a data graph to check any
updating of data for consistency; (2) in a large metabolic
network, it is desirable to find all protein substructures that
contain an - -barrel motif, specified as a cycle of strands
embraced by an -helix cycle; (3) in the computer vision, a
scene is naturally represented as a graph G(V, E), where a
feature is a vertex in V and an edge in E stands for a
geographical adjacency of two features. Then, a scene
recognition is just a matching of a graph standing for part of
a scene to another stored in databases.

The first two applications mentioned above are typically
exact matching, by which the graph isomorphism checking,
or subgraph isomorphism is required. In other words, the
mapping between two graphs must be both vertex-label
preserving and edge preserving in the sense that if two
vertices in the first graph are linked by an edge, they are
mapped to two vertices in the second by an edge as well. It is
well-known that the subgraph isomorphism checking is NP-
complete. A lot of work has been done on this problem, but
most of them are for special kinds of graphs, such as [6] for
planar graphs and [7] for valence graphs, or by establishing
indexes, or uses some kinds of heuristics to speed up the
working process. The third application is a kind of inexact
matching. First, two matching features from two graphs may
disagree in some way due to different observation of a same
object. Secondly, between two adjacent features in a graph
may there be some more features in another graph figured
out by a more meticulous description. This leads to a new
kind of queries, called pattern matching with δ (or graph
matching with δ), where δ is a number, by which an edge in a
query graph is allowed to match a path of length δ in a data
graph. More specifically, two adjacent vertices v and v in a
query graph Q can match two vertices u and u in a data
graph G with label(v) = label(u) and label(v) = label(u) if
the distance between u and u is ≤ δ. Here, the distance
between u and u is defined to be the weight of the shortest
path connecting these two vertices, denoted as dist(u, u).
Note that when δ = 1, the problem reduces to the normal
subgraph isomorphism.

In this paper, we address this problem and propose a
new method to evaluate pattern matching with δ based on a
new concept of -transitive closure of G, used as an index,
as well as a filtering method to remove useless data before a
join is conducted. Besides, the bit mapping technique is also
integrated into our filtering method to speed up computation.

II. PROBLEM STATEMENTS

In this section, we give a formal definition of the pattern
matching queries with δ over directed weighted graphs G.
First of all, G should be a Weakly Connected Component
(WCC) (i.e., the undirected version of G is connected);
otherwise, we can decompose G into a collection of WCCs
and perform pattern matching over each WCC in turn.
Secondly, we will use the shortest path length to measure the
distance between two vertices. However, our approach is not
restricted to this distance function and it can also be applied
to other metrics without any difficulty.
Definition 2.1 (Data Graph G) A data graph G = (V(G),
E(G), Σ) is a vertex-labeled, directed, weighted, and weakly
connected graph. Here, V(G) is a set of labeled vertices, E(G)

1242

2018 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-1360-9/18/$31.00 ©2018 IEEE
DOI 10.1109/CSCI.2018.00239

is a set of edges (ordered pairs) each with a weight
represented as a nonnegative number, and Σ is a set of vertex
labels. Each vertex u ∈ V(G) is assigned a label l ∈ Σ,
denoted as label(v) = l.
Definition 2.2 (Query Graph Q) A query Q is a vertex-
labeled and directed graph, Q = (V(Q), E(Q)). Here, V(Q) is
a set of labeled vertices, and E(Q) is a set of edges. Each
vertex v ∈ V(Q) is also assigned a label l ∈ Σ.
Definition 2.3 (List D[l]) Given a data graph G, we use D[l]
to represent a list that includes all those vertices u in G
whose labels are l ∈ Σ, i.e., label(u) = l for each u D[l].

Sometimes we also use the notation D, instead of D[l], if
its label l is clear from the context. Let v be a vertex in Q
with label(v) = l. We also call D[l] the domain of v.
Definition 2.4 (Edge Query) Given a data graph G, an edge
e = (vi, vj) in a query graph Q and a parameter δ, the
evaluation of e reports all matching pairs <ui, uj> in G if the
following conditions hold:
1) label(ui) = label(vi) and label(uj) = label(vj);
2) The distance from ui to uj in G is not larger than δ. That

is, Dist(ui, uj) ≤ δ.
Definition 2.5 (Pattern Matching Query with) Given a
data graph G, a query graph Q with n vertices {v1, ..., vn}
and a parameter δ, the evaluation of Q reports all matching
results <u1, … un> in G if the following conditions hold:
1) label(ui) = label(vi) for 1 ≤ i ≤ n;
2) For any edge (vi, vj) Q, the distance between ui and uj

in G is no larger than δ, i.e., Dist(ui , uj) ≤ δ.
In Fig. 1(a), we show a simple graph, in which the

numbers inside the vertices are their IDs and the letters
attached to them are their labels. There are altogether 4
labels: Σ = {A, B, C, D}. Each edge is also associated with a
number, representing its weight. In Fig. 1(b), we show a
simple query Q.

Since Q contains three vertices labeled with A, B, C Σ,
respectively, three lists: D[A], D[B], D[C] from G will be
constructed. For example, D[A] = {u6, u7, u8}.

In addition, the query Q also has 3 query edges, {(v1, v2),
(v2, v3), (v3, v1)}. If the parameter δ = 5, the pairs matching a
query edge (v1, v2) (with labels (A, B)) are {<u6, u3>, <u7,
u9>, <u8, u9>, <u8, u5>}. The matching result of the whole
query Q is {<u8, u9, u10>, <u7, u9, u4>}. If δ = 6, the pairs
matching (v1, v2) is the same as δ = 5. But the matching
result of the whole query Q will be augmented by adding
{<u8, u9, u4>}.

The common symbols used in this paper are summarized
in Table 1.

Table 1. Meaning of used symbols
Directed data graph G Directed query graph Q

V(G) vertex set of G V(Q) vertex set of Q
E(G) edge set of G E(Q) edge set of Q
ui a vertex in G vi a vertex in Q
Label(ui) label of ui n number of vertices in Q

Dist(ui, uj) distance between ui and uj m number of edges in Q

In a similar way, we can also define the problem for
undirected, weighted graphs, by simply removing directions
of edges when calculating the distance between two
vertices.

Finally, we should notice that if G contains negative-
weight cycles the shortest path from a vertex to another may
not be well defined. It is because by a negative-weight cycle
C we have some edges associated with negative weights and
all the weights of the edges on C can sum up to a negative
value. Thus, we can always find a path with lower weight by
following such a cycle. In this paper, negative-weight cycles
will not be considered.

III. CONSTRUCTION OF INDEXES
In this section, we begin to describe our method. In a
nutshell, our algorithm comprises three steps. In the first
step, we will construct off-line a -transitive closure for a
certain -value as an index over G, by which a set of binary
relations as illustrated in Fig. 2(b) will be constructed. (In
general, how large is set is determined according to
historical query logs.) Thus, when a query Q is submitted, for
each edge e = (vi, vj) in Q, a relation corresponding to
<label(vi), label(vj)>, referred to as Rij, will be loaded from
hard disk to main memory. In the second step, we will do a
relation filtering. Finally, in the third step, a series of equi-
joins on the reduced relations will be conducted to get the
final results.

In the subsequent discussion, we mainly concentrate on
the index construction. The description of the second and
third steps will be shifted to Section IV.

A. Constructing -transitive closures
As with [5], we will construct an index for graphs to speed
up computation. However, instead of 2-hop covers, we will
construct -transitive closures for them.
Definition 3.1 (-transitive closures) Let G = (V, E, Σ) be a
directed, weighted graph. Let > 0 be a positive number. A
-transitive closure of G, denoted G , is a graph such that

V(G) = V, and there is an edge <u, u > E(G) if and only
if dist(u, u) .
Example 1 Consider the graph shown in Fig. 1(a) again. For

= 5, its -transitive closure G5 is a graph as shown in Fig.
2(a), which can be stored as a set of binary relations as
shown in Fig. 2(b), in which each tuple is a pair of vertices,
but associated with their corresponding shortest distance 5
for computation convenience.

This concept is motivated by an observation that tends
to be small in practice. For instance, in a social network
where each vertex u represents a person and each edge
represents a relationship like parent-of, brother-of, sister-of,
uncle-of, and so on, if the weight of each edge is set to be 1,
then to check whether a person is a relative of somebody
else, setting = 6 or larger is not so meaningful. As another
example, we consider an application in forensics and
assume that a detective may want to investigate an
individual who is related to a known criminal through some

1

D

A B CA A

BCB

Fig. 1: Examples of a data graph G and a query Q

C

4
2 2 4

2 3 4 3

4 3
5

1

4

1 3 4 5

6 7 8 9

B

2

A
1

C
31

1

(a) Graph G (b) Query Q

1

2

1243

relationships, such as money laundry, human trafficking,
and so on. Then, setting > 5 may not be quite helpful for
the detective to find some significant evidence.

Clearly, for different applications, we can adjust the
values of to precompute G . One choice for this task is to
use an algorithm for finding all-pairs shortest-paths.
However, since such an algorithm needs to store the output
in a matrix, it is not so suitable for very large graphs. In this
case, we can utilize a single-source shortest-paths algorithm
and run it to generate G . Specifically, the following two
steps will be conducted:
i) Remove all those edges from G(V, E), whose weight is >

.
ii) Run the single-source shortest-paths algorithm |V| times

each with a different vertex as a source.
If all edge weights are nonnegative, the best algorithm

for this problem uses Fibonacci heap and needs only
O(|V|2lg + |V||E|) time.

In comparison with 2-hop covers, the main advantage of
-transitive closures is three-folds:

Less space is required to store a -transitive closure than
a 2-hop cover if is not set so large.
Much less time is needed to create a -transitive closure
of G than a 2-hop cover of G. It is because to generate a
2-hop cover the entire transitive closure of G has to be
first created, which requires O(|V|3) time in the worst
case, much higher than the time complexity for creating
G .
No on-line time is needed to form Rij’s while by the
methods with 2-hop covers Rij’s have to be generated on-
the-fly when a query Q arrives. This is done by using the
2-hop data structures for the relevant edges in Q.
Obviously, the response time to queries can be greatly
delayed.

B. Relation Signatures and Vertex Counters
For each relation in a -transitive closure, we can also
establish two extra data structures for efficiency: one is a set
of bit string pairs with each associated with an Rij, called the
relation signature of Rij; and the other is a set of counters
each for a single vertex in G.

a) Relation signatures: Consider G(V, E,). Let = {l1, …,
lk}. We will divide all the vertices into | | disjoint lists,
denoted as D[l1], …, D[lk] such that D[l1] …, D[lk] =
V, D[li] D[lj] = for i j, and all the vertices in a D[li]
have the same label li. Then, we sort all vertices in D[li] in
ascending order by their vertex IDs and refer to each vertex
by its order number. For example, for the graph shown in
Fig. 1(a), we have D[A] = {u6, u7, u8}. Thus, u6 is the first
vertex, u7 the second, and u8 the third in D[A]. In this way, a
vertex in G can be referred to as a pair (l, i), where l is a
label, and i is the order number of the vertex in D[l]. For
example, u6 can be represented as (A, 1). Let R be a relation
in G corresponding to a pair of vertex labels (l, l). Denote
by R[1] and R[2] all vertices in the first and the second
column, respectively. Then, all the vertices in R[1] (R[2])
can be represented by a bit string s of length |D[l]| (resp.
|D[l]|) such that s[i] = 1 if the ith vertex of D[l] (resp. D[l]|)
appears in R[1] (resp. R[2]). Otherwise, s[i] = 0. Let s, s be
the bit string for R[1] and (R[2]), respectively. We call S =
[s | s] the signature of R, respectively referred to as R.S[1] =
s and R.S[2] = s .
Example 2 Continued with Example 1. In Fig. 3(a), we show
all the lists each associated with a label in G . In Fig. 3(b),
we redraw the relations shown in Fig. 2(b) with each vertex
replaced with its order number in the corresponding list.
Their signatures are shown in Fig. 3(c).

b) Counters: By using relation signatures, we are able to
indicate whether a vertex appears in a column of a certain
relation. However, the information on how many times it
appears in that column is missing. So, for each vertex u in a
D[l], we will also associate it with a set of counters each for
a column in a different relation, in which it occurs. Assume
that u is a vertex appearing in the first column of some Ri.
Then, it will have a counter, denoted as u.Ci[1], to record
how many times it appears in that column of Ri. In general,
if it appears in k columns (respectively from different
relations), it will be associated with k counters. For example,
u6 (represented by (A, 1)) appears in 6 columns: R1[1], R3[1],
R4[2], R6[2], R8[1] and R8[2] (see Fig. 3(b)). Thus, u6 will be
associated with 6 counters: u6.C1[1] = 1, u6.C3[1] = 1,
u6.C4[2] = 1, u6.C6[2] = 1, u6.C8[1] = 1, u6.C8[2] = 1. But u8
(represented by (A, 3)) appears only in 5 columns. Thus, it

Fig. 3: Illustration for relation signatures

(b)

1 1
3 3
3 2
2 3

A B d
5
2
5
3

A C
1 1
2 2

d
1
4

1 2
2 3
3 1

A A d
4
2
1

1 3
2 1
3 2

B B d
5
4
3

3 1
3 3
2 2

C A d
5
4
5

1 1
2 2
3 3

B C d
5
1
4

1 2
1 3

B A d
4
3

1 1
2 1

C B d
4
3

1 u6

2 u7

3 u8

A

1 u3

2 u5

3 u9

B
1 u2

2 u4

3 u10

C

1 u1

D R1:

R4: R5:

R6:
R7:

R8:
R9:

(a)

Relation signatures:

R1: [111 | 111]
R2: [010 | 1]
R3: [110 | 110]
R4: [100 | 011]
R5: [111 | 111]
R6: [011 | 111]
R7: [110 | 100]
R8: [111 | 111]
R9: [111 | 111]
R10: [1 | 010]

(c)

R3:

1 2
D C d

1

R10:

R2:
2 1

Fig. 2: An example of -transitive closures

(b)

u6 u3

u8 u9

u8 u5

u7 u9

A B d
5
2
5
3

(a)
u6 u7

u7 u8

u8 u6

A A d
4
2
1

u3 u9

u5 u3

u9 u5

B B d
5
4
3

u10 u6

u10 u8

u4 u7

C A d
5
4
5

u3 u7

u3 u8

B A d
4
3

u2 u3

u4 u3

C B d
4
3

u1 u4

D C d
1

B C d
u3 u2 5
u5 u4 1
u9 u10 4

B
3

5
4

2 4

1
BA A 4

B

1 3

1

C

4
C

2

3

C B
B

1
2 3 4 51

6 7

A

8 9 10

D C

4 3

u6 u2

u7 u4

A C d
1
4

u7 u1

A D d
3

A D d
3

1244

has 5 counters: u8.C1[1] = 2, u8.C4[2] = 1, u8.C6[2] = 1,
u8.C8[1] = 1, u8.C8[2] = 1.

Obviously, both relation signatures and counters for
vertices can be established off-line as part of indexes.

IV. RELATION FILTERING

In this section, we present our algorithm for relation
filtering. First, we give the algorithm in Subsection A. Then,
we prove the correctness and analyze the computational
complexity in Subsection B.

A. Algorithm Description
When a query Q with parameter arrives, a simple way

to evaluate it can be described as follows. First, we locate all
the relevant relations (in G). Then, for each edge (vi, vj)
Q, remove all those tuples <u, u > with dist(u, u) > from
the corresponding relation Rij = R(label(vi), label(vj)). Next,
we join such Rij’s to form the final result.

However, we can do better by filtering all those tuples
which cannot contribute to the final result before the joins
are carried out. To this end, we need a new concept of
triangle consistency.
Definition 4.1 (triangle consistency) Let Q be a query with
parameter . Let (vi, vj) be an edge in Q. A tuple t = <u, u >

Rij in G with is said to be triangle consistent with
respect to a vertex vk (k i, j) in Q if for Rjk, or Rkj, and Rik,
or Rki in G , one of the following conditions is satisfied:
1) if vk is incident to vj but not to vi, then there exists u

such that <u , u > Rjk if (vj, vk) Q, or <u , u > Rkj

if (vk, vj) Q;
2) if vk is incident to vi but not to vj, then there exists u

such that <u , u > Rik if (vi, vk) Q, or <u , u > Rki

if (vk, vi) Q;
3) if vk is incident to both vi and vj, then there exists u such

that
- <u, u > Rik and <u , u > Rkj if (vi, vk), (vk, vj) Q; or
- <u, u > Rik and <u , u > Rjk if (vi, vk), (vj, vk) Q; or
- <u , u> Rki and <u , u > Rjk if (vk, vi), (vk, vj) Q; or
- <u , u> Rki and <u , u > Rkj if (vk, vi), (vj, vk) Q.

In each of the above three cases, u is said to be
consistent with t. The motivation of this concept is that if
<u, u > in Rij is not triangle consistent with some vk (k i, j)
in Q incident to vi or vj, it cannot be part of any answer to Q.
Thus, only if <u, u > in Rij is triangle consistent with any
vertex in Q incident to vi, vj, or both, <u, u > can be possibly
part of an answer. In this case, we say, <u, u > is triangle
consistent. Notice that if neither vi nor vj is incident to any
vertex in Q, all the tuples in Rij are trivially considered to be
triangle consistent.

The following example helps for illustration.
Example 3 Consider the query with parameter = 5 shown
in Fig. 1(b). To evaluate this query against the graph shown
in Fig. 1(a), we will first load three relations into main
memory: R1, R5, and R6 (shown in Fig. 3(b)) from G . For
illustration, we show the data in the three relations as a
graph in Fig. 4(a).

In this graph, the tuple represented by edge (u8, u9) R12
(= R1 shown in Fig. 3(b)) is triangle consistent with respect

to v3 in Q. But edge (u3, u2) R23 (= R5 shown in Fig. 3(b))
is not triangle consistent with v1 since we have an edge (v3,
v1) labeled with <C, A> in Q, but we do not have an edge
going from u2 to a vertex in D(label(v1)) = D(C). (Note that
edge (u6, u2) in Fig. 4(a) is just in the reverse direction of
edge (v3, v1) in Q.)

In fact, only the tuples represented by the edges in the
subgraph shown in Fig. 4(b) are triangle consistent while all
the other edges not in this subgraph are not. From this
example, we can see that by a relation filtering the sizes of
relations can be dramatically decreased. Our purpose is to
find an efficient way to remove all the triangle inconsistent
data from the relevant relations before the joins over them
are actually performed.

In the following, we will first devise a procedure to
check the triangle consistency of each tuple t = <u, u > in
every Rij with respect to a single vertex vk (k i, j) in Q.
Then, a general algorithm for removing all the useless data
will be presented.

Below is the formal description of the algorithms.
Besides the data structures described in Section III, each t in
every relation Rij (corresponding to (vi, vj) Q) is
additionally associated with two kinds of extra data
structures for efficient computation:

[t, k] - the number of vertices u in D[k] (for each k i,
j), each of which is triangle consistent with t. Initially,
each [t, k] = 0.

[t] - a set containing all those vertices u in D[k] (for
each k i, j) such that each of them is triangle consistent
with t. In [t], each element is referred to as (k, u),
indicating that it is a vertex in D[k]. Initially, each [t] =

(empty).
In addition, a global variable L is used to store all the

tuples which are found not triangle consistent with some v in
Q, to facilitate the propagation of inconsistency.

Algorithm 1: tcControl(Rij, vk)
Input: Rij, vk.
Output:
1. if vk is incident to vj or vj but not to both then
2. if (vj, vk) Q then R := Rij; R := Rjk; a := 2; b := 1;
3. if (vk, vj) Q then R := Rij; R := Rkj; a := 2; b:= 2;
4. if (vi, vk) Q then R := Rij; R := Rik; a := 1; b := 1;
5. if (vk, vi) Q then R := Rij; R := Rki; a := 1; b := 2;
6. call check-1(R, R , a, b);
7. if vk is incident to both vi and vj then
8. if (vi, vk), (vk, vj) Q then check-2(i, j; i, k; k, j);
9. if (vi, vk), (vj, vk) Q then check-2(i, j; i, k; j, k);
10. if (vk, vi), (vk, vj) Q then check-2(i, j; k, i; k, j);
11. if (vk, vi), (vj, vk) Q then check-2(i, j; k, i; j, k);
12. call -consistency(i, j, k);

Fig. 4: Data structures for vertices

(a) (b)

u6 u3 u2

D(B) D(C)D(A)

u8 u5 u10

u7 u9 u4

u8 u10

u7 u9 u4

t1

t2 t3

t4t5

t6

t7 t8 t9

t10 t11

t12

t5

t7 t9

t10 t11

t12

1245

The above algorithm is a general control to check the
triangle consistency for all the tuples in Rij (relation for edge
(vi, vj) Q) with respect to a certain vertex vk Q. In
general, we will distinguish between two cases: (1) vk is
incident only to one of the two vertices: vi or vj (see line 1),
and (2) vk is incident to both vi and vj (see line 7). For case 1,
we further have four sub-cases (see lines 2, 3, 4, 5,
respectively). For each of them, a subprocedure check-1()
(see Algorithm 2 below) is invoked (see line 6), in which
three tasks will be performed:

make a bit-wise and operation over the corresponding
relation signatures,
change the counters of the corresponding vertices
according to the result of the bit-wise and operation, and
change the relevant relation signatures themselves.
For case 2, we also distinguish among four sub-cases

(see lines 8, 9, 10, 11, respectively). But for each of them,
we will call a different subprocedure check-2() (see
Algorithm 4 below) to do the same tasks as check-1(), but
in different ways. Finally, in line 12, -consistency will be
invoked to check the triangle consistency involving vi, vj,
and vk.

Algorithm 2: check-1(R1, R2, a, b)
Input: R1, R2, a, b.
Output:
1. s := R1.S[a] R2.S[b];
2. c := (a mod 2) + 1; d := (b mod 2) + 1;
3. call tuple-removing(s, R1, R2, a, c, d);
4. call tuple-removing(s, R2, R1, b, d, c);

As mentioned above, in check-1(), we will first
calculate s = R1.S[b] R2.S[a] (see line 1), where R1 and R2
represents two relations corresponding two incident edges in
Q. Then, in terms of s, we will make changes respectively
with respect to R1 and R2 as described above by calling
tuple-removing() given below.

Special attention should also be paid to the modulo
operations given in line 2: y = (x mod 2) + 1, by which y = 1
if x = 2 and y = 2 if x = 1.

In the following algorithm, we use R(l, a) to represent
the value appearing in the l-th tuple, a-th column of relation
R. For a tuple t, t(i) (i = 1, 2) stands for its i-th value.

Algorithm 3: tuple-removing(s, R, R , a, b, c)
Input: s, R, R , a, b, c.
Output:
1. assume that R [c] corresponds to vk in Q;
2. for l = 1 to |R| do {t := l-th tuple of R;
3. if s[R(l, a)] = 1 then { [t, k] := number of tuples t in R

with t (b) = R(l, a); append all such t s to [t];}
4. else {
5. L := L {t}; let t = <x, y>;
6. if y.CR[b] > 0 then {y.CR[b] --; if y.CR[b] = 0 then
7. R.S[b][y] := 0;}
8. if x.CR[a] > 0 then {x.CR[a] --; if x.CR[a] = 0 then
9. R.S[a][x] := 0;}}

In tuple-removing(s, R, R , a, b, c), we will first
eliminate inconsistent tuples from R according to s (lines 2 –
5). Then, for each removed <x, y>, we will change the
counters associated with x, y, respectively (see lines 6 and
8). In particular, if the counter of a vertex becomes 0, the bit
for that vertex in the corresponding relation signature will

also be modified to 0 (see lines 7 and 9).

Algorithm 4: check-2(i, j; r, l; p, q)
Input: i, j, k, l, p, q.
Output:
1. R := Rij; R := Rrl;
2. if r = i then {a := 1; b := 1;} else {a := 2; b := 1;}
3. call check-1(R, R , a, b);
4. R := Rij; R := Rpq;
5. if p = j then {a := 1; b := 2;} else { a := 1; b := 2;}
6. call check-1(R, R , a, b);
7. R := Rrl; R := Rpq;
8. if r = i p = j then {a :=2; b := 2;}
9. if r = i p j then {a :=1; b := 2;}
10. if r i p = j then {a :=1; b := 1;}
11. if r i p j then {a := 1; b := 1;}
12. call check-1(R, R , a, b);

In check-2(), we need to do three bit-wise and
operations, with each corresponding to a pair of joint edges
within a triangle (see lines 1, 4, and 7). Each of them can be
simply done by calling check-1() (see lines 3, 6, and 12).
But we should notice the difference between the third case
(line 7) and the first two cases (line 1 and line 4). For the
third case, we need to distinguish among 4 sub-cases (line
lines 8 – 11) while for each of the first two cases only two
sub-cases (see lines 2 and 5) need to be handled.

Now, we give the formal description of -consistency(i,
j, k), which is invoked in line 12 in tcControl(). For
simplicity, however, we only show the algorithm for the
case (vj, vk), (vk, vi) Q. For this, we will check, for each
tuple <u , u > Rjk, whether there exists l with s[l] = 1 such
that <l, u > Rij, (u , l) Rki, where s = Rij.S[2] Rjk.S[1].
For the other three cases (i.e., (vi, vk), (vj, vk) Q, (vi, vk), (vj,
vk) Q, (vk, vi), (vk, vj) Q), a similar process can be
established for each of them.

Algorithm 5: -consistency(i, j, k)
Input: i, j, k.
Output:
1. s := Rij.S[2] Rjk.S[1].
2. for l = 1 to |s| do {
3. if s[l] = 1 then
4. for each pair of tuples: <u , l> Rij, <l, u > Rjk do
5. if <u , u > Rki then {t1 := <u , l>; t2 := <l, u >;

t3 := <u , u >;
6. add (k, u) to [t1]; (i, u) to [t2]; (j, l) to [t3];
7. [t1, k] ++; [t2, i] ++; [t3, j] ++; }}
8. for each t Rij Rki Rki with [t, x] = 0 do
9. {let t = <u, u >; L := L {t};
10. if t Rij then {remove t from Rij; R := Rij;}}
11. if t Rjk then remove t from Rjk; R := Rjk;}}
12. if t Rki then {remove t from Rki; R := Rki;}
13. u.CR[1] --; if u.CR[1] = 0, change R.S[1][u] to 0;
14. u .CR[2] --; if u .CR[2] = 0, change RR.S[2][u] to 0;
15. }

The above algorithm mainly comprises two steps. In the
first step (lines 1 – 7), we create s := Rij.S[2] Rjk.S[1], and
then scan s bit by bit. For each s[l] = 1, we will check, for
each pair of tuples:<u , l> Rij and <l, u > Rij, whether
<u , u > appears in Rij. If such a tuple exist, [] and []
will be accordingly changed (lines 6 – 7). In the second step
(lines 8 – 15), for each [t, x] = 0 (for some x) we remove t
from the corresponding relation (see lines 10 – 12), and

1246

accordingly change relevant counters and relation signatures
(see lines 13 – 14).
Example 4 Applying -consistency(2, 3, 1) to the three
edges of Q shown in Fig. 1(b) against the -transitive
closure shown in Fig. 3(b), three relations: R5, R6, and R1
will be loaded into main memory. The following
computation will be conducted. (Since R5, R6 and R1
correspond to the three edges in Q, they are also referred to
as R23, R31 and R12, respectively.)
i) s := R23.S[2] R31.S[1] = R5.S[2] R6.S[1] = 111 011

= 011.
ii) s[2] = 1. For t8 = <2, 2> (<u5, u4>) R23 = R5 and t12 =

<2, 2> (<u4, u7>) R31 = R6, we will check whether <2,
2> (<u7, u5>) is in R12 = R1. Since <2, 2> (<u7, u5>)
R12, lines 6 and 7 will not be executed and therefore [t8]
= [t12] = and [t8, 1] = [t12, 2] = 0.
For t11 = <3, 2> (<u9, u4>) R23 = R5 and t12 = <2, 2>
(<u4, u7>) R31 = R6, we will check whether <2, 3>
(<u7, u9>) is in R12 = R1. Since t10 = <2, 3> (<u7, u9>)
R12, lines 6 and 7 will be executed and therefore [t11] =
{(1, u7)}, [t12] = {(2, u9)}, [t10] = {(3, u4)}; and [t11, 1]
= [t12, 2] = [t10, 3] = 1.

iii) s[3] = 1. For t9 = <3, 3> (<u9, u10>) R23 = R5 and t5 =
<3, 3> (<u10, u8>) R31 = R6, we will check whether <3,
3> (<u8, u9>) is in R12 = R1. Since t7 = <3, 3> (<u8, u9>)

R12, lines 6 and 7 will be executed and therefore [t9]
= {(1, u8)}, [t5] = {(2, u9)}, [t7] = {(3, u10)}; and [t9,
1] = [t5, 2] = [t7, 3] = 1.
After the above steps, we must have:

[t5, 2] = 1 [t5] = {(2, u9)} [t2, 3] = 0 [t2] =
[t7, 3] = 1 [t7] = {(3, u10)} [t3, 1] = 0 [t3] =
[t9, 1] = 1 [t9] = {(1, u8)} [t4, 2] = 0 [t4] =
[t10, 3] = 1 [t10] = {(3, u4)} [t6, 3] = 0 [t6] =
[t11, 1] = 1 [t11] = {(1, u7)} [t8, 1] = 0 [t8] =
[t12, 2] = 1 [t12] = {(2, u9)}

Then, all those tuples, whose -values equal 0, will be
first stored in L (see line 9), and then checked to propagate
inconsistency before they are finally removed (see lines 10 –
13). Accordingly, the counters of the corresponding vertices
and also possibly relation signatures will be changed (see
lines 13 – 14).

In this way, the graph shown in Fig. 4(a) will be reduced
to the graph shown in Fig. 4(b).

Based on tcControl(), a general algorithm for the
relation filtering can be easily designed. It works in two
phases.

Algorithm 5: rFiltering(Q, Rij s)
Input: Q.
Output:
1. for each (vi, vj) Q do {
2. for each k i, j do {
3. call tcControl(Rij, vk); }}
4. while L is not empty do {
5. choose t from L and remove t from L;
6. assume that t = <x, y> Rij;
7. for each (k, z) [t] do {

8. assume that t1 = <y, z> and t2 = <z, x>;
9. [t1, i] --; remove (i, x) [t1];
10. if [t1, i] = 0 then L := L {t1};
11. [t2, j] --; remove (j, y) [t2];
12. if [t2, j] = 0 then L := L {t2};
13. }

In the first phase (lines 1 –3), we check the triangle
consistency for each edge in Q. In the second phase (lines 4 – 12),
we propagate inconsistency among all those triangles which share
one edge. To see this, we consider a larger query shown in Fig.
5(a). Obviously, by checking the consistency with respect to
triangle 143 tuple t5 R31 (= R6 shown in Fig. 3(c)) will be
removed. Then, (2, u9) in [t5] will be checked (see line 9), leading
to the elimination of t7 = <u8, u9> from R12 (= R1) and t9 = <u9, u10>
from R23 (= R5) see lines 11 – 14). For this query, only five edges
<u7, u9>, <u9, u4>, <u4, u7>, <u7, u1>, and <u1, u4> (in Fig. 2(b))
will survive the relation filtering. (See Fig. 5(b) for
illustration.

V. CONCLUSION

In this paper, we have proposed a novel algorithm for
pattern match problem over large data graphs G. The main
idea behind it is the concept of -transitive closures and a
relation filtering method based on the concept of triangle
consistency. As part of an index, a -transitive closure G of
G will be constructed off-line for a certain -value. Then, for
a query with , the relevant relations in G can be
directly loaded into main memory, instead of constructing
them on-the-fly from some auxiliary data structures such as
2-hops and LLR embedding vectors. Especially, the useless
tuples in the relations will be filtered before they take part in
joins, which enables us to achieve high performance. In
addition, the bit mapping technique has been integrated into
the relation filtering to expedite the working process. Also,
extensive experiments have be conducted, which shows that
our method is promising.

REFERENCES

[1] H. Jiang, H. Wang, P. S. Yu, and S. Zhou, “Gstring: A novel approach
for efficient search in graph databases,” Proc. 23rd Int. Conf. ICDE,
pp. 566–575, IEEE, 2007.

[2] J. Cheng and J. X. Yu, “On-line exact shortest distance query
processing,” Proc. 12th Int. Conf. Extending Database Technol. Adv.
Database Technol, EDBT 09, pp. 481-492, 2009.

[3] Y. Chen and Y. Chen, “An efficient algorithm for answering graph
reachability queries,” Proc. ICDE, pp. 893–902, 2008.

[4] Y. Chen and Y.B. Chen, Decomposing DAGs into spanning trees: A
new way to compress transitive closures, in Proc. 27th Int. Conf. on
Data Engineering (ICDE 2011), IEEE, April 2011, pp. 1007-1018.

[5] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang, “Fast graph
pattern matching,” Proc. Int. Conf. ICDE., pp. 913–922, 2008.

[6] J. E. Hopcroft and J. Wong, “Linear time algorithm for isomorphism of
planar graphs,” in Proc. 6th Annual ACM Symp. Theory of Computing,
pp. 172–184, 1974.

[7] E. M. Luks, “Isomorphism of graphs of bounded valence graphs can be
tested in polynomial time,” J. Comput. Syst. Sci. 25 (1982) 42–65.

D

C

B

Fig. 5: A larger query and filtering results

B

2

A 1 C3

D4
u1

u7 u9 u4
(a)

A
(b)

1247

