
Decomposition of Inverted Lists and Word Labeling: A

New Index Structure for Text Search

Y. Chen
1
, and W. Shen

2

Dept. Applied Computer Science, University of Winnipeg, Winnipeg, Manitoba, Canada
1
y.chen@uwinnipeg.ca,

2
wxshen1986@gmail.com

Abstract – In a text database, a set of documents is

maintained. To enquiry such a database, two kinds of queries

are quite often used. One is the so-called conjunctive query,

represented by a set of terms connected by conjunction ();

and the other is the disjunctive query, which is also a set of

terms, but connected by disjunction (). In this paper, we

discuss an efficient and effective index mechanism to support

the evaluation of both these two kinds of queries based on the

inverted files. The main idea behind it is to associate each

document word with an interval sequence based on a trie

structure constructed over documents; and decompose an

inverted list into a collection of disjoint sub-lists. In this way,

both conjunctive and disjunctive queries can be conducted by

performing a series of simple interval containment checkings.

Experiments have been conducted, which shows that the new

index is promising.

Keywords: Search engine; Inverted files; queries

1 Introduction

 Indexing the Web for fast keyword search is a key

technology. In the past several decades, different indexing

methods have been developed for this task, such as inverted

files [1], signature files [5, 6] and signature trees [2] for

indexing texts, and suffix trees and tries [7] for string

matching. Especially, different variants of inverted files have

been used by the Web search engines to find pages satisfying

a query [8].

A text database can be roughly viewed as a collection of

documents and each document is stored as a list of words.

Over the documents, there are two kinds of Boolean queries,

that is, queries that can be constructed from query terms by

conjunction () or disjunction (). A document D is an

answer to a conjunctive query w1  w2  …  wk if it contains

every wi for 1  i  k while D is an answer to a disjunctive

query w1  w2  …  wl if it contains any wi for 1  i  l.

Conjunction and disjunction can be nested to arbitrary depth,

but can always be transformed to a conjunctive normal form:

 (w11  … 
11lw)  …  (wk1  … 

kklw).

In this paper, we discuss a new method to evaluate both

conjunctive and disjunctive queries by decomposing an

inverted list into a collection of disjoint sub-lists. The

decomposition is based on the construction of a trie structure

T over documents and then associating each document word

with an interval sequence generated by labeling T by using a

kind of tree encoding.

With this method, we can improve the efficiency of

traditional methods by an order of magnitude or more.

2 New Index Structures

In this section, we mainly discuss our index structure, by

which each word with high frequency will be assigned an

interval sequence. We will then associate intervals, instead of

words, with inverted sub-lists. To clarify this mechanism, we

will first discuss interval sequences for words in 2.1. Then, in

2.2, how to associate inverted lists with intervals will be

addressed.

2.1 Intervals assigned to words

Let D = {D1, ..., Dn} be a set of documents. Let Wi =

{wi1, …,
1ijw } (i = 1,…, n) be all of the words appearing in

Di, to be indexed. Denote W =
n

i iW1
, called the vocabulary.

We define the word appearance frequency by the following

formula:

 f(w) =
documentsofnum

wcontainingdocumentsofnum

.

.
, (w  W).

We then define a frequency threshold . For any word w

with f(w) < , we will associate it with an inverted list in a

normal way, denoted as (w), exactly as in the method of

inverted files. However, for all those with f(w)  , we will

create a new index. For this, we will represent each Di as a

sequence containing all those words w with f(w)  ,

decreasingly sorted by f(w). That is, in such a sequence, a

word w precedes another w if w is more frequent than w in

all documents. In addition, for any subset of words that have

the same appearance frequency a global ordering is defined

so that in each sorted word sequence this global ordering is

followed. In addition, we maintain a hash table H that maps

each word w to its inverted list (w) or to its new index.

Example 1 In Table 1, we show a set of four documents, their

words w with f(w)   = 0.4, and the corresponding sorted

word sequences, where we use a character to represent a word

for simplicity.

 Table 1: Documents and word sequences
DocID words sorted word sequence

1 c, a, f, m, p c, f, a, m, p

2 c, f, b, a c, f, a, b

3 b, a, c, d c, a, d, b

4 f, d, p, m f, d, m, p

Notice that the global order on {f, a, c} (with f(w) =

0.75) is set to be c  f  a while the global order on {m, b,

p, d} (with f(w) = 0.5) is d  b  m  p.

For each document Di (i = 1, …, n), we will use si to

represent its sorted word sequence. Over all such sequences S

= {s1, …, sn}, we will construct a digit tree, called a trie, as

follows.

Assume that W = {w1, …, wm}. If |S| = 0, the trie is, of

course, empty. For |S| = 1, trie(S) is a single node. If |S| > 1, S

is split into m (possibly empty) subsets S1, S2, …, Sm so that a

string is in Sj if its first word is wj (1 ≤ j ≤ m). The tries

trie(S1), trie(S2), …, trie(Sn) are constructed in the same way

except that at the kth step, the splitting of sets is based on the

kth words in the sequences. They are then connected from

their respective roots to a single node to create trie(S). In Fig.

1, we show a trie T constructed over the sorted word

sequences in Table 1.

In the trie, v0 is a virtual root, labeled with an empty

word  while any other node is labeled with a real word.

Therefore, all the words on a path from the root to a leaf spell

a sorted word sequence for a certain document. For instance,

the path from v0 to v13 corresponds to the sequence: c, f, a, m,
p. Then, to check whether two words w1 and w2 are in the

same document, we need only to check whether there exist

two nodes v1 and v2 such that v1 is labeled with w1, v2 with w2,

and v1 and v2 are on the same path. This shows that the

reachability needs to be checked for this task, by which we

ask whether a node v can reach another node u through a path.

If it is the case, we denote it as v ⇒ u; otherwise, we denote it

as v ⇏ u. The reachability problem on tries can be solved very

efficiently by using a kind of tree encoding [3], which labels

each node v in a trie with an interval Iv = [αv, βv], where βv

denotes the rank of v in a post-order traversal of the trie. Here

the ranks are assumed to begin with 1, and all the children of a

node are assumed to be ordered and fixed during the traversal.

Furthermore, αv denotes the lowest rank for any node u in T[v]

(the subtree rooted at v, including v). Thus, for any node u in

T[v], we have Iu  Iv since the post-order traversal enters a

node before all of its children, and leaves after having visited

all of its children. In Fig. 1, we also show such a tree encoding

on the trie, assuming that the children are ordered from left to

right. It is easy to see that by interval containment we can

check whether two nodes are on a same path. For example, v3

⇒ v10, since
3vI = [1, 5],

10vI = [3, 3], and [3, 3]  [1, 6]; but v2

⇏ v9, since
2vI = [10, 13],

9vI = [1, 2], and [1, 2]  [10, 13].

Let I = [α, β] be an interval. We will refer to α and β as

I[1] and I[2], respectively.

Lemma 1 For any two intervals I and I generated for two

nodes in a trie, one of four relations holds: I  I, I  I, I[2] <

I[1], or I[2] < I[1]. 

However, more than one node may be labeled with the

same word, such as nodes v9, and v8 in Fig. 1. Both are

labeled with word m. Therefore, a word may be associated

with more than one node (or say, more than one node’s

interval). Thus, to know whether two words are in the same

document, multiple checkings may be needed. For example, to

check whether p and d are in the same document, we need to

check v13 and v12 each against both v7 and v5, by using the

node’s intervals.

In order to minimize such checkings, we associate each

word w with a word sequence of the form: Lw = 1
wI , 2

wI , …,

k
wI , where k is the number of all those nodes labeled with w

and each i
wI = [i

wI [1], i
wI [2]] (1  i  k) is an interval

associated with a certain node labeled with w. In addition, we

can sort Lw by the interval’s first value such that for 1  i < j 

k we have i
wL [1] < j

wL [1], which will greatly reduce the time

for the reachability checking. We illustrate this in Fig. 2, in

which each word in Table 1 is associated with an interval

sequence. From this figure, we can see that for any two

intervals I and I in Lw we must have I  I, and I  I since in

any trie no two nodes on a path are labeled with the same

word.

As will be seen below, using such interval sequences,

the checking of whether two words are in the same document

can be done in a very efficient way.

Definition 1 (word topological order) Let S = {s1, s2, …, sn}

be a set of n sorted word sequences. A word topological order

over S is a sequence  = w1, w2, …, wm, which contains all the

words appearing in S such that for any two words w and w if

w appears before w in some sj (1  j  n) then w appears

before w in , denoted as w ≺ w. 

c:

f:

a:

d:

b:

m:

p:

[1, 9]

[1, 5][10, 13]

[1, 4][6, 8]

[6, 7][10, 12]

[3, 3][6, 6]

[1, 2][10, 11]

[1, 1][10, 10]

Figure 2. Sorted interval sequences

Figure 1. A trie

c f

f a

a

d

d

m b

p [1, 1]

[1, 2] [3, 3]

[1, 4]

[1, 5]

[6, 7]

[6, 8]

[1, 9]

[10, 12]

[10, 13]

v0

v1 v2

v3 v4 v5

v6 v7

v9

v10

v13

b v11

m

p [10, 10]

[10, 11] v8

v12

2

[6, 6]



In Fig. 2, the words are also listed (from top to bottom)

in a word topological order with respect to the sorted word

sequences given in Table 1. To find a word topological order

over S = {s1, s2, …, sn} with W = {w1, …, wm}, we will

transform the corresponding trie T to an acyclic directed

graph (DAG) G by splitting the node set of T (except for the

virtual root) into m groups such that all the nodes in a group

are labeled with the same word, and then collapsing each

group g to a single node u. There is an edge in G from u

(standing for a group g) to u' (for another group g') if T

contains (x, y) with x  g and y  g'. For example, the trie

shown in Fig. 1 will be transformed to a DAG shown in Fig.

3(a). Using a hash function H on the words in W, the

transformation can be done in O(|W|) time, by which all those

nodes labeled with the same word w will be mapped to a

single node identified by H(w).

Let G(V, E) be such a DAG. It is well known that only

O(|V| + |E|) time is required to find a topological order of G,

which is a linear ordering of all its nodes such that if u  v 

E, then u appears before v in the ordering. Replacing each

node in the ordering with the corresponding word, we will

obtain a word topological sequence, as illustrated in Fig. 3(b).

Now we consider two words w, w with w ≺ w. It is

easy to see that any interval in Lw cannot be contained in any

interval in Lw. Thus, to check whether w and w are in the

same document, we need only to check whether there exist I 

Lw and I  Lw such that I  I. This checking can be

efficiently conducted as follows.

 Assume that w ≺ w. Let Lw = 1
wI , 2

wI , …, k
wI . Let Lw

= 1
wI  ,

2
wI  , …, k

wI

 .

 Step through Lw and Lw from left to right. Let
p
wI and

q
wI  be the intervals currently encountered. We will

do one of the following operations:

(1) If p
wI 

q
wI  , report that w and w are in the same

document. Stop.

(2) If p
wI [2] <

q
wI  [1], move to 1p

wI if p < k (then, in a next

step, we will check 1p
wI against

q
wI  .)

(3) If p
wI [1] >

q
wI  [2], move to

1


q
wI if q < k (then, in a next

step, we will check p
wI against

1


q
wI).

(4) If p
wI 

q
wI  and p = k or q = k, report that w and w are

not in the same document. Stop.

The above process is referred to as a two-word checking,

in which each interval in Lw and Lw is accessed only once. So

only O(|Lw| + |Lw|) time is required. In Fig. 4, we illustrate the

working process to check whether two words d and m are in a

same document shown in Table 1.

In Fig. 4, we first notice that Ld = [6, 7][10, 12] and Lm =

[1, 2][10, 11]. In the 1
st
 step, we will check 1

dL = [6, 7] against

1
mL = [1, 2]. Since 1

dL [1] = 6 > 1
mL [2] = 2, we will check

1
dL against 2

mL = [10, 11] in a next step, and find 1
dL [2] = 7 <

2
mL [1]. So we will have to do the third step, in which we will

check 2
dL = [10, 12] against 2

mL . Since 2
dL  2

mL , we get to

know that d and m are in the same document.

What we want is to extend this process to check whether

a set of words are in the same document, based on which an

efficient evaluation of conjunctive queries can be achieved.

We will address this issue in Section 3.

2.2 Assignment of DocIds to Intervals

Another important component of our index is to assign

document identifiers to intervals. An interval I can be

considered as a representative of some words, i.e., all those

words appearing on a prefix in the trie, which is a path P from

the root to a certain node that is labeled with I. Then, the

document identifiers assigned to I should be those containing

all the words on P. For example, the words appearing on the

prefix: v1  v3  v6 in the trie shown in Fig. 1 are words c, f,
and a, represented by the interval [1, 4] associated with v6. So,

the document identifiers assigned to [1, 4] should be {1, 2},

indicating that both documents D1 and D2 contain those three

words. See the trie shown in Fig. 5 for illustration, in which

each node v is assigned a set of document identifiers that is

also considered to be the set assigned to the interval

associated with v.

Let v be the ending node of a prefix P, labeled with I. We will

use (I), interchangeably (v), to represent the set of document

p

[6, 7][10, 12]

q

[1, 2][10, 11]

p

q

 [6, 7][10, 12]

[1, 2][10, 11]

p

q

Lm: [1, 2][10, 11]

Ld: [6, 7][10, 12]

1st step: 2nd step: 3rd step:

Figure 4. Illustration of two-word checking

c f

f a

a

d

d

m

p {1}

{1} {2}

{1, 2}

{1, 2}

{3}

{3}

{1, 2, 3}

{4}

{4}

v0

v1 v2

v3 v4 v5

v6 v7

v9

v10

v13

b v11

m

p {4}

{4} v8

v12 {3}

Figure 5. Illustration for assignment of document identifiers

b

6vI = [1, 4]. The set {1,

2} assigned to v6 can be

considered as the set

assigned to [1, 4].

c

f
d

a

m

p

u0

u1

u2
u4

u3

u5

u7

(a)

u0 u1 u2 u3 u4 u6 u5

Topological order

c f a d b m

Word topological order



(b)

b u6

u7

p

u3

Figure 3. A transformed DAG

identifiers containing the words appearing on P. Thus, we

have (v6) = ([1, 4]) = {1, 2}.

Lemma 2 Let u and v be two nodes in a trie T. If u and v are

not on the same path in T, then (u) and (v) are disjoint, i.e.,

(u)  (v) = . 

Proposition 1 Assume that v1, v2, …, vj be all the nodes

labeled with the same word w in T. Then, (w), the inverted

list of w (i.e., the list of all the documents identifiers

containing w) is equal to (v1) ⊎ (v2) ⊎ … ⊎ (vj), where

⊎ represents disjoint union over disjoint sets that have no

elements in common.

Proof. Obviously, (w) is equal to (v1)  (v2)  …  (vj).

Since v1, v2, …, vj are labeled with the same word, they

definitely appear on different paths as no nodes on a path are

labeled with the same word. According to Lemma 2, (v1) 

(v2)  …  (vj) is equal to (v1) ⊎ (v2) ⊎ … ⊎ (vj). 

As an example, see the nodes v2 and v3 in Fig. 5. Both are

labeled with word f. So the inverted list of f is (v2) ⊎ (v3) =

{4} ⊎ {1, 2} = {1, 2, 4}.

3 Query Evaluation

Based on the interval sequences associated with words

and the lists of document identifiers with intervals, we design

our algorithm for evaluating queries.

3.1 Containment checking

Let Q = {w1, w2, …, wl} be a set of words. Without loss

of generality, assume that w1 ≺ w2 ≺ … ≺ wl. We will check

whether w1, w2, …, wl are in the same document. For this

purpose, we need to check whether there exists an interval

sequence I = I1, I2, …, Il such that Ij 
jwL and Ij  Ij+1 (1 ≤ j ≤

l), where Il+1 = , representing an empty interval. We call I a

containment sequence.

Lemma 3 Let Q = {w1, w2, …, wl} with w1 ≺ w2 ≺ … ≺ wl.

Denote by Ij an interval in
jwL (1 ≤ j ≤ l). If for some 1  i < j

 l we have Ii  Il and Ij  Il, then Ii  Ij. 

As an example, consider Q = {f, a, p} with f ≺ a ≺ p.

From Fig. 2, we can see that Lf = [1, 5][10, 13], La = [1, 4][6,

8], and Lp = [1, 1][10, 10]. Obviously, 1
fI = [1, 5]  1

pI = [1,

1], and 1
aI = [1, 4]  1

pI = [1, 1]. Then, we must have 1
fI  1

aI .

According to the above lemma, the checking of Ij+1  Ij

can be replaced by checking whether we have Ij+1  Il if we

know Ij  Il. Thus, the task to find a containment sequence

can be done by slightly modifying step (1) in the two-word

checking discussed in 2.1. That is, each time we find p, q (1 ≤

p ≤ |
1lwL |, 1 ≤ q ≤ |

lwL |) such that
p
wl

I
1


q
wl

I , we need only to

further check whether there exist l – 2 other intervals I1, I2, …,

Il-2 such that each Ij is in
jwL and Ij  q

wl
I for 1 ≤ j ≤ l – 2. This

will greatly simplify the process for finding a containment

sequence.

For this purpose, we define an operation con(w, I, j) to

check whether an interval I is contained in some interval

between jth and the last interval in Lw. If I is contained in an

ith interval in Lw, the return value of con(w, I, j) is a pair (true,

i); otherwise, the return value is (false, i), where i is the least

number such that i
wI

[1] > I[2]. In addition, to simplify the

control process, we place a sentinel at the end of Lw, whose

value is set to be [, ] so that whenever we reach the

sentinel of Lw, con(w, I, j) returns (false, |Lw| + 1).

This operation will be used in the following algorithm,

by which we will check, for a set Q = {w1, w2, …, wl} with w1

≺ w2 ≺ … ≺ wl, whether each
jwL (1  j  l) possesses an

interval which contains a given interval I.

The input of this algorithm is a triplet (Q, I, b), where b

is an integer array of length |Q| with each b[j] indicating the

starting position to check
jwL (1  j  l). For example, if b[i] =

2 for some i, we will check
iwL starting from 2

iwI . Initially, each

entry in b is set to be 1. We also store Q as an array. Then,

Q[i] refers to wi for 1  i  l.

ALGORITHM interval-check(Q, I, b)

begin

1. mark := true; j := |Q|; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l];

2. while (mark = true and j  1) do {

3. (x, y) := con(Q[j], I, b[j]); b[j] := y; /* Q[j] = wj */

4. if (x = true) then j := j – 1

5. else {mark := false;}

6. }

7. if (mark = true) then return (true, b)

8. else return (false, b);

end

The output of the algorithm is a pair (t, b). If in each

jwL (1  j  l) we can find an interval that contains I, t is true;

otherwise, t is false. b is an array satisfying the following

properties:

(i) If t is true, each b[j] is an integer i showing that it is the

ith interval in
jwL that contains I.

(ii) If t is false, there exists j dividing b into three parts: b[1 ..

j - 1], b[j], and b[j + 1 .. l] such that for any index k,

1. If j + 1  k  l, then b[k] is an integer i such that ith

interval in
kwL contains I.

2. If k = j, then in
kwL no interval is able to contain I and

b[k] is |
kwL | + 1 or a least number i such that i

wk
I [1] >

I[2].

3. If 1  k  j – 1, then b[k] is the same as b[k] (see line 5;

the execution of this line will enforce the control to get

out of the while-loop, and leave b[1 .. j - 1] not

updated.)

Lemma 4 Let (t, b) be the return value of interval-check(Q, I,

b). Then, if t is true, b satisfies property (i). Otherwise, b

satisfies (ii). 

The two properties (i) and (ii) described above are very

important to the efficiency and correctness of our main

algorithm to check whether Q = {w1, w2, …, wl} is in the same

document. Assume that w1 ≺ w2 ≺ … ≺ wl. Its main idea is to

find p, q such that p
wl

I
1
 q

wl
I , and then use the above

algorithm to check whether for each w  R = {w1, …, wl-2} Lw

has an interval containing q
wl

I .

ALGORITHM containment(Q, b)

begin

2. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l];

3. R := {Q[1], …, Q[l - 2]};

3. p := b[l – 1]; q := b[l];

4. while (p  |LQ[l-1]|) and q  |LQ[l]|) do {

5. if
p

lQL]1[ 
q

lQL][then {

6. (x, b) := interval-check(R, q
lwL][, b);

7. if (x = true) then {return (true, b);}

8. else {q := q + 1; b[l] := q;}

9. }

10. else {

11. if (
p

lQL]1[ [2] <
q

lQL][[1]) then {p := p + 1; b[l - 1] := p;}

12. else {q := q + 1; b[l] := q;}

13. }

14. }

15. return (false, b);

end

The while-loop in the above algorithm is almost the

same as the two-words checking (see 2.1). The only difference

consists in lines 5 – 9. In the case of p
lQL]1[  q

lQL][, we will

continually check whether there is an interval in each LQ[j] (1 

j  l – 2) which contains q
lQL][; but this is done simply by

calling the algorithm interval-check() (see line 6.)

In addition, special attention should be paid to array b,

whose values can also be utilized to indicate the checked

intervals in every interval sequence. This enables us to avoid

any redundancy when we want to find all the possible

containment sequences by using this algorithm, which is

required to evaluate conjunctive queries.

Example 2 Continued with Example 1. We will check two

sets of words: Q = {f, a, p} and Q = {c, d, m, p} to see

whether each of them is in the same document.

For Q, we have Q[1] = f ≺ Q[2] = a ≺ Q[3] = p. Initially

b = {1, 1, 1} (i.e., b is an array containing three entries b[1] =

b[2] = b[3] = 1). From Fig. 2, we see that LQ[1] = Lf = [1,

5][10, 13]; LQ[2] = La = [1, 4][6, 8]; and LQ[3] = Lp = [1, 1][10,

10].

In the 1
st
 iteration of the while-loop, we will check

1
]2[QL against 1

]3[QL . Since 1
]2[QL = [1, 4]  1

]3[QL = [1, 1], we will

call interval-check(R, I, b), where R = {f}, I = [1, 1], and b =

{1, 1, 1} (note that b[2] and b[3] will not be used in the

execution of interval-check(R, I, b)). This call returns (true,

{1, 1, 1}), which is used as the return value of containment(Q,

b) (see line 7).

Now we consider Q = {c, d, m, p} with c ≺ d ≺ m ≺ p.

Again, initially b = {1, 1, 1, 1}; LQ[1] = Lc = [1, 9]; LQ[2] = Ld =

[6, 7][10, 12]; LQ[3] = Lm = [1, 2][10, 11]; and LQ[4] = Lp = [1,

1][10, 10]. We will have the following working process.

1
st
 iteration of the while-loop:

check 1
]3[QL against 1

]4[QL . Since 1
]3[QL = [1, 2]  1

]4[QL = [1, 1],

we will call interval-check(R = {c, d}, I = [1, 1], b = {1, 1,

1, 1}), which returns (false, b = {1, 1, 1, 1}). In this case,

line 8 will be conducted (by which index q – index to scan

LQ[4], will be increased by 1), and then in a next iteration

we will check 2
]4[QL .

2
nd

 iteration of the while-loop:

check 1
]3[QL against 2

]4[QL . Since 1
]3[QL [2] = 2 < 2

]4[QL [1] = 10,

line 11 will be conducted (by which index p, - index to

scan LQ[3], will be increased by 1), and in a next iteration

we will check 2
]3[QL .

3
rd

 iteration of the while-loop:

check 2
]3[QL against 2

]4[QL . Since 2
]3[QL = [10, 11]  2

]4[QL =

[10, 10], we will call interval-check(R = {c, d}, I = [10,

10], b = {1, 1, 2, 2}), which returns (false, b = {3, 2, 2,

2}). In this case, line 8 will be conducted (by which index

q will be increased by 1), which will get the execution out

of the while-loop and containment(Q, b) returns (false, {3,

2, 2, 3}). 

Proposition 2 Algorithm containment() is correct. 

Proof. We only need to prove that values for b are correctly

changed, since it guarantees that the return value of each call

interval-check() is correct. We prove this by induction of the

number k of interval-check() calls.

When k = 1, it is obviously correct since each entry b[j] is set

to 1.

Assume that when k it is correct, we will prove that by the (k +

1)th call b is also correctly changed. We first notice that if the

return value of the kth call is (true, b) the (k + 1)th call will

not be invoked. So we consider only the case that the return

value of the kth call is (false, b). Assume that the kth call is of

the form interval-check(R, q
lQL][, b). Then, the (k + 1)th call is

of the form interval-check(R, 1
][

q
lQL , b), where b is an array

changed by the execution of interval-check(R, q
lQL][, b). In

terms of the induction hypothesis, it is correct. Also, b can be

divided into three parts according to property (ii) shown

above. From this, we can see that 1
][

q
lQL cannot be contained in

the (b[j] - 1)th interval in any LQ[j] (1  j  l – 2). From

Lemma 3, we know that b will be correctly changed by the

execution of interval-check(R, 1
][

q
lQL , b). 

The above algorithm can be greatly improved as follows.

- By checking sentinels. Once the return value of a call

con(R[j], q
lwL][, b[j]) is of the form (false, y) with y pointing

to a sentinel, we can stop the whole process immediately as

in this case, w1, w2, …, wl cannot be in the same document.

- By marking successful checkings. Each time we find a

containment sequence I1, I2, …, Il-1, Il such that Ij  LQ[j] (1

≤ j ≤ l) and Ij  Ij+1 (1 ≤ j ≤ l - 1), we mark Il-1. Then, we

can find a next containment sequence I1, I2, …, Il-1, I

immediately, where I is an interval directly next to Il in
lwL ,

if Il-1  I and Il-1 is marked. In this way, each interval in all

LQ[j]’s can be visited at most two times by using the

algorithm to find all the possible containment sequences.

We refer to the modified algorithm as containment*(Q,

b). However, due to space limitation, its formal description is

omitted.

Proposition 3 The time complexity of containment*(Q, b) is

bounded by O(
Qw

wL ||). 

Finally, we notice that each Lw is sorted, and then we can use

the binary or galloping search [5] to scan it. In this way, the

average time complexity can be improved to O(|
lwL |

+ 
 }{\

2 ||log

lwQw

wL). We can also use the interpolation method to

probe position in an interval sequence.

3.2 Evaluation of conjunctive queries

The containment-checking algorithm discussed in 3.1 can

easily be adapted to evaluate conjunctive queries of the form

Q = w1  w2  …  wl with w1 ≺ w2 ≺ … ≺ wl. What needs to

change is to find all the possible containment sequences for

{w1, w2, …, wl}. This can simply be done by repeatedly

calling the algorithm containment*(). Let I1, I2, …, Im be all

the found containment sequences. Let Ii = Ii1, Ii2, …,
iilI (i = 1,

…, m). Then, the answer to Q should be (
11lI) ⊎… ⊎(

mmlI).

Based on this analysis, we give the following algorithm for

evaluating conjunctive queries.

ALGORITHM con-evaluation(Q)

begin

4. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l];

5. for (j = 1 to l) do b[j] := 1;

6. R := ; i := 1;

4. while (i  |Lw[l] |) do { (t, b) := containment*(Q, b);

5. if t = true then {

6. R := R ⊎ (j
lwI][); b[l] := b[l] + 1;

7. }

8. i := b[l] ;

9. }

10. return R;

end

In the main while-loop (see line 4) of the above

algorithm, we repeatedly call the algorithm containment*() to

find all the possible containment sequences. For each of them,

a set of document identifiers can be determined and the

disjoint union of all such sets makes up the result.

Obviously, the time complexity of the algorithm is bounded

by O(
Qw

wL ||), but can be further improved by using the

binary, or galloping search [5], as well as the interpolation

probing [17].

Example 3 Continued with Example 1. Let Q = f  m  p.

Then, the execution of containment*() will find two

containment sequences: I1 = [1, 5], [1, 2], [1, 1] and I2 = [10,

13], [10, 11], [10, 10]. The results is then R = ([1, 1])

⊎([10, 10]) = {1} ⊎{4} = {1, 4}. 

3.3 Evaluation of disjunctive queries

Based on the interval sequences associated with words,

the disjunctive queries can also be evaluated efficiently and

even more interesting. For ease of explanation, we first show

how to evaluate a query of the form: w  w. Then, the general

case will be discussed.

Again, we assume that w ≺ w. Then, any interval in Lw

cannot be contained in any interval in Lw. However, some

intervals in Lw may fall in some intervals in Lw. To find all the

documents each containing either w or w, we need to merge

any interval in Lw into Lw if it does not fall in any interval in

Lw. As with the containment-checking algorithm, we will scan

both Lw and Lw from left to right, but with some intervals in

Lw possibly merged into Lw:

 Let Lw = 1
wI , 2

wI , …, k
wI . Let Lw = 1

wI  ,
2
wI  , …, k

wI

 .

 Step through Lw and Lw from left to right. Let p
wI and q

wI  be

the intervals currently encountered. We will do the

following checkings:

(1) If p
wI  q

wI  , move to 1


q
wI if q < k. If q = k, go to (4).

(2) If q
wI  [2] < p

wI [1], insert q
wL  into Lw just before p

wI . If q

< k, move to 1


q
wL ; otherwise (q = k), go to (4).

(3) If p
wI [2] < q

wI  [1], move to 1p
wI if p < k. If p = k,

append
q
wI  , …, k

wI

 to the end of Lw and then go to (4).

(4) Let I1, …, Ik be all the intervals in the changed Lw.

Return (I1) ⊎ …⊎ (Ik).

We denote this procedure as L = merge(Lw, Lw).

Example 4 Continued with Example 1. Let Q = d  m. We

have d ≺ m. By using the above procedure to merge Lm = [1,

2][10, 11] into Ld = [6, 7][10, 12], we will get a new

sequence: [1, 2][6, 7][10, 11]. So, the result is ([1, 2])

⊎ ([6, 7]) ⊎ ([10, 12]) = {1} ⊎ {3} ⊎ {4} = {1, 3, 4}. In

the first step, we compare 1
dI = [6, 7] and 1

mI = [1, 2]. Since

1
dI [1] = 6 > 1

mI [2] = 2, 1
mI will be inserted into Ld just

before 1
dI . Then, in the second step, we will compare

1
dI and 2

mI . Since 1
dI [2] = 7 < 2

mI [1] = 10, we will move to 2
dI .

Next, in the third step, we compare 2
dI and 2

mI , and find 2
dI 

2
mI . Since 2

mI is the last interval in Lm, we terminate the

merging process and return the result. 

Fig. 6 shows the entire merging process.

This merging process can easily be extended to a general

algorithm to evaluate disjunctive queries of the form Q = w1 

w2  …  wl with w1 ≺ w2 ≺ … ≺ wl, as shown below.

ALGORITHM dis-evaluation(Q)

begin

1. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l];

7. L := LQ[1];

8. for (i = 2 to l) do {

9. L := merge(L, LQ[i]);

5. }

6. let L = I1, …, Ik;

7. return (I1) ⊎ …⊎ (Ik);

end

In the above algorithm, we use merge() to merge LQ[i]

for i = 2, …, l into LQ[1] one by one. The running time is

obviously bounded by O(lr), where r is the largest number of

intervals in all LQ[i]’s which are not contained in each other.

Again, the time requirement can be improved by using the

binary search, the galloping search, and the interpolation

probing.

4 Experiments

In the experiments, we have tested four methods:

Signature trees [2] (ST for short),

Inverted files [1] (IF for short),

Set intersection [4] (SI for short),

Interval based method (discussed in the paper; IbM for short).

All our experiments are performed on a 32-bit Windows

operating system. The processor is Intel Core 2 Duo CPU

with 4GB RAM. All index techniques are implemented by

C++ and compiled by Microsoft Visual Studio 2010. We use

the function QueryPerformanceCounter() from the

Kernel32.lib library to measure the CPU time, which provides

a high-precision timing (microsecond precision) on the

Windows Platform.

- Data sets

To test the effectiveness of our index, we use a sample

Web corpus, which contains one million text documents. We

numbered the documents as they were stored, by assigning

them a sequential number indicating their order in the

indexing process. The characteristics of this collection are

shown in Table 2.

 Table 2: Characteristics of Web
 Web

Documents 1,000,000

Size (gigabytes) 7.5

Word occurrences (without markup) 3,603,556

Distinct words (after stemming) 285,344

- Index construction time and sizes

In Table 3, we show the time for constructing different

indexes and their sizes. For this test, each document identifier

and each interval occupy 4 bytes. For our method, the

threshold  is set to be 1/1000. That is, only for those words w

appearing in more than 100 documents an interval sequence

will be established.

 Table 3: Index construction time and size
 IF SI ST IbM

Time (ms) 8,755 8,755 153,847 52,861

Size (MB) 14 14 20 14.4

From this table, we can see that the inverted file has the

best time and space requirement than the other two methods.

However, the space requirement by our method is just a little

bit worse than the inverted method. For SI, they are exactly

the same as IF.

- Time of conjunctive queries

In Fig. 6, we show the number of page access and the

elapsed times for evaluating conjunctive queries containing

different number of words. For this test, all the words are

chosen randomly, but appear in more than 100 documents

since only for such words the interval sequences are created.

In addition, the page size is set to be 4KB. For the inverted

file, a melding algorithm [5, 6] is used for doing the set

intersection, which intersects the inverted lists two at a time in

increasing order by size, starting with the two smallest. Also,

it performs a binary search to determine whether a document

identifier in the first list appears in the second list.

For each query, we average the running time over 20

executions.

From Fig. 6, we can see that our method is much better

than both the inverted file and the signature file. Even the

signature tree beats the inverted file. Especially, as the

number of words in queries increases, both the number of

2 3 4 5 6
0

30

60

90

120

150

Figure 6. Test of conjunctive queries with page size 4KB

Num. of page access

Num. of words in queries Num. of words in queries

IbM IF ST

0

500

1000

1500

2000

2 3 4 5 6

IbM IF ST
ms

p

[1, 2] [6, 7][10, 12]

q

[1, 2][10, 11]

p

q

[1, 2][6, 7][10, 12]

[1, 2][10, 11]

p

q

Lm: [1, 2][10, 11]

Ld: [6, 7][10, 12]

1st step: 2nd step: 3rd step:

Figure 6: A merging process

page access and the time of the signature tree decease. It is

because a query signature is formed by superimposing (bit-

wise OR) all the signatures of the words in a query. So, the

more words in a query, the more 1’s in a query signature,

which will lead to less nodes to be explored in a signature

tree. SI is an in-memory algorithm, not run for this test.

In Fig. 7, we show the results when the page size is set

to be 12KB. From this, we can see that although the number

of page access has been reduced, the time used is almost for

all the three tested methods.

In Fig. 8, we show the test results when the whole index

structure is accommodated in main memory for all four

different methods.

- Time of disjunctive queries

In Fig. 9, 10, and 11, we show the test results for

disjunctive queries, for which the signature file is not tested

since it is totally not suitable for this task.

From these figures, we can see that more time is needed

to evaluate a disjunctive query than a conjunctive for both the

inverted file and ours. However, the discrepancy between

these two kinds of queries for the inverted file is larger than

for ours. It is because by the inverted file the normal set union

is used with not much optimality being made. In the opposite,

by ours the interval containment checking still works quite

well even though the binary or galloping search has not been

utilized.

5 Conclusion

In this paper, a new method is discussed to evaluate

conjunctive queries. The main idea is to transform an

evaluation of queries to a series of reachability checkings,

which improves the traditional method by an order of

magnitude or more.

6. References

[1] Anh, V.N. and A. Moffat, A, 2005. Inverted index

compression using word-alinged binary codes, Kluwer Int. Journal

of Information Retrieval 8, 1, pp. 151-166.

[2] Chen, Y. and Chen, Y.B. 2006. On the Signature Tree

Construction and Analysis, IEEE TKDE, Vol.18, No. 9, pp 1207 –

1224.

[3] Y. Chen and Y.B. Chen. An Efficient Algorithm for An-

swering Graph Reachability Queries, in Proc. 24th Int. Conf. on

Data Engineering (ICDE 2008), IEEE, April 2008, pp. 892-901.

[4] B. Ding, A.C. König, Fast set intersection in memory, Proc. of

the VLDB Endowment, v.4 n.4, p.255-266, January 2011.

[5] Faloutsos, C. 1985. Access Methods for Text, ACM

Computing Surveys, vol. 17, no. 1, pp. 49-74.

[6] Faloutsos, C. and Chan, R. 1988. Fast Text Access Methods

for Optical and Large Magnetic Disks: Designs and Performance

Comparison, Proc. 14th Int’l Conf. Very Large Data Bases, pp. 280-

293.

[7] D.E. Knuth, The Art of Computer Programming, Vol. 3,

Massachusetts, Addison-Wesley Publish Com., 1975.

[8] R. Lempel and S. Moran, Predictive caching and prefetching

of query results in search engines, in Proc. the World Wide Web

Conf., Budapest, Hungary, ACM, 19-28, 2003.

0

500

1000

1500

2000

2 3 4 5 6

IbM IF ST
ms

IbM IF ST

0

30

60

90

120

Num. of page access

Figure 7. Test of conjunctive queries with page size 12KB

Num. of words in queries Num. of words in queries

2 3 4 5 6

0

100

200

300

400

2 3 4 5 6

IbM IF
Num. of page access

0

1000

2000

3000

2 3 4 5 6

IbM IF
ms

Figure 9. Test of disjunctive queries with page size 4KB

Num. of words in queries Num. of words in queries

0

100

200

300

400

2 3 4 5 6

IbM IF
Num. of page access

0

1000

2000

3000

2 3 4 5 6

IbM IF
ms

Figure 10. Test of disjunctive queries with page size 12KB

Num. of words in queries Num. of words in queries

0

400

800

1200

1600

2 3 4 5 6

Num. of words in queries

7 8 9

ms

Figure 8. Conjunctive queries with whole index in main

memory

IbM IF SI ST

0

1000

1500

2000

2500

2 3 4 5 6
Num. of words in queries

7 8 9

ms

Figure 11. Test of disjunctive queries with whole

index in main memory

IbM IF

http://dl.acm.org/citation.cfm?id=1938550&CFID=129637603&CFTOKEN=85219212
http://dl.acm.org/citation.cfm?id=1938550&CFID=129637603&CFTOKEN=85219212

