
A DTD COMPLEXITY METRIC

Ron McFadyen Yangjun Chen*
Department of Business Computing, University of Winnipeg

515 Portage Avenue, Winnipeg
Canada R3B 2E9

{r.mcfadyen, ychen2}@uwinnipeg.ca

* Supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Canada)

ABSTRACT

In this paper, we propose a metric for measuring the
complexity of a DTD. For the same purpose, different
designers may create different DTDs. A complexity
metric can assist us to evaluate and compare their
different merits. Through the recognition of strongly
connected components, the metric accommodates the
recursive relationship of elements in a DTD. The metric
presented here can be expressed in a simple and informal
way involving the number of elements, connectors,
appearance indicators and back edges.

KEY WORDS
cyclomatic, complexity, DTD, metric, XML

1. Introduction

Recently, complexity of document structures has received
significant attention. Complexity is the degree to which a
system or component has a design or implementation that
is difficult to understand and verify [1]. In the literature
[2, 3] there are references to the complexity of DTDs, but
there is no specification of how that complexity is
measured.

Many approaches to complexity have been proposed. For
example, in [4] the authors considered geometric
complexity of documents scanned into a computing
system. [5] uses a metric called inverse document
frequency that counts words to measure document
complexity. [6] is concerned with cognitive complexity,
and proposes measuring text comprehension complexity
by focusing on unfamiliar word usage. [7] discusses the
complexity of hypertext documents, and draws a parallel
between the development and maintenance of software
and the development and maintenance of hypertext
documents.

In this paper, we are concerned with the concept of
document complexity as it applies to the structure defined

in a Document Type Description (DTD). Both the
structure and its complexity measurement are defined.

To measure a DTD, we map it into a directed graph. We
use this graph as a basis for illustrating and measuring
DTD complexity. Our approach adapts the concept of
cyclomatic complexity to the structure of DTDs.

The paper is organised as follows. In Section 2, we
review DTDs, simplified DTDs, and DTD graphs in some
detail. In section 3, the concept of cyclomatic complexity
is described, which was first introduced in [8] to measure
software complexity. Section 4 discusses DTD
complexity, and Section 5 is devoted to a DTD
complexity metric. Finally, a short conclusion is set forth
in Section 6.

2. Document Type Description

In a Document Type Description (DTD), we specify the
components and structure of an XML document. For a
simple illustration, see a possible DTD for letter
documents shown in Figure 1.

1 <!DOCTYPE letter [
2 <!ELEMENT letter (head, address, greeting, body, closing, sig)>
3 <!ATTLIST letter
4 filecode NUMBER #REQUIRED
5 secret (yes | no) “no”>
6 <!ELEMENT body (para+)>
7 <!ELEMENT head (to, from, date)>
8 <!ELEMENT to (person)>
9 <!ELEMENT from (person)>
10 <!ELEMENT person (firstname?, lastname, address)>
11 <!ELEMENT (date, firstname, lastname, address, greeting,
12 closing, sig) (PCDATA)>
13 <!ELEMENT para ((text | emph)*, sub_para*)>
14 <!ELEMENT emph (text | sub_para)>
15 <!ELEMENT sub_para (para)>
16 <!ELEMENT text (#PCDATA)>
17 <!ATTLIST text italic (yes | no) “yes”>
18 <!ENTITY salute “Dear”>
19]>

Figure 1. An XML DTD

378-020 1045

debbie

An XML document is defined as having elements and
attributes [9, 10]. Elements are always marked up with
tags; and an element may be associated with several
attributes to identify domain-specific information. For
example, element letter has two attributes: filecode and
secret (see lines 3, 4, 5 of Figure 1). In addition, a special
attribute, ‘id’, may be specified once for each element.
The ‘id’ attribute uniquely identifies an element within a
document and can be referenced through an ‘IDREF’ field
in another element. The ‘IDREF’ is untyped. An element
may have sub-elements and sub-element structure is
specified using the operators ‘*’ (set with zero or more
elements), ‘+’ (set with one or more elements), ‘?’
(optional), ‘|’ (or) and ‘,’ (and). Further, we distinguish
between primitive and complex elements. A primitive
element contains only data of primitive types such as
integer, string and ‘#PCDATA’ (which is more or less
comparable to string) while a complex element contains
one or more sub-elements which are primitive or complex
by themselves. For example, elements head, address,
greeting, closing and sig are all primitive (see lines 11,
12). But element letter is a complex element (see line 2).
It contains six sub-elements, of which both body and head
are themselves complex (see lines 6 and 7). In addition,
attention should be paid to the line starting with
‘<!ENTITY’ which introduces “replacement text” (see
line 18). That is, if a string of the form ‘&salute;’ appears
in any concrete document conforming to the DTD, this
string will be substituted with “Dear” (see [10] for XML
entity definition.)

2.1 DTD Simplification

DTDs tend to be complicated. For example, we could
specify an element type as <!ELEMENT a ((b|c|e)?,
(e?|(f?, (b, b)*))*)>, where ‘a’ is an element being
specified; ‘b’, ‘c’, ‘e’ and ‘f’ represent other element
types. Such a structure is heavily nested and cannot be
represented by a (labeled) directed graph. For this reason,
we introduce virtual element types to simplify element
definitions appearing in a DTD; but without damaging the
semantics of a DTD as discussed in [11]. For instance, for
<!ELEMENT a ((b|c|e)?, (e?|(f?, (b, b)*))*)>, six virtual
element types, defined according to production rules, are
introduced:

A ß� b|c|e
B ß�b, b
C ßf?
D ße?
E ßC, B*
F ßD|E

Now, using these virtual types, we can specify the above
element type as

<!ELEMENT a (A?, F*)>.
Each production rule can be considered an element type
definition, but virtual since it is not present in the original
DTD. In fact, the original DTD is equivalent to that
shown in Figure 2, in which six virtual elements are
introduced.

In this way, the nested structure in an element
specification is removed. In [11], an element specification
without ‘nesting’ is called a simple element specification.

Definition 1. A simple element specification is of the
form: <!ELEMENT α (α1β ... αn-1βαn)>, where α is an
element type, possibly virtual, each αi represents a single
element type (possibly virtual and possibly decorated with
‘?’, ‘+’ or ‘*’) and β ∈ {‘,’, ‘|’}.

We categorize simple element specifications one step
further.

Definition 2. In a simple element specification
<!ELEMENT α (α1β ... αn-1βαn)>, if β = ‘,’, then it is an
And specification; if β = ‘|’, then it is an Or specification.

If a DTD contains only simple element specifications, it is
called a simple DTD.

Obviously, the goal of DTD simplification is to transform
an arbitrary DTD into a simple DTD augmented with
virtual elements. From the above discussion, we see that
this can be done straightforwardly without any difficulty.
First, we introduce a series of virtual element types that
can be established by analysing each element
specification of the original DTD individually. Then, we
use the following transformations:

α1** −> α1*,
α1*? −> α1*,
α1?* −> α1*,
α1?? −> α1?,

to reduce many unary operators to a single unary operator
as discussed in [2].

Example 1. A simplified DTD for <!ELEMENT a
((b|c|e)?, (e?|(f?, (b, b)*))*)> is shown in Figure 2.

Example 2. The DTD shown in Figure 1 can be
transformed into a simplified DTD as shown in Figure 3.
By this DTD simplification, only one virtual element:
<!ELEMENT A (text | emph)> is generated (see line
13.1) and the element specification <!ELEMENT para
((text | emph)*, sub_para*)> is changed to <!ELEMENT

<!ELEMENT a (A?, F*)>
<!ELEMENT A (b|c|e)>
<!ELEMENT B (b, b)>
<!ELEMENT C (f?)>
<!ELEMENT D (e?)>
<!ELEMENT E (C, B*)>
<!ELEMENT F (D|E)>

Figure 2. Rewriting with simple elements

1046

para (A*, sub_para*)> (see line 13), where ‘A’ represents
a virtual element type.

2.2 DAO Graph

A Decorated DTD And/Or graph (called a DAO graph)
can be established for any simplified DTD, and is defined
as follows.

Definition 3. A DAO graph for a set S of simple element
specifications is a directed graph, where there is a node
for each (decorated) element type in S and an edge from
‘a’ to ‘b’ if there exists a simple element type
specification of the form: <!ELEMENT a (... b ...)> in S.
If ‘b’ is of the form: α?, then the edge is labelled with ‘?’.
If ‘b’ is of the form: α*, then the edge is labelled with ‘*’.
If ‘b’ is of the form: α+, then the edge is labelled with ‘+’.
Each node of the graph is characterized as an And-node or
an Or-node: if an element n is an And specification, then
the node n is an And node, otherwise n is an Or node.

Example 3. For the transformed DTD shown in Figure 3,
we can draw a DAO graph as shown in Figure 4.

Note that a DAO graph also represents a process one can
follow to generate a document, or to process a document
conforming to the DTD. During a traversal of the graph,
one could generate an XML document conforming to the
DTD.

As with a normal directed graph, we distinguish among
four kinds of edges in a DAO graph, which represent
different semantic relationships of elements and imply
different complexities. To do this, we will assign an in-
teger to each node encountered during a depth-first
traversal of a DAO graph, which is used to number the

nodes in the order they are reached during the traversal.
The number assigned to a node v is denoted dfsnumber(v).
This numbering can be used to distinguish among tree
edges, forward edges, back edges and cross edges. They
are defined as follows.

(i) tree edge: An edge e: v → u is a tree edge if
u is reached from v when it is scanned and u
has not been visited before (then at this
moment dfsnumber(u) = 0 if we initially
assign each dfsnumber with 0.)

(ii) forward edge: An edge e: v → u is a forward
edge if when it is scanned for the first time
dfsnumber(u) > dfsnumber(v) > 0.

(iii) back edge: An edge e: v → u is a back edge
if when it is scanned for the first time,
dfsnumber(v) > dfsnumber(u) > 0 and at the
same time u is an “ancestor” of v. (We say a
node x is an ancestor of node y if they
appear in the same path and x is visited
before y during the depth-first traversal.)

(iv) cross edge: An edge e: v → u is a cross edge
if when it is scanned for the first time,
dfsnumber(v) > dfsnumber(u) > 0 but u is
not an "ancestor" of v.

See [11] for a detailed description.

3. Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly-
independent paths through a program module and was
introduced by Thomas McCabe in 1976 [8]. Cyclomatic
complexity provides a single ordinal number that can be
compared to the complexity of other programs. A low

1 <!DOCTYPE letter [
2 <!ELEMENT letter (head, address, greeting, body, closing, sig)>
3 <!ATTLIST letter
4 filecode NUMBER #REQUIRED
5 secret (yes | no) “no”>
6 <!ELEMENT body (para+)>
7 <!ELEMENT head (to, from, date)>
8 <!ELEMENT to (person)>
9 <!ELEMENT from (person)>
10 <!ELEMENT person (firstname?, lastname, address)>
11 <!ELEMENT (date, firstname, lastname, address, greeting,
12 closing, sig) (PCDATA)>
13 <!ELEMENT para (A*, sub_para*)>
13.1 <!ELEMENT A (text | emph)>
14 <!ELEMENT emph (text | sub_para)>
15 <!ELEMENT sub_para (para)>
16 <!ELEMENT text (#PCDATA)>
17 <!ATTLIST text italic (yes | no) “yes”>
18 <!ENTITY salute “Dear”>
19]>

Figure 3. DTD of Figure 1 rewritten with simple
 elements.

letter

to from date

person

firstname lastname address

para

A

text emph

sub_para

?

* *

head greeting body closing sig

+

Figure 4. A DAO graph for the letter DTD.

1047

cyclomatic complexity contributes to a program's
understandability and indicates it is amenable to
modification at lower risk than a more complex program.

Cyclomatic complexity has also been extended to
encompass design complexity [12] and data complexity
[13]. Design complexity measures the amount of
interaction between decision logic and subroutine calls.
Data complexity measures the amount of interaction
between decision logic and data references.

Given a program, a flowgraph can always be associated
with it. In the graph, each node corresponds to a block of
code where the flow is sequential, and arcs correspond to
branches in the program. The cyclomatic complexity, CC,
of a graph G with n vertices and e edges is:

CC(G) = e - n + 2
Cyclomatic complexity is easily determined using the
number of decision statements in a program, and so
CC(G) can be stated as:

CC(G) = number of decision statements + 1.

For instance, for the program shown in Figure 5(a), the
cyclomatic complexity is CC(G) = e - n + 2 = 8 – 7 + 2 =
3 (see Figure 5(b)); note there are two decision statements
in the program.

[12] applied cyclomatic complexity to the structure chart
(hierarchy tree) used in Structured Design. Design
complexity that does not affect procedure calls is removed
and analysis is done on a reduced graph. Design
complexity measures the amount of interaction between
decision logic and subroutine calls. For example, Figure 6
illustrates a design tree of 3 modules where module 1
conditionally calls modules 2 and 3.

Each module, Gi, has an individual design complexity,
iv(Gi). The design complexity of a module M, So, is
defined as

So = ()∑
∈Di

iGiv

where D is the set of descendants of M unioned with M.

4. DTD Complexities

DTDs are declarative descriptions for the contents of a
document. As discussed above, we can represent a
simplified DTD with a DAO graph. In this section, we use
the DAO graph to present the complexities of DTDs, and
relate each of these complexities to similar procedural
representations where cyclomatic complexity has been
applied. A DAO graph comprises the following:

Nodes:
And nodes
Or nodes

Decorations
Edges:

Tree edges
Forward edges
Cross edges
Back edges

Next, we discuss node types and decorations in order to
obtain node complexities for each node in a DAO graph.
Then, we consider edges and present a reduced DAO
graph in order to eliminate cycles if any.

4.1 Nodes

According to the node type, we associate an initial node
complexity (NC) for each node in the graph.

4.1.1 And Nodes

An And-node represents a situation where the DTD user
has no choice. When creating a document according to an
element specification that is an And-node, the user must
include all sub-elements. All documents formed in this
way will have the same structure; there is no variability.

 for (int j = 0; j<i; j++)
 {
 if (a[j] > a[j+1])
 {
 int T = a[j];
 a[j] = a[j+1];
 a[j+1] = T;
 }
 }

Figure 5. Program and corresponding flowgraph

(a) (b)

2

Figure 6. Module 1 conditionally calls modules 2
 and 3.

1

3

1048

A process that a user can follow is represented in a
flowgraph as shown in Figure 7. Since the process in
Figure 7(b) has a cyclomatic complexity of 1, we assign
an initial node complexity, NC, of an And-node to be 1 as
well.

4.1.2 Or Nodes

An Or-node represents a situation where the DTD user
has a choice to make. When creating a document
according to the DTD, the user must choose to include
one of the specified elements. Documents created
according to the DTD, can vary from one another; the
DTD allows for variability when an Or-node is
encountered. The process followed can be represented in
a flowgraph as shown in Figure 8. The process in Figure
8(b) has a cyclomatic complexity of 2, and so we assign 2
as the node complexity associated with this Or-node. In
general, the initial node complexity of an Or-node is the
number of alternative choices.

Figure 9 illustrates the initial complexities assigned to
nodes in terms of the assignment strategy discussed
above.

4.2 Decorations

There are three types of decorations that appear in a DAO
graph: ‘*’, ‘?’, ‘+’. These decorations impose restrictions
on how many times a subtree can be utilized, and hence
increase the complexity of the DTD. For each decoration,
the user must choose the number of times the subtree will
be utilized. The process followed can be represented in a
flowgraph as shown in Figure 10. For each of ‘*’, ‘?’ and
‘+’, the node complexity of And and Or nodes increase by
1. Figure 11 illustrates node complexities adjusted for
decorations.

4.3 Edges

Edges can be of four types: tree, forward, cross, and back,
which implies different complexities. As discussed in 2.2,
the different edge types can be distinguished based on
depth-first numbering.

Tree Edges.
Tree edges represent the normal hierarchical structure of a
document, and as such, do not increase the complexity of
a DTD. If a DAO graph contains only Tree edges, then
the DTD is a special case; its just a simple hierarchy.

Forward and Cross Edges.
Forward and Cross edges indicate that some aspects of the
DTD are being reused. These simplify DTD definitions,
and are not considered to increase the complexity of a
DTD. If a DTD contains only Tree edges, a DTD designer
may recognize similar patterns appearing in different

head

to from date

head

to

from

date

/head

Figure 7. And-node complexity

(a) an And-node

(b) procedural steps to create a head

NC(head)= 1

A

Text Emph

A

Text Emph

/A

Figure 8. Or-node complexity

(b) procedural steps to create an A

NC(A)= 2

(a) an Or-node

letter(1)

to(1) from(1) date(1)

person(1)

firstname lastname address
(1) (1) (1)

para(1)

A(2)

text(1) emph(2)

sub_para(1)

?

* *

head(1) greeting(1) body(1) closing(1) sig(1)

+

Figure 9. Initial node complexities

1049

subtrees and the designer may decide to generalize these
patterns and reuse element definitions. Such
generalization is normally considered to simplify the
DTD. The DAO graph for the letter DTD (Figure 4)
illustrates three reuse situations: person, address, and text.
Hence, we ignore Forward and Cross edges in complexity
calculations.

Back Edges.
Back edges represent a special case of reuse; they are
labelled as back edges because, during a tree traversal,
they allow for a prior node to be encountered again. This
is commonly referred to as recursion, and is a powerful
DTD design feature. When a similar process structure is
analyzed for cyclomatic complexity, the added presence
of a back edge increases complexity by one, see Figure
12.

[11] discusses strongly connected components (SCC) in a
DTD specification. An SCC can be complex, as shown in
Figure 13. The SCC in Figure 13 has an And-node, Or-
node, decoration ‘*’, and two back edges. Since every
node in an SCC is involved in a cycle, we reduce the SCC
to a single virtual node with a node complexity, NC(SCC)
calculated as

∑
∈

+
Dc

bcNC)(

where D is the set of nodes in the SCC and b is the
number of back edges in the SCC. For our example, the
NC(SCCpara) is
 NC(SCCpara) = NC(para) + NC(A)+ NC(emph) +

 NC (sub_para) + 2
= 3 + 2 + 2 + 1 + 2
= 10.

Replacing SCCs with virtual nodes results in a reduced
DAO graph without cycles.

person

firstname

person

firstname

/person

Figure 10. Decorations represented procedurally

(a) equivalent flowgraph for ‘?’

?

body

para

body

para

/body

+

para

sub_para

para

sub_para

/para

*

NC(person)= 2

NC(body)= 2

NC(para)= 2

(b) equivalent flowgraph for ‘+’

(c) equivalent flowgraph for ‘*’

letter(1)

to(1) from(1) date(1)

person(2)

firstname lastname address
(1) (1) (1)

para(3)

A(2)

text(1) emph(2)

sub_para(1)

?

* *

head(1) greeting(1) body(2) closing(1) sig(1)

+

Figure 11. Adjusted node complexities

para

sub_para

para

sub_para

Figure 12. Back edges increase complexity

NC(para)= 1

a) no back edge b) with a back edge

NC(para)= 2

1050

5. A DTD Complexity Metric

We have discussed the internal complexities of an
individual DTD component C. In this section, we present
a complexity metric, DC, for a DTD and for DTD
elements. We define the DTD complexity, DC, of an
element E of a DTD as

DC(E) = ∑
∈Dc

cNC)(

where D is the set of all elements accessible from E,
including E, in the reduced DAO graph. Note that in our
example, SCCpara replaces the elements of the SCC. The
complexity of a DTD is just DC(R) where R is the root of
the DTD.

Consider the element person in Figure 4. The DTD
complexity of person is

DC(person) = NC (person) + NC (firstname)
 + NC (lastname) + NC (address)
= 2 + 1 + 1 + 1
= 5

Due to cross and forward edges, DTD complexity is not
upwardly additive. For instance, DC(head) � DC(to) +
DC(from) + DC(date). This is because both DC(to) and
DC(from) include NC (person).

The DTD complexity of the letter DTD is
DC(letter)
= NC(letter) +NC(head) +NC(address)
+NC(greeting) +NC(body) +NC(closing) +NC(sig)
+NC(to) +NC(from) +NC(date) +NC(SCCpara)
+NC(person) +NC(text) +NC(firstname)
+NC(lastname)
= 1+1+1+1+2+1+1+1+1+1+10+2+1+1+1
= 26

Values of DC for the reduced DAO graph are shown in
Figure 14. Next to each node is a pair of values: (NC,
DC).

There are a number of properties of the complexity metric
DC:

1. If there are no common elements (no forward,
cross, or back edges in the DAO graph), then DC
is upwardly additive.

2. The elements that are leaf vertices in the DAO
graph have complexity of 1.

3. Where n is the number of elements in the design,
DC is bounded as:

∑
=

≤≤
n

i
iGNCDCn

1

)(

4. Adding an element to a design increases DC by
at least 1.

5. Simplifying a DTD through generalization and
reuse of an element M reduces DC by DC(M).

6. DC is defined for any element T as

)(TDC = ∑
i

iGNC)(

para

sub_para

Figure 13. A complex SCC rooted at para.

A

text emph

**

(a) SCC rooted at para

SCCpara

text

(b) SCC replaced by
 a virtual node

SCC

letter(1,26)

to from date

person(2,5)

firstname lastname address
(1,1) (1,1) (1,1)

text(1,1)

?

head greeting body closing sig

+

Figure 14. Complexity metric values

SCCpara(10,11)

(1,1) (2,13) (1,1) (1,1)

(1,9)

 (1,6) (1,6) (1,1)

1051

6. Conclusion

We have presented a metric for evaluating the complexity
of DTDs. With reference to the elements in the DAO
graph, this metric, DC, can be expressed in a simple and
informal way as:

the number of elements, plus the number of ‘|’s
in element definitions, plus the number of
decorations, plus the number of back edges.

The metric can be easily modified to generate other
metrics that give different weightings to different aspects
of DTD definitions as follows.

DC(dtd) =Welement*Noelements + Walternative* No|’s

+Wdecoration*Nodecorations +Wrecursion*Noback edges

Future empirical research can provide information
regarding average and variance in DC values, the
numbers of elements, alternatives, decorations, and the
numbers of the different edge types appearing in DTDs.
This information can assist in comprehending the
complexities present in DTDs and DTD libraries.

References

[1] IEEE standard glossary of software engineering
terminology, IEEE Standard 610.12-1990.
[2] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, J. Naughton, Relational databases for querying
XML documents: limitations and opportunities, Proc.
VLDB, Edinburgh, Scotland, 1999.
[3] Chuang-Hue Moh, Ee-Peng Lim, Wee-Keong Ng,
DTD-miner: a tool for mining DTD from XML
documents, Proceedings of the 2nd International
Workshop on Advanced Issues of E-Commerce and Web-
based Information Systems, San Jose, CA. WECWIS
2000.
[4] Y. Y. Tang, Hong Ma, Xiaogang Mao, Dan Liu, C.Y.
Suen, A new approach to document analysis based on
modified fractal signature, Third International
Conference on Document Analysis and Recognition,
August 1995, 567-570.
[5] Ian Ruthven, Mounia Lalmas, Keith van Rijsbergen,
Combining and selecting characteristics of information
use, Journal of the American Society for Information
Science and Technology (JASIST), 53(5), 2002.
[6] T. Klemola, A cognitive model for complexity
metrics, 4th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering, June 13, 2000.
[7] Pearl Brereton, David Budgen, Geoff Hamilton,
Hypertext: the next maintenance mountain, Computer,
December 1998, 49-55.
[8] T. J. McCabe, A complexity measure, IEEE
Transactions Software Engineering, 4(2), 1976, 308-320.
[9] J. Clark, Comparison of SGML and XML, http:
//www.w3.org/TR/NOTE-sgml-xml-971215, December
1997.

[10] S.J. DeRose and D.D. Durand, Making hypermedia
work: A user’s guide to HyTime (London, Kluwer
Academic Publishers, 1994).
[11] Yangjun Chen, Ron McFadyen, Fung-Yee Chan,
Mapping DTDs to object-oriented schemas, The 2nd
International Conference on Web Information Systems
Engineering (WISE2001), Kyoto, Japan, December 2001.
[12] T. J. McCabe and C. W. Butler, Design complexity
measurement and testing, Communications of the ACM,
32(12), 1989, 1415-1425.
[13] D. Card, R. Glass, Measuring software design
quality (Prentice Hall, 1990).

1052

	Table of Contents

