
ABSTRACT
Graph reachability is fundamental to a wide range of appli-
cations, including CAD/CAM, CASE, office systems, soft-
ware management, as well as geographical navigation and
internet routing. Many applications involve huge graphs and
requires fast answering of reachability queries. Several
reachability labeling methods have been proposed for this
purpose. They assign labels to the nodes, such that the
reachability between any two nodes can be determined
using their labels only. In this paper, we propose a new data
structure, called a general spanning tree of a directed acy-
clic graph (DAG) to minimize label space. Different from a
traditional spanning tree, an edge in a general spanning tree
T of a DAG G may corresponds to a path in G. That is, for
each edge u → v in T, we have a path from u to v in G. An
algorithm is discussed to find such a tree with the least num-
ber of leaf nodes in O(bn ) time, where n is the number of
the nodes of G, and b is the number of the leaf nodes of T. It
can be proven that b equals G’s width, defined to be the size
of a largest node subset U of G such that for every pair of
nodes u, v ∈ U, there does not exist a path from u to v or
from v to u. Based on T, we are able to reduce the label
space to O(bn) with O(logb) reachability query time. Our
method can also be extended for graphs containing cycles.

1. INTRODUCTION
Given two nodes u and v in a directed graph G(V, E) (with |V|
= n and |E| = e), we want to know if there is a path from u to
v. The problem is known as graph reachability, and well-ex-
plored in several fields of computation [1, 4, 8, 9, 23, 27, 31].
In many applications (e.g., geographical navigation), graph
reachability is one of the most basic operations, which means
fast processing is mandatary. A naive approach to this prob-
lem is to precompute the reachability between each pair of
nodes - in other words, to compute and store the transitive
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closure (TC) of G, so that we can answer reachability queries
in constant time. However, this requires O(n2) space, which
makes it impractical for massive graphs.
Recently, interests in this problem is rekindled and several
methods [5, 9, 23, 27] have been proposed to compress TC
but without sacrificing much query time. The main idea of
them is to label a graph in some way such that the reachabil-
ity between nodes can be decided using their labels. In this
sense, a transitive closure is compressed. 
In this paper, we discuss a new concept of general spanning
trees, based on which an approach for labeling a DAG is de-
vised. Especially, an efficient algorithm is proposed to find a
general spanning tree with the least number of leaf nodes,
which equals G’s width b, defined to be the size of a largest
subset of pairwise unreachable nodes in G. The time com-
plexity of the algorithm is bounded by O(bn ) time. The la-
beling time and the label space are bounded by O(be) and
O(bn), respectively; and a reachability query takes O(logb)
time.
The main idea of this algorithm is to partition a DAG into a
minimal set of disjoint chains, which is in fact the problem of
poset (partially ordered set) decomposition [12] since a poset
can always be represented as a DAG. The size of an antichain
(a largest set of pairwise unreachable nodes) can be deter-
mined in O(n2.5) time (see Lemma 10.4.1 in [2], page 190.)
Up to now, however, the best way to solve this problem is to
transform it to a min-flow problem as Jagadish did [16] (the
same idea has also been suggested by some other researchers;
see [29], pages 272 - 274.) It requires O(n3) time. Recently,
Chen et al. [5] proposed a new way to do the task. Their idea
is to stratify a DAG into several bipartite graphs. But it fails
to find a minimal set of disjoint chains in some cases (see the
analysis given in the Appendix). Our algorithm is the first to
break the O(n3) bottleneck.
The remainder of the paper is organized as follows. In Sec-
tion 2, we review the related work. In Section 3, we define
the concept of general spanning trees and show how it can be
used to produce an efficient node labeling. Section 4 is devot-
ed to the description of our algorithm to decompose a DAG
into chains, based on which a general spanning tree with the
least number of leaf nodes can be constructed. Section 5 con-
cludes the paper.
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2. RELATED WORK
Graphs reachability has applications in a wide range of areas.
For example, in object-oriented programming, graph reach-
ability is important in managing class inheritance hierar-
chies. Many approaches have be proposed, such as PE-
Encoding [8] and PQ-Encoding [31], which use a bottom-up
bit vector labeling scheme [3] with O(n) bits per label, where
n is the number of nodes. In 1996, Teuhola [25] proposed a
signature-based method, by which each node is assigned a
signature (which is in fact a bit string) generated using a set
of hash functions. The space complexity is O(l⋅n), where l is
the length of a signature. But this encoding method suffers
from the so-called signature conflicts (two nodes are as-
signed the same signature). Moreover, in the case of DAGs,
a graph needs to be decomposed into a series of trees; and no
formal decomposition was reported in that paper. In the area
of semantic web, Christophides et al. [10] applied efficient
labeling schemes to the problem of encoding subsumption
hierarchies. In the worst case, however, the label space of
this method is of O(n2).
Recently, reachability labeling has enjoyed much attention
due to its application in geographic navigation and internet
routing, as well as XML document processing [5, 6, 8, 9, 27].
The interval-based labeling scheme is one of the most widely
used approach for tree structures. It assigns an interval to
each node, and the ancestor-descendant relationships be-
tween two nodes can be decided by checking set contain-
ment relationships between their interval labels. For a tree
structure, this approach answers reachability queries in con-
stant time, and the labeling process is of linear complexity.
This method is extended to DAGs by Agrawal et al. [1]. In
their method, each node v is assigned a set of non-overlap-
ping interval L(v). A node u is reachable from v iff the inter-
val associated with u is contained by some interval in L(v).
Although labels can be assigned efficiently, for large, com-
plicated graphs, the size of L(v) can be linear in the graph
size. This method is further improved by Chen [4], by gene-
arting L(v) in such a way that all the intervals in L(v) are sort-
ed. So the reachability query time is reduced to O(logn).
In [5], Chen et al. suggested an interesting method to decom-
pose a DAG into disjoint chains such that on each chain, if
node v appears above node u, there is a path from v to u in G.
Then, each node v is assigned an index (i, j), where i is a
chain number, on which v appears, and j indicates v’s posi-
tion on the chain. In addition to this, v is associated with an
index sequence (1, j1) … (i – 1, ji-1) (i + 1, ji+1) … (k, jk) such
that for any node u with index (x, y) if x = i and y > j or x ≠ i
but y ≥ jx it is a descendant of v, where k is the number of the
disjoint chains. The time complexity of this algorithm is
bounded by O(n2 + kn ). However, as shown in the Ap-
pendix, k is not minimized. The label space and the query
time of this method are O(kn) and O(logk), respectively.
Jagadish’s method [16] is also based on graph decomposi-
tion. In his method, a DAG G is transformed to a flow net-
work F by splitting each node v in G into two nodes xv and
yv with an edge from xv to yv. Corresponding to every edge u
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→ v in G, draw an edge yu → xv in F. Now add an artificial
“source” to F from which there is an edge to each of F’s
nodes that have no predecessors. Similarly, a “sink” is intro-
duced with an edge to it from each node with no successors
in F. In order to find a minimal set of disjoint chains, assign
a non-negative integer flow to each edge in F such that the
flow into each node is equal to the flow out of that node. This
is a standard min-flow problem and can be solved in O(n3)
time by well-known techniques such as those discussed in
[11, 13, 17]. 

The method proposed by Wang at el. [27] is intended to han-
dle reachability queries for sparse graphs. This method con-
sists of two schemes: Dual-I and Dual-II. By finding a
spanning tree T in G, Dual-I, assigns to each node v a dual la-
bel: (av, bv) and (xv, yv, zv). In addition, a t × t matrix N (called
a TLC matrix) is maintained, where t is the number of edges
that do not appear in the spanning tree of G. Another node u
with (au, bu) and (xu, y, zu) is reachable from v iff au ∈ [av,
bv), or N(xv, zu) - N(yv, zu) > 0. The size of all labels is bound-

ed by O(n + t2) and can be produced in O(n + e + t3) time.
The query time is O(1). As a variant of Dual-I, one can also
store N as a tree (called a TLC search tree), which can reduce
the space overhead from a practical viewpoint, but increases
the query time to logt. This scheme is referred to as Dual-II.
Obviously, this method is only suitable for sparse graphs. If t
is in the order of O(n) or higher, the size of labels is more than
O(n2) and the query time is O(logn). Moreover, O(n3) time is
needed to generate labels, worse than any traditional matrix-
based method. 
The 2-hop labeling proposed by Cohen et al. [9] assigns to
each node v two labels: Cin(v) and Cout(v), where Cin(v) con-
tains a set of nodes that can reach v, and Cout(v) contains a set
of nodes reachable from v. Then, a node u is reachable from
node v if Cin(v) ∩ Cout(v) ≠ φ. Using this method, the overall

label size is increased to O(n logn). In addition, the reach-

ability queries take O( ) time because the average size of

each label is above O( ). The time for generating labels is
O(n4). An important issue with regard to the 2-hop approach
is the complexity of its labeling process. Finding optimum 2-
hop labeling is equivalent to solving the weighted set cover-
ing problem, which is NP-hard. So a heuristic method is sug-
gested in [9], which greedily finds the largest uncovered
submatrix in the transitive closure matrix in each step. How-
ever, it is still an extremely time consuming process for mas-
sive graphs.

There are some other graph labeling methods, such as the
method discussed in [22, 23], which reduces 2-hop’s labeling
complexity from O(n4) to O(n3), but is still not applicable to
massive graphs. The method proposed in [6] is a geometry-
based algorithm to find high-quality 2-hop covers. It has the
same theoretical computational complexities as the method
discussed in [27] and is only applicable for sparse graphs,
too.
In the following table, we compare our labeling approach
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with existing approaches.
In the above table, graph-traversal represents no-labeling at
all, which imposes no space overhead, but requires searching
a whole graph to answer reachability queries. k1 is the largest
length of an interval sequence of the interval-based method
[1], and k2 is the number of the disjoint chains produced by
Chen’s method [5]. t is the number of non-tree edges and b is
the width of a DAG. Finally, using the method discussed in
[10], a matrix multiplication can be done in O(n2.376) time.     

3. GENERAL SPANNING TREE AND TREE
ENCODING
Our method is based on the DAG encoding. For a cyclic
graph (a graph containing cycles), we can find all the strong-
ly connected components (SCC) in linear time [24] and then
collapse each of them into a representative node. Clearly, all
of the nodes in an SCC is equivalent to its representative as
far as reachability is concerned (see pp. 567 - 569 in [16]).
Definition 1. (general spanning trees). Let G be a DAG. A
tree (forest) T is called a general spanning tree if the follow-
ing two conditions are satisfied:
1. T covers G, i.e., for each node v ∈ G, we have v ∈ T.
2. For each edge u → v in T, there exists a path from u to v in

G. 
Since an edge u → v in G is also a path, a traditional spanning
tree is a special case of general spanning trees.
As an example, consider the graph G shown in Fig. 1(a), for
which a general spanning tree T can be found as shown in
Fig. 1(b). In T, special attention should be paid to the edge h
→ i, which corresponds to a path from h to i in G. We also
notice that the number of the leaf nodes in T is 3 while any
(traditional) spanning tree of G has at least 4 leaf nodes (see
Fig. 1(c) for illustration.)

As with Dual-I labeling [27], we will assign each node v in T
an interval [start, end), where start is v’s preorder number
and end - 1 is the largest preorder number among all the

query time

graph-traversal
graph-decomposition

interval-based

dual-II
2-hop
matrix-multiplication

labeling time space overhead

O(e)
O(logb)

O(logk1)

O(logt)
O(e1/2)
O(1)

0
O(n3)

O(k1e)

O(n + e + t3)
O(n4)
O(n2.376)

0

ours O(logb) O(be)

O(bn)

O(k1n)

O(n + t2)
O(ne1/2logn)
O(n2)

O(bn)

(Jagadish)

dual-I O(1) O(n + e + t3) O(n + t2)

graph-decomposition O(logk2) O(k2e) O(k2n)
(Chen et al.)

Fig. 1. Illustration for general spanning trees
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nodes in T[v] (the subtree rooted at v). So another node u la-
beled [start’, end’) is a descendant of v (with respect to T) iff
start’ ∈ [start, end) [27]. See Fig. 2(a).
Let v and u be two nodes in T, labeled [a, b) and [a’, b’), re-
spectively. If a ∈ [a’, b’), we say, [a, b) is subsumed by [a’,
b’), which shows that v is a descendant of u. In this case, we
must also have b ≤ b’. Therefore, if v and u are not on the
same path in T, we have either a’ ≥ b or a ≥ b’. In the former
case, we say, [a, b) is smaller than [a’, b’), denoted [a, b) 
[a’, b’). In the latter case, [a’, b’) is smaller than [a, b).

In a next step, for each node v in T, we will generate an inter-
val sequence L[v] (along a reverse topological order of G) by
using the method discussed in [4]. L[v] satisfies the following
properties:
(1) Let L(v) = [a1, b1), ..., [al, bl) for some l. Then, for any i,

j ∈ {1, ..., l}, bi ≤ aj if i < j. That is, [ai, bi)  [aj, bj) for
i < j. (In this sense, the intervals in L(vl) are considered to
be sorted.)

(2) Let [a, b) be the interval associated with a descendant of
v with respect to G. There exists an interval [ai, bi) (1 ≤ i
≤ l) in L(vl) such that a ∈ [ai, bi).

(3) l ≤ k, where k is the number of the leaf nodes in T.
All the interval sequences make up a label space, as shown in
Fig. 2(b).
In this way, the space overhead is decreased to O(kn) with the
query time being bounded by O(logk).  
An interesting question is: can we always find a general
spanning tree with the least number of leaf nodes in an effi-
cient way? In the next section, we answer this question.

4. MAIN ALGORITHM
The main idea of our method is to decompose G into a mini-
mal set of disjoint chains such that on each chain if u is above
v then there exists a path from u to v in G. We follow Chen’s
method, working in three phases: DAG stratification, chain
generation, and virtual node resolution. But our main proce-
dures are quite different from those of Chen’s.
First, for the chain generation, we distinguish between two
kinds of virtual nodes and handle them in different ways.
Second, for the virtual node resolution, a new data structure,
the so-called combined alternating graph, is constructed so
that the number of virtual nodes resolved at each level is
maximized.
In the following, we first present our algorithm to find dis-
joint chains in 4.1. Then, we briefly describe how to generate
a general spanning tree in 4.2. In 4.3, we prove the correct-

Fig. 2. Illustration for tree labeling
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ness of our algorithm and analyze its computational com-
plexities. (The analysis of Chen’s algorithm is shifted to the
Appendix.)

4.1 Finding a minimal set of disjoint chains
As with Chen’s algorithm, our algorithm contains three
phases: DAG stratification, chain generation, and virtual
node resolution. In the following, they will be described in
great detail.

4.1.1 DAG stratification
In the first phase, a DAG G(V, E) will be stratified into sev-
eral levels V0, ..., Vh-1 such that V = V0 ∪ ... ∪ Vh-1 and each
node in Vi has its children appearing only in Vi-1, ..., V0 (i =
1, ..., h - 1), where h is the height of G, i.e., the length of the
longest path in G. For each node v in Vi, its level is said to be
i, denoted l(v) = i. In addition, Cj(v) (j < i) represents a set of
links with each pointing to one of v’s children, which appears
in Vj. Therefore, for each v in Vi, there exist i1, ..., ik (il < i, l
= 1, ..., k) such that the set of its children equals ∪ ...

∪ . Let Vi = {v1, v2, ..., vl}. We will use  (j < i) to

represent Cj(v1) ∪ ... ∪ Cj(vl).
In addition, we use Bj(v) to represent a set of links with each
pointing to one of v’s parents, which appears in Vj.  

4.1.2 Chain generation
In the second phase, a series of (undirected) bipartite graphs
[2, 15] will be constructed. In this process, some virtual
nodes may be introduced into the levels Vi (i = 1, ..., h - 2).
Especially, we distinguish between two kinds of virtual
nodes. One is the virtual nodes created for actual nodes; and
the other is the virtual nodes generated for virtual nodes.
They will be handled differently.
We begin our discussion with a summarization of some im-
portant concepts related to bipartite graphs, which are need-
ed to define virtual nodes.
Definition 2. (concepts related to matching, [2]) Let G(V, E)
be a bipartite graph. Let M be a maximum matching of G. A
node v is said to be covered by M, if some edge of M is inci-
dent to v. We will also call an uncovered node free. A path or
cycle is alternating, relative to M, if its edges are alternately
in E\M and M. A path is an augmenting path if it is an alter-
nating path with free origin and terminus. 
In addition, it is well known that using the Hopcroft-Karp al-
gorithm [15] a maximum matching of G can be found in
O(|E| ) time.
Also, the following symbols are also used for ease of expla-
nation:
Vi’ = Vi ∪ {virtual nodes introduced into Vi}.

Ci = ∪ {all the new edges from the nodes in Vi to the
virtual nodes introduced into Vi-1}

G(Vi, Vi-1’; Ci) - the bipartite graph containing Vi and Vi-1’.
Definition 3. (virtual nodes for actual nodes) Let G(V, E) be
a DAG, divided into V0, ..., Vh-1 (i.e., V = V0 ∪ ... ∪ Vh-1).

Ci1
v( )

Cik
v( ) Cj

i

V

Ci 1–
i

Let Mi be a maximum matching of the bipartite graph G(Vi,
Vi-1’; Ci) and v be a free actual node (in Vi-1’) relative to Mi
(i = 1, ..., h - 1). Add a virtual node v’ into Vi. In addition, for
each node u ∈ Vi+1, a new edge u → v’ will be created if one
of the following two conditions is satisfied:
1. u → v  ∈ E; or
2. There exists an edge (v1, v2) covered by Mi such that v1

and v are connected through an alternating path relative to
Mi; and u ∈ Bi+1(v1) or u ∈ Bi+1(v2).

v is called the source of v’, denoted s(v’).
A virtual edge from v’ to v is also generated to indicate the
relationship between v and v’. Besides, a new edge u → v’
will be marked with ‘directly connectable’ if one of the fol-
lowing conditions are satisfied:
3. u → v  ∈ E; or
4. There is an alternating path of length 1, which connects v1

and v. That is, v1 → v ∈ E.
We mark these edges with ‘directly connectable’ because it
is possible for us to directly connect u and v to remove v’.
to facilitate the virtual node resolution process.
The following example helps for illustration.
Example 1. Consider the graph shown in Fig. 3(a). It can be
divided into three levels as shown in Fig. 3(b). The bipartite
graph made up of V1 and V0, G(V1, V0; C1), is shown in Fig.
3(c) and a possible maximum matching M1 of it is shown in
Fig. 3(d).
Relative to M1, we have two free nodes i and a. For them, two
virtual nodes i’ and a’ will be constructed. Then, V1’ = {b, e,
h, i’, a’}. In addition, four new edges (d, i’), (d, a’), (g, i’),
and (g, a’) will be constructed. But all of them will not be
marked with ‘directly connectable’.

The motivation of constructing such a virtual node (e.g., i’)
is that it is possible to connect f to d or g to form part of a
chain if we transfer the edges on an alternating path: b → c
→ e → f (see Fig. 3(e), where a solid edge represents an edge
belonging to M1 while a dashed edge to C1\M1), or h → j →
b → c → e → f. Then, we can connect d or g to f, as well as
b or h to i without increasing the number of chains, as illus-
trated in Fig. 3(f). This can be achieved by the virtual node
resolution process (see 4.1.3).
Definition 4. (virtual nodes for virtual nodes) Let Mi be a
maximum matching of the bipartite graph G(Vi, Vi-1’; Ci) and
v’ be a free virtual node (in Vi-1’) relative to Mi (i = 1, ..., h -
1). Add a virtual node v’’ into Vi. Set s(v’’) to be w = s(v’).
Let l(w) = j. For each node u ∈ Vi+1, a new u → v’ will be

b e

Fig. 3. Illustration for virtual nodes for actual nodes
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created if there exists an edge (v1, v2) covered by Mj+1 such
that v1 and w are connected through an alternating path rela-
tive to Mj+1; and u ∈ Bi+1(v1) or u ∈ Bi+1(v2).
Again, a virtual edge from v’’ to v’ will be generated. 
Example 2. Consider the graph shown in Fig. 4(a).
This graph can be divided into four levels as shown in Fig.
4(b). The first bipartite graph consisting of V1 and V0, G(V1,
V0; C1), is shown in Fig. 4(c) and a possible maximum
matching M1 of it is shown in Fig. 4(d). Relative to M1, we
have a free node f. For it, a virtual nodes f’ will be construct-
ed. Then, V1’ = {b, f ’, d, h} (see Fig. 4(e)). Assume that the
maximum matching found for G(V2, V1’; C2) is as shown in
Fig. 4(f). A virtual node f ’’ for f’ will be established. So V2’
= {f’’, e, g}. Especially, we are able to connect node f ’’ and
node p for the following reason:
i) s(f ’’) = s(f’) = f;
ii) (b, c) ∈ M1;
iii) f is connected to b through an alternating path: f → b; and
iv) p ∈ B3(c).
The corresponding bipartite graph G(V3, V2’; C3) is shown in
Fig. 4(g). The unique maximum matching of G(V3, V2’; C3)
is shown in Fig. 4(h). 

By using virtual nodes, a set of chains can be generated by
doing the following two steps.
(1) The first bipartite graph G(V1, V0; C1) is made up of V0,

V1, and C1 (= ). Let M1 be a maximum matching of
G(V1, V0; C1). Construct a set of virtual nodes D1 for all
the free nodes relative to M1.

(2) All the other bipartite graphs will be recursively estab-
lished as follows. Let Vi-1’ = Vi-1 ∪ Di-1 (1 < i ≤ h - 1;

V0’ = V0). Let Ci = ∪ {all the new edges incident
to the virtual nodes in Di-1}. Then, the ith bipartite graph
G(Vi, Vi-1’; Ci) is made up of Vi-1’, Vi, and Ci. Find a
maximum matching Mi of G(Vi, Vi-1’; Ci). Construct Di,
the set of the virtual nodes for all the free nodes relative
to Mi.

The result M1 ∪ M2 ∪ ... ∪ Mh-1 is a set of chains, which may
contain some virtual nodes.

e

Fig. 4. Illustration for virtual nodes for virtual nodes
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Example. 3. Continued with Example 1. The bipartite graph
made up of V2 and V1’ is shown in Fig. 5(a). 
A possible maximum matching M2 is shown in Fig. 5(b). So
M1 ∪ M2 is a set of chains as shown in Fig. 5(c). 

In the same way, by unifying M1, M2, and M3 shown in Fig.
4, we get a set of disjoint chains shown in Fig. 5(d). 

4.1.3 Virtual node resolution
In the third phase, we will remove all the virtual nodes. This
will be done top-down level by level; and at each level any
virtual node, which does not have a parent along a chain, will
be simply eliminated. In addition, we call a virtual node v’ a
transit virtual node if one of the following two conditions is
satisfied.
1. Let u, v’, w be three consecutive nodes on a chain. u → v’

is a marked edge (i.e., a directly connectable edge); or
2. w is a virtual node.
In both cases, we connect u and w and then remove v’. It is
because in case (1), both u and w are actual nodes and we
have u → w ∈ E or there exists a actual node x such that  u
→ x ∈ E and  x → w ∈ E. In case (2), w is a virtual node,
working as a ‘transfer’ of reachability.
For example, since node f ’ in Fig. 5(d) is a virtual node, node
f’’ is a transit virtual node. It can be directly removed, lead-
ing to a set of chains as shown in Fig. 5(e). But node f’ cannot
be removed in this way since it is not a transit virtual node.
In the following, we discuss how to resolve a non-transit vir-
tual node, for which more effort is needed.
First, we define a new concept.
Definition 5. (alternating graph) Let Mi be a maximum

matching of G(Vi, Vi-1’; Ci). The alternating graph  with
respect to Mi is a directed graph with the following sets of
nodes and edges:

V( ) = Vi ∪ Vi-1’, and

E( ) = {u → v | u ∈ Vi-1’, v ∈ Vi, and (u, v) ∈ Mi} ∪
{v → u | u ∈ Vi-1’, v ∈ Vi, and (u, v) ∈ Ci\Mi}.

Example 4. Consider the graph shown in Fig. 3(a) once
again. Relative to M1 of G(V1, V0; C1) shown in Fig. 3(d),
nodes i and a are two free nodes. The alternating graph

with respect to M1 is shown in Fig. 6(a).

It is redrawn in Fig. 6(b) for a clear explanation.

Fig. 5. Bipartite graph, maximum matching and chains
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In order to resolve the non-transit virtual nodes in Vi’, we

will combine  and  by connecting some nodes v’ in

 to some nodes u in  if the following conditions are
satisfied.
(i) v’ is a non-transit virtual node appearing in Vi’. (Note that

V( ) = Vi+1 ∪ Vi’.)
(ii) There exist a node x in Vi+1 and a node y in Vi such that

(x, v’) ∈ Mi+1, x → y ∈ Ci+1, and (y, u) ∈ Mi.

We denote this combined graph by  ⊕ . 
For illustration, consider G(V2, V1’; C2) shown in Fig. 5(a).
Assume that the found maximum matching M2 is as shown

in Fig. 5(b). Then, the alternating graph  (with respect to

M2) is a graph shown in Fig. 7(a).  ⊕  is shown in Fig.
7(b). Note that i’ and a’ are two non-transit virtual nodes.

We also notice that a node in  and a node in  may
share the same node name. But they will be handled as dif-
ferent nodes. For example, node e in  and node e in 
are different.

In Fig. 7(b), we connect node a’ (in ) to node f (in ) for
the following reason.
(1)  a’ is a non-transit virtual node introduced into V1.
(2) (g, a’) ∈ M2, g → e ∈ C2, and (e, f) ∈ M1.
As mentioned above, we connect a’ to f since it is possible
for us to transfer the edges on an alternating path (relative to
M1) starting from node f (relative to M1) and terminating at
free node i or a (in V0), which will make i or a covered with-
out increasing the number of chains.

The same analysis applies to node i’ (in ), which is also

connected to node f (in ).
In order to resolve as many non-transit virtual nodes (appear-
ing in Vi’) as possible, we need to find a maximum set of
node-disjoint paths (i.e., no two of these paths share any
nodes), each starting at a non-transit virtual node (in )

and ending at a free node in , or ending at a free node

in . For example, to resolve a’ and i’, we need first to find

e c b

j h

i

a

Fig. 6. An alternating graph
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two paths in the above combined graph, as shown in Fig.
8(a).

(In Fig. 8(b), we show another two node-disjoint paths.)
By transferring the edges on such a path, the corresponding
virtual node can be removed as follows.
(1) Let v1 → v2 → ... → vk be a found path. Transfer the edges

on the path.

(2) If vk is a node in , we simply remove the correspond-
ing virtual node v1.

(3) If vk is a node in , connect the parent of v1 along the
corresponding chain to v2. Remove v1.

For instance, by transferring the edges on the path from a’ to
e (in ) in Fig. 8(a), we will connect g to e (in ). a’ will
be removed. By transferring the edges on the path from i’ to
a in Fig. 8(a), we will connect h (in ) to a, b to j, e to c,

and d to f. Then, i’ is removed. Note that a is in  and d is
the parent of i’ along a chain (see Fig. 5(c)). In this way, we
will change the chains shown in Fig. 5(c) to the chains shown
in Fig. 9(a) with all the virtual nodes being removed. The
number of chains is still 5.

By resolving node f ’ in the chain set shown in Fig. 5(e), we
will get a set of disjoint chains shown in Fig. 9(b).
It remains to show how to find a maximal set of node-disjoint
paths in  ⊕ . 
For this purpose, we define a maximum flow problem over

 ⊕  (with multiple sources and sinks) as follows.

1) Each non-transit virtual node in  is designated as a

source. Each free node (in ) relative to Mi+1, or free

node (in ) relative to Mi is designated as a sink.
2) Each edge u → v is associated with a capacity c(u, v) = 1.

(If (u, v) is not an edge in  ⊕ , c(u, v) = 0.)
Generally, to find a maximum flow in a network, we need
O(n3) time [11, 13, 17]. However, a network as constructed
above is a 0-1 network. In addition, for each node v, we have
either din(v) ≤ 1 or dout(v) ≤ 1, where din(v) and dout(v) repre-

sent the indegree and outdegree of v in  ⊕ , respec-

e c b

j h a

Fig. 8. Illustration for node-disjoint paths
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tively. It is because each path in  ⊕  is an alternating
path relative to Mi+1 or relative to Mi. So each node except
sources and sinks is an end node of an edge covered by Mi+1
or by Mi. As shown in ([14], Theorem 6.3 on page 120), it

needs only O( e) time to find a maximum flow in such
kind of networks. Especially, a maximum flow exactly cor-
responds to a maximal set of disjoint paths (see the proof of
Lemma 6.4 in [14], page 120.) 
According to the above discussion, we give the following al-
gorithm for resolving virtual nodes. We assume that each vir-
tual node has a parent along a chain. Otherwise, it can be
simply eliminated.
Algorithm virtual-resolution(S)
input: S - a chain set obtained by executing the chain gener-

ation process.
output: a set of chains containing no virtual nodes.
begin
1. for i = h - 2 downto 1 do
2. { for any transit virtual node v’ in Vi’ do
3. {
4. let u, v’, w be three consecutive nodes on a chain;
5. connect u and w;
6. }
7. construct  ⊕ ; (*Begin to handle non-transit

virtual nodes.*)
8. find a maximal set of node disjoint paths: P1, ... Pl;
9. for j = 1 to l do
10. { let Pj = v1 → v2 → ... → vk;
11. if vk is a free node relative to Mi then
12. {transfer the edges on Pj; remove v1;}
13. else (* vk is a free node relative to Mi-1.*)
14. {let u be a node such that (u, v1) ∈ Mi;
15.  transfer the edges on Pj; remove v1;
16.  connect u to v2;
17. }
18. removed any unsolved virtual node;
19. }
end

In the main for-loop of the above algorithm, we first handle
transit virtual nodes (lines 2 - 6). Then, we construct  ⊕

to resolve all the non-transit virtual nodes (see line 7.)
For this purpose, we search for a maximal set of node dis-
joint paths (see line 8). We also distinguish between two
kinds of node disjoint paths: paths ending at a free node rel-
ative to Mi, and paths ending at a free node relative to Mi-1.
For the first kind of paths, we simply transfer the edges on a
path and then remove the corresponding virtual node (see
line 12). For the second kind of paths, we need to do some-
thing more to connect the parent of the corresponding virtual
node (along the chain) to the second node of the path (see
line 16). In line 18, we remove all those virtual nodes, which
cannot be resolved. Each of such virtual nodes leads to split-
ting of a chain into two chains. 
Note that removing a transit virtual node will not increase the

Gi 1+ Gi

n

Gi 1+ Gi

Gi

Gi 1–

number of chains. Also, resolving a non-transit virtual node
using a node disjoint path does not lead to a chain splitting.
So the number of increased chains during the virtual node
resolution process is minimum since the number of node dis-
joint paths is maximum.

4.2 Construction of general spanning trees
Using the algorithm discussed in 4.1, a general spanning tree
can be easily generated. We need only to slightly change the
Algorithm virtual-resolution(S). After all the virtual nodes in
Vi are resolved, connect each of all those nodes, which do not
have a parent anymore along a chain, to one of its parents in
Vi+1.
For example, by resolving the virtual nodes on the chains
shown in Fig. 5(c), a general spanning tree will be created as
shown in Fig. 10, where node r is a virtual root. We also no-
tice that edge d → f corresponds to a path: d → e → f in the
graph shown in Fig. 3(a).

4.3 Correctness and computational complexities
In this subsection, we prove the correctness of our algorithm
and analyze its computational complexities.

4.3.1 Correctness
Lemma 1. For a DAG G, which can be divided into two lev-
els: V0 and V1, the number of disjoint chains found by our al-
gorithm is minimum.
Proof. In this case, our algorithm will use the Hopcroft-Karp
algorithm to find a maximum matching M1 of G = G(V1, V0;

C1). Let  (i = 0, 1) be the set of the free nodes in

Vi, relative to M1. Then, the set of the disjoint chains equals

M1 ∪  ∪ . A maximum antichain (a

set of pairwise unreachable nodes in G) can be constructed as
follows.
Let Ui (i = 0, 1) be a subset of Vi such that each node in it is
covered by M1. Let W be all the nodes appearing on the alter-

native paths starting from a node in . Then,

 ∪   ∪ (U0 ∩ W) ∪ (U1\(U1 ∩ W))

makes up a maximum anti-chain. To see this, we need to
show that any node v in  is not connected to any

node u in U0 ∩ W. Otherwise, we would have an augmenting
path with origin v and terminus u, contradicting that M1 is a
maximum matching (see Theorem 5.1.4 in [2], page 57). Ob-
viously, any node in  is not connected to any node

in U1\(U1 ∩ W). 

Fig. 10. A general spanning tree
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Proposition 1. The number of the chains generated for a
DGA by our algorithm is minimum.
Proof. We will prove the proposition by induction on h.
Initial step. When h = 2, the proposition holds according to
Lemma 1.
Induction step. Assume that for any DAG of height k, the
proposition holds. Now we consider the case when h = k + 1.
First, we construct another graph G’ from G(V, E) as follows:
1. Stratify G, dividing V into V0, ..., Vh-1 (i.e., V = V0 ∪ ... ∪

Vh-1).
2. Find a maximum matching M1 of G(V1, V0; C1). Construct

virtual nodes for all the nodes in , and add

them into V1. Then, we remove V0.
So G’ is of height k. According to the induction hypothesis.
A minimal set S of disjoint chains can be found. We partition
S into two subsets S1 and S2. Any chain in S1 ends at a node
in V1’ and any chain in S2 ends at a node in Vi (1 < i ≤ k).

Resolving the virtual nodes in S1 by constructing  ⊕ ,
and connecting u ∈ V1 to v ∈ V0 for every pair (u, v) if (u, v)
is still in M1, we will get a set S’ of disjoint chains for G. To
show that S’ is minimum, we need to explain that for any free
node v in , which cannot be connected to any

chain in S1, there exists no path from any terminating node u
of a chain in S2 to v. Otherwise, there must exist a sequence
of nodes:

v(0), v(1), ..., v(m)

satisfying the following conditions:
i) v(0) = v;
i) v(i) is a virtual node constructed for v(i-1) (1 ≤ i ≤ m), or for

a node w which is connected to v(i-1) through an alternating
path relative to Mi (a maximum matching of G(Vi, Vi-1’;
Ci); and

iii)v(m) is connected to u.
Then, by solving the virtual nodes using Algorithm virtual-
resolution(S), u and v will appear on a same chain, or the cor-
responding chain (with u as the terminating node) will be ex-
tended downwards. Contradiction. 
Finally, we note that an antichain of G can be constructed
top-down level by level by using the method shown in the
proof of Lemma 1.

4.3.2 Computational complexity
Now we analyze the computational complexities of our algo-
rithm. The cost of the whole process can be divided into three
parts:
- cost1: the time for stratifying a DAG.
- cost2: the time for generating disjoint chains, which may

contain virtual nodes.
- cost3: the time for resolving virtual nodes.
As shown in [5], cost1 is bounded by O(n + e).
cost2 mainly contains two parts. One part: cost21 is the time

for finding a maximum matching of every G(Vi, Vi-1’; Ci) (i
= 1, ..., h - 1; V0’ = V0). The other part: cost22 is the time for
checking whether, for each actual free node appearing in Vi-

1’, there exists an edge (v1, v2) covered by Mi such that v1 and
v are connected through an alternating path relative to Mi.
The time for finding a maximum matching of G(Vi, Vi-1’; Ci)
is bounded by

O( ). (see [15])

Therefore, cost21 is bounded by

O( )

≤ O( ) = O(bn ).  

cost22 can be analyzed as follows. We construct a small bool-
ean ni × mi matrix Ai, where ni is the number of free actual
nodes in Vi-1 and mi is the number of all the covered actual
nodes in Vi. Each entry ajk = 1 in Ai indicates that there exists
an alternating path (relative to Mi) connects node j and k. Us-
ing the algorithm discussed in [10] for matrix multiplication,
cost22 can be estimated by

O( ) ≤ O(bn ).

During the virtual-resolution process, the virtual nodes are
resolved level by level. At each level, the number of the
nodes in  ⊕  is bounded by O(|Vi+1| + 2|Vi’| + |Vi-1’|);
and the number of its edge is O(|Ci| + |Ci-1|). So, the time for

finding a maximal set of node-disjoint paths in  ⊕ 

is bounded by O( (|Ci| + |Ci-1|)). So
the total cost of the virtual node resolution is in the order of

= O( ) = O(bn ).

From the above analysis, we get the following proposition.
Proposition 2. The time complexity of the whole process to
decompose a DAG into a minimized set of disjoint chains is
bounded by O(bn ).
The space complexity of the whole process is bounded by
O(e + bn) since the number of the newly added edges in each
bipartite graph G(Vi, Vi-1’; Ci’) is bounded by O(b|Vi-1|), and

the size of each matrix Ai is bounded by O(|Vi-1|2). 

5. CONCLUSION
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In this paper, a new concept of general spanning trees is pro-
posed and an efficient algorithm for finding such a tree in a
DAG is discussed. The main idea of the algorithm is to de-
compose a DAG into a minimal set of node-disjoint paths.
Our scheme is inspired by Chen’s method. However, the
main procedures in our algorithm are quite different from
theirs. First, we distinguish between two kinds of virtual
nodes and handle them in different ways when generating
chains. Second, for the virtual node resolution, a new data
structure, the so-called combined alternating graph, is con-
structed so that the number of virtual nodes resolved at each
level is maximized. So we can always find a general span-
ning tree with the least number of leaf nodes, which enable
us to effectively reduce label spaces.
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APPENDIX
In the Appendix, we analyze Chen’s algorithm [5] and show
why it fails to find a minimal set of disjoint chains.
As mentioned earlier, Chen’s algorithm works in three phas-
es: DAG stratification, chain generation, and virtual node
resolution. However, it suffers from the following two prob-
lems.
1. The virtual nodes for actual nodes and the virtual nodes for

virtual nodes are handled in the same way. So the reach-
ability between nodes cannot be properly transferred by
using virtual nodes.

2. The number of resolved virtual nodes at each level is not
maximized.

To see the first problem, we give Chen’s definition for virtual
nodes below.
Definition (virtual nodes according to Mi, [5]) Let G(V, E)
be a DAG, divided into V0, ..., Vh-1 (i.e., V = V0 ∪ ... ∪ Vh-1).
Let v be a free node relative to Mi. Add a virtual node v’ into
Vi (i = 1, ..., h - 1), labeled as follows.
1. If there exist some covered nodes u1, ..., uk (relative to Mi)

in Vi’ such that each ug (g = 1, ..., k) shares a covered par-
ent node wg (i.e., (wg, ug) ∈ Mi) with v, label v’ with

v[(w1, {(n11, S11), ..., ( , )}), ..., (wk, uk, {(nk1,

Sk1), ..., ( , )})],

where ngj (g = 1, ..., k; j = 1, ..., jg) is an odd number to
indicate a position on the alternating path starting at wg,
and Sgj is a set containing all the parents of the node
pointed to by ngj, which appear in Vi+1. 

2. If no such a covered node exists, v’ is labeled with v[ ].

In addition, for a virtual node v’ (generated for v), an edge u
→ v’ is established for every u ∈ S11 ∪ ... ∪  ∪ ... ∪ Sk1...

∪ . v’ will also inherit the edges incident to v except the

edges from a node in Vi to v. That is, for each parent w of v,
an edge w → v’ will be added if w does not appear in Vi. A
virtual edge v’ → v will also be constructed.
In terms of this definition, the virtual node f ’’ in Fig. 4(h)
will not be connected to node p since it is not a parent of node
f. Therefore, the chain set produced by Chen’s algorithm for
the graph shown in Fig. 4(a) will contain 5 chains as shown
in Fig. 11. But the graph can be decomposed into 4 chains as
shown in Fig. 9(b). 
Now we analyze the second problem of Chen’s algorithm,
which resolves virtual nodes level by level as follows.
1. Let v’ be a virtual node. If v’ does not have a parent along

a chain, remove v’ from the corresponding chain.
2. If v’ has a parent along a chain, resolve it according the

following rule.
(i) Assume that v’ is reached along an edge (u, v’). As-

sume that v’ is labeled with
v[(w1, {(n11, S11), ..., ( , )}), ..., (wk, uk, {(nk1,

Sk1), ..., ( , )})].

(ii)If there exists an nij such that u is a parent of the node
pointed to by nij, do the following operations:
- Transfer the edges on the alternating path starting at

wi and ending at the (nij + 1)th node w. (An alternating
path relative to Mi of G(Vi+1, Vi’; Ci) is a path with
edges alternatively appearing in Ci\Mi and Mi.) 
Add wi → v.

- Remove u → v’ and v’.
- Add u → w.
Otherwise, remove v’ and connect u to the child node
of v’ along the chain.

We apply this process to the chains shown in Fig. 5(c). As-
sume that a’ is resolved first, we will get another set of
chains as shown in Fig. 12(a). It is obtained by transferring
edges appearing on the alternating path shown in Fig. 12(b),
where a solid edge represents an edge belonging to M1 while
a dashed edge to C1\M1. 
In a next step, we will further resolve i’. It will transfer the
edges on an alternative path shown in Fig. 14(c), which will
make a not covered as shown in Fig. 14(d). However, a can-
not be connected to d. The final result is a set of six chains as
shown in Fig. 14(e). But the graph can be decomposed into a
set of five chains as shown in Fig. 14(f). The main reason for
this failure is that the alternating path used for resolving a’
and the one used for j’ share common nodes.
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Fig. 11. Illustration for the first problem of Chen’s algorithm
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Fig. 12. Illustration for the second problem of Chen’s algorithm
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