
 XML-based Evaluation of Synthesized Queries

R. Macfadyen, Y. Chen and F. Chan

Department of Applied Computer Science, University of Winnipeg

515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9

+Supported by NSERC 105709-03 (139988) (Natural Sciences and Engineering Council of Canada)
*Supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Canada)
Abstract

XML repositories are a common means for storing docu-
ments that are available through Web technologies. As the
use of XML increases, there is a need to integrate XML
repositories with other data sources to supply XML-ori-
ented applications. In this paper, we examine documents
that express business rules in XML format, and where the
triggering and instantiation of rules requires execution of
database queries. In this way, an inference process is gov-
erned by an XML document tree that controls the synthe-
sis and evaluation of database queries.

Keywords: XML, business rule, query tree, query evalua-
tion

1 Introduction

XML and related technologies are becoming a dominant
standard for storing, managing, and exchanging informa-
tion. In its basic application, XML is used to semantically
enhance web pages through the use of user-defined tags.
This enhancement allows one to understand the context in
which data appears. For example, XML.org [1] was
formed in 1999 and its web pages provide a portal to XML
technologies for data exchange purpose. At the time of
writing, XML.org lists focus areas that include Human
Resources and Printing & Publishing; other focus areas
such as Defense, Insurance, and Retail are planned. XML
is being adapted for use in many industries.

In this paper, we consider documents describing require-
ments or rules to be met to achieve some designation or
status. As an example, consider a university setting where
specific requirements are set out for students to receive a
degree. Typically these documents are found in university
calendars and are expressed in natural language as illus-
trated in Figure 1. This sample document presents the
requirements for graduation for a 3-Year BSc in Geogra-
phy from some university. It can be used by a student to
guide the progress of his/her studies, a graduation officer

to determine if a student can graduate, or by a university
department to publish established requirements.

An observation shows that when applying such require-
ments to student histories, we can determine those stu-
dents who can graduate. This is essentially a process
deriving new information by making inference based on
rules and facts [2, 3]. However, unlike a general rule-based
system, the inferences here can be deduced only in the
order implicit in a document structure. For instance, to
know whether a student can graduate, we have to check
whether the student has earned at least the required 90
credit hours, whether the residence requirement is satis-
fied, and so on. Furthermore, to determine whether the res-
idence requirement is satisfied, we must check the number
of degree credit hours and the number of major credit
hours. Obviously, it is an ordered inference process.

In addition, during the process, a series of queries must be
evaluated and each query corresponds to some inference
step.

To handle the above problem, we introduce the concept of
synthesized query tree, which is an XML document tree,
to represent a set of queries that are evaluated along a tree
structure.

3-Year BSc (Geography)
 Graduation Requirement
 90 credit hours
 Residence Requirement
 Degree: minimum 30 credit hours
 Major: minimum 18 credit hours
 General Degree Requirement
 Humanities: 12 credit hours
 Science: 6 credit hours
 Major Requirement
 Minimum 30 credit hours
 Maximum 48 credit hours
 Required Courses
 23.202 Intro Geography I
 23.203 Intro Geography II
 23.331 Advanced Geography
 Choice
 23.205 Atmos Sci or 23.206 Earth Sci

Figure 1. Graduation Requirements
1

The remainder of this paper is organized as follows. Next
in section 2 we describe the system architecture. In section
3 we describe the requirements documents and in Section
4 we introduce the boolean and general synthesized query
trees that are required to process the documents in the con-
text of a specific student. Section 5 presents a short con-
clusion and directions for further work.

2 System Architecture
In Figure 2, we present a layered architecture for process-
ing student graduation requests.

In the architecture, the End-user Layer manages the inter-
action with the end-user and relays requests to the Appli-
cation Layer which analyses a request and activates
appropriate rules. Rule processing may require access to
XML documents and to various other data stores.

The use case shown in Figure 3 illustrates how a user uses
the system to determine a specific student’s graduation sta-
tus. From this, we can see that to handle the use case, the
systems needs to do the following:

1. retrieve relevant student identification information
(see Figure 3, steps 3 and 4)

2. manage rule execution (see Figure 3, steps 5 and 6)

3. manage connections to other data sources such as
XML and student history (see Figure 3, steps 3, 4, 5,
and 6)

All these are the main tasks of the application layer. In fact
the Application Layer is basically an inference engine that
derives knowledge using a rule set represented in an XML
document and data from various data stores. The applica-
tion layer implements all the operations that will be dis-
cussed in Sections 3 and 4.

From the above discussion, we can see that the sample
document can be considered as a rule set that will be used
to determine whether a student can graduate with a spe-

cific major. Our model assumes that querying some data
store for ancillary information is required, but in this paper
we are concerned only with query access and not updates
to these data.

3 Requirements Documents

In this section, we describe the document category we are
considering and specify how the document is coded as an
XML document. To the best of our knowledge, this docu-
ment category has not been studied elsewhere.

We consider documents that describe requirements to be
met to achieve some designation or status, as exemplified
in Figure 1. The sample document is typical of require-
ment specifications that a student must meet in order to
graduate with a specific degree. As discussed previously,
to determine if a student can graduate, an inference proc-
ess is required that must adhere to the order implicit in the
document structure.

The XML version of the sample document is shown in
Figure 4. Next we describe how this document is estab-
lished from the document shown in Figure 1.

As we know, XML documents comprise elements and
attributes, which are marked up using tags. Therefore,
when we translate a plain text like that in Figure 1 into an
XML version, tags for elements, as well as attributes have
to be defined. Especially, to model the inference process
implicted in a requirements document, the following prin-
ciples should be followed.

user request result

Figure 2. Rule Processing Architecture

End-user Layer

Application Layer

Rule Processing

Students
Histories

XML
Documents

Use Case: Obtain Student Graduation Status
Main Success Scenario
1. Graduation officer selects the 3-Year BSc (Geography)
 graduation requirements page to view
2. System presents graduation requirements page
3. Graduation officer selects a student
4. System retrieves and presents student information
5. Graduation officer requests student graduation status
6. System evaluates document rules using student history dat
 store and displays graduation status to user
Alternate Flows
5a) The student’s status relative to a specific requirement in

the document is requested
1. Graduation officer selects a specific requirement and

requests status relative to that requirement only
2. System evaluates the specific rule and displays status

Figure 3. Student Status Use Case
2

1. Any requirement/sub-requirement relationship is han-
dled as an element/sub-element relationship in XML.

2. For each element, the following attributes may be
defined:

title: each element has a title for display purposes.

display: each element may have additional text for
display purposes.

query: the query attribute holds a database query that
will be used to determine if the corresponding
requirement is satisfied for a specific student. Only
those elements that do not have sub-elements, have a
query attributes.

expected: the result expected from the query.

comparison: the operator to use to verify the query
result is the expected result.

combining: the combining attribute is a logic operator
“and” or “or” or a function call, which indicates how
sub-requirements are combined. Only those elements
that have sub-elements have a combining attribute.

We give an example of the process to construct an XML
document. Consider the Residence Requirement. This
requirement has two sub-requirements as shown in Figure
1. So we need a Residence element and two sub-elements
for Degree and Major in its XML version. Furthermore,
the Residence element has a title with a value of “Resi-
dence Requirement”, but does require any further text to
be displayed and so there is no value for the display
attribute. There is no query to execute to determine if the
Residence Requirement is satisfied, rather it is necessary
to determine if all sub-requirements are satisfied. There-
fore, there is no value for the query attribute; queries will
appear in its sub-requirements. Lastly, since the Residence
Requirement has sub-requirements, the combining
attribute must be “and” since both sub-requirements must
be satisfied for the Residence Requirement to be satisfied.

We continue this example one step further by considering
the Degree Sub-requirement. This requirement does not
have sub-requirements itself and so we do not define any
sub-elements of the Degree element. The Degree element
has a title with a value of “Degree Requirement”, and
requires a value for the display attribute for the additional
text of “minimum 30 credit hours“. The Degree Require-
ment needs a value for the query attribute so that the mini-
mum of 30 credits can be verified against a database of
student history information. This query requires a parame-
ter for the student number since the student would not be
known until the query is executed. Note that the exact
function or query expression required here depends on the
database system being used. To pass the requirement, the
result must be at least 30 and so the expected attribute is
“30” and the comparison operator is “>=“. Finally, since
the Degree Requirement has no sub-requirements, the
combining attribute is not given any value. The above dis-
cussion leads to the following definitions which appear in
the XML document shown in Figure 4.

Figure 4. XML expression of graduation requirements

<GeographyRule title= “Degree Requirement for 3-Year BSc (Geography)”,
 type=”AND”>
<GraduationRule title=”Graduation Requirement”,
 display=”90 credit hours”, query= “... ”, type=”AND”>
</GraduationRule>
<ResidenceRule title = ”Residence Requirement”,
 combining = ”AND” >
 <DegreeRule title = ”Degree”,
 display = ”minimum 30 credit hours”,
 query = ”SELECT sum(creditHours)
 FROM studentHistory
 WHERE
 studentNumber=parameterValue”,
 expected=”30”,
 comparison= “>=” >
 </DegreeRule>
<majorRule title=”Major”, display=”minimum 18 credit hours”,
 query=”... ”, ...>
</majorRule>
</ResidenceRule>
<GeneralRule title=”General Degree Requirement,
 type=”AND”>
 <HumanitiesRule title=”Humanities”,
 display=”12 credit hours”, query=”... ”, ...>
 </HumanitiesRule>
 <ScienceRule title=”Science”, display=”6 credit hours”, query=”... “, ...>
 </ScienceRule>
</GeneralRule>
<MajorRule> title=”Major Requirement”
 type=”AND”>
 <MinMaxRule
 display=”Minimum 30 credit hours, Maximum 48 credit hours”,
 query=”... “, ...>
 </MinMaxRule>”
 <ReqCoursesRule title=”Required Courses” ,
 type=”AND”>
 <Course
 display=”23.02 Intro Geography I”, query=”..., ...> </Course>
 <Course
 display=”23.203 Intro Geography II”, query=”...”, ...> </Course>
 <Course
 display=”23.331 Advanced Geography”, query=”...”, ...> </Course>
 </ReqCoursesRule>
 <ChoiceRule title=”Choice”,
 display=”23.205 Atmos Sci or 23.206 Earth Sci”
 type=”OR”>
 <Course query=”...” , ...></Course>
 <Course query=”...” , ...></Course>
 </ChoiceRule>
</MajorRule>
</GeographyRule>
3

Figure 4 can be viewed as a set of rules that require evalu-
ation to know the graduation status of a student. Specifi-
cally, the rules will be evaluated in a bottom-up way. That
is, to know the value of any rule, the value of its contained
rules must be made available first. In the next section, we
discuss how such a set of rules are evaluated.

4 Synthesized Query Trees

In this section, we describe the evaluation of the rules rep-
resented in an XML document. For this purpose, we intro-
duce the concepts of synthesized query trees, which are
implemented in our system to control the inference proc-
ess. We distingush two kinds of synthesized query trees.
One is the so called boolean synthesized query trees,
which will be discussed in 4.1. The other is its extended

version for handling more complicated cases, and will be
discussed in 4.2.

4.1 Boolean Synthesized Query Tree

The documents discussed in Section 3 forms a single com-
pound rule that comprises some other sub-rules. The eval-
uation of such a rule requires either for all of its sub-rules
to be true, or, for at least one sub-rule to be true. To control
the evaluation of such a rule, as well as the execution of
the queries involved, we present the Boolean Synthesized
Query Tree as follows.

Definition 1: a boolean synthesized query tree (BSQT) is a
tree where each leaf node v is associated with a boolean
query , and each internal node v is labelled with a tag
T(v), and an operator θ (∧ or ∨); and each node v is
assigned a boolean value, V(v), determined as follows:

a) for a leaf node, V(v) is true if the return value of
 is not empty; otherwise, it is false, and

b) for an internal node, with children v1, ... vn,

In Figure 5, we show a tree which is a BSQT, derived from
the XML document shown in Figure 4. From this, we can
see that the whole process of evaluating the corresponding
rule is explicitly specified.

We also notice that in the BSQT an internal nodes is either
an and-node or an or-nodes according to the operator used

<ResidenceRule title = ”Residence Requirement”,

combining = ”AND” >

<DegreeRule title = ”Degree”,

display = ”minimum 30 credit hours”,
query = ”SELECT sum(creditHours)

FROM studentHistory
WHERE

studentNumber=parameterValue”,
expected=”30”,

comparison= “>=” >

</ResidenceRule>
</DegreeRule>

Residence

Degree Major

General Major

Required
CoursesHuma-

Science

Graduation
or-node:

Choice

3-Year BSc (Geography)

and-node:

Figure 5. A BSQT for graduation requirements

Q1:

Q1

Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9 Q10

Q11

select *

from StudentHistory
where studentNum = x and

gradePoint >= 1
group by studentNum

having sum(crHours >=90)

Q2: select *

from StudentHistory
where studentNum = x and

institution = ‘UW’
group by studentNum

having sum(crHours >=90)

Q3: select *

from StudentHistory
where studentNum = x and

property = ‘major’
group by studentNum

having sum(crHours >=18)

Q4: select *

from StudentHistory
where studentNum = x and

area = ‘humanities’
group by studentNum

having sum(crHours >=12)

Q5: select *

from StudentHistory
where studentNum = x and

area = ‘science’
group by studentNum

having sum(crHou rs >=6)

Q6: select *

from StudentHistory
where studentNum = x and

courseNum = 23.205

Q7: select *

from StudentHistory
where studentNum = x and

courseNum = 23.206

Q8: select *

from StudentHistory
where studentNum = x and

courseNum = 23.202

Q9: select *

from StudentHistory
where studentNum = x and

courseNum = 23.203

Q10: select *

from StudentHistory
where studentNum = x and

courseNum = 23.331

Q11: select *

from StudentHistory
where studentNum = x and

property = ‘major’
group by studentNum
having
sum(30 <= crHours <= 48)

nities

Q v()

Q v()

V v() V v1()= θV v2()θ…θV vn()
4

at that node. In addition, the value of any node depends on
the values of its descendants. To determine the value of a
node v, V(v), the value of each descendant node must be
determined first. Therefore, the function V(v) is evaluated
bottom-up.

For instance, the 3-Year BSc (Geography) Requirement is
satisfied if all of Graduation Requirement, Residence
Requirement, General Requirement, and Major Require-
ment are satisfied. Thus, the node labelled 3-Year BSc
(Geography) is an internal and-node representing a com-
pound rule where all sub-rules must be true for the require-
ment to be satisfied. However, the node labelled Choice is
an internal or-node representing a choice a student must
make: to take one of two courses 23.205 or 23.206 (see Q6

and Q7 in Figure 5).

Of course, some rules do not have sub-rules; for instance,
the Degree Requirement specifies that the student must
have completed at least 30 credit hours at the institution
(see Q2 in Figure 5). There is no sub-rule this rule depends

on; this rule requires the evaluation of a query to deter-
mine if it is satisfied or not. Degree Requirement is a leaf
node in the BSQT.

A leaf node represents a simple requirement that is not
subdivided any further. In Figure 5, queries are indicated
for each leaf node. For instance, the Graduation require-
ment is met if the student has at least 90 credit hours in
courses that have been completed satisfactorily (a grade
point of at least 1 in each course; see Q1 in Figure 5). This
can be determined by querying an appropriate data store,
and the result is either true or false. For other leaf nodes,
similar queries would be specified. For the purposes of
this paper, we consider these queries are explicitly coded,
as they are typically done for database applications.

Each node in the tree in Figure 5 expresses a business rule
for graduation. The tree is organized in such a way that all
data access is at leaf nodes and each internal node organ-
izes and accumulates the results from its child nodes using
logical and or or operators.

When the graduation officer requests a student’s gradua-
tion status for a degree, the graduation rules must be eval-
uated bottom-up. This is accomplished by the application
layer performing a post-order traversal of the tree. When
leaf nodes are being evaluated, a data store of student his-
tory information must be accessed. Typically, this data
store is a relational database and SQL would be used by an
application layer to retrieve relevant information for the
officer to assess.

4.2 General Synthesized Query Tree

We now generalize our model to distributed documents. In
our exemplary requirements document, there is a list of
required courses for the degree. Suppose the list of courses

is not in this XML document; rather, suppose the list of
required courses is stored in some data store and that the
list can only be retrieved in a query. This situation is one
where the list of required courses is maintained separately
from this XML document.

As we will discuss, this type of document requires more
expressive data manipulation, and so we propose a more
general query tree where a leaf node may be single- or set-
valued, and an internal node may have operators other
than and or or associated with it. We define the general
synthesized query tree as below.

Definition 2: a general synthesized query tree (GSQT) is a
tree where each leaf node v is associated with a query
Q(v), which returns a value or a set of values, and each
internal node v is labelled with a tag T(v), a function f, and
each node will be assigned a value V(v), as follows:

a) for a leaf node, its value V(v) is equal to the return
value of , i.e., , and

b) for an internal node, with children v1, ... vn,

In Figure 6, the same requirements as before are illus-
trated, but we imply that the set of required courses is
obtained using a query submitted against some data store.
Here, we assume that external data can be obtained from
any available or required data store.

Now, given that the required courses for the 3-Year BSc
(Geography) are kept elsewhere, to determine if a student
has successfully passed all courses, the process of evaluat-
ing the requirement has to be carried out differently from
before. To evaluate the requirement, the graduation officer
must run two queries and combine their results as we
explain next.

First, a list of courses successfully passed by the student is
obtained. Let us name this result SuccessResult and
assume this result is a relation with two attributes: student
number and course number. Since we are considering a
single student, the same student number will appear in
each tuple. The other list obtained is a list of required
courses. Let us name this result RequiredList and assume
this result is a relation with one attribute: course number.
Note these two relations have one common attribute:
course number. The graduation officer needs to determine
if the set of courses successfully passed includes the set of
required courses. To do this, the relational algebra division
operator [7] should be conducted:

.

The result of this operation is a relation of one attribute:
student number. In the result, a student number appears if
the student number appears in SuccessResult with some
course numbers which form a super-set of RequiredList. In

Q v() V v() Q v()=

V v() f V v1() V v2() … V vn(), ,,()=

SuccessResult studentNum courseNum,[] RequiredList CouseNum[]÷
5

our example, if the student has successfully taken each
required course, then the result of division is a relation of
one tuple having the student number of that student. If the
student has not taken all of the required courses then our
result is a relation of zero tuples - an empty relation. The
division operator is difficult to explain. It is even more dif-
ficult to express in the standard relational language SQL
and error-prone since it is not directly supported in that
language. For this reason, the document designer may pre-
fer a different approach where division is directly sup-
ported. We note that the division can be expressed simply,
as shown in Figure 6.

In Figure 7, we illustrate a subtree rooted at Major in the
GSQT for our running example, for which various func-

tions are required to manipulate the values obtained from
descendant nodes in the GSQT. For instance, associated
with v8, we have a division operation while for v6, the
operation is the projection.

In the Figure, the functions f() and g() are defined as fol-
lows:

f(x, y): if x ∈ y, returns true; otherwise, false.

g(x): if 30 ≤ x ≤ 48, returns true; otherwise, false.

As with the other operations, they take the values from the
corresponding child nodes as the parameters. We also note
that each leaf node in the tree is associated with a query,
which provides the initial values for computation. There-
fore, the evaluation of V(v) for any node is performed bot-
tom-up. For instance, the value of v8, V(v8), is calculated

by deviding the result of Q(v10) through the result of
Q(v11) (i.e., Q(v10) ÷ Q(v11); both of them come from its
children); V(v3) is obtained by computing g(V(v4)), and so

on.

The GSQT is similar to the concept of query trees used for
constructing query execution plans in relational database

systems [7]. We note that, however, our documents have a
number of queries and for the purpose of evaluating sub-
rules separately, it is necessary for each sub-rule to be self
contained and for its query requirement to be expressed
independently of other rules. Furthermore, for queries in
our example, several queries access the same data and
some query results can even be derived from other queries,
which cannot be expressed in any kind of query trees.
(Finally, if this knowledge is exploited during document/
query processing, it is possible for us to realize efficient
query processing.)

In [5, 6], distributed XML documents are considered. In
these, documents queries are used to retrieve distributed
portions of an XML document. The queries and docu-
ments in [5, 6] are not the same as the situation here since
in our model the queries we are considering are used to
retrieve data from (for example) SQL database systems.

select all
required courses

select all
courses taken
by student s1

Q3 = Q1 divide Q2

from external source

 Figure 6. Division operation

Q1: Q2:

Major

Select sum(cr hrs)

 Figure 7. Graduation requirements as a GSQT

select all
required courses

select all
courses taken
by student x

Q(v10) ÷ Q(v11) select *
where course taken
is 23.205 or 23.206

where student is s1
from ...

from external source

V(v8) =

v0

v1 v2 v3

v4 v5

v7
v8

v9

v10 v11

Q(v7):

Q(v10): Q(v11):

Q(v7): Q(v9):Q(

V(v4) = πSTUDENTNUM(V(v7)) V(v5) = πSTUDENTNUM(V(v8))
v6 V(v6) = πSUM(V(v9))

V(v0) = V(v1) ∧ V(v2) ∧ V(v3)

V(v1) = f(x, V(v4))

V(v2) = f(x, V(v5))

V(v3) = g(V(v4))
6

5 Conclusion and Future work

In this paper, we consider a kind of documents, the so
called requirement documents. Each of them can be con-
sidered as a single compound rule. When such a document
(e.g. BSc Graduation Requirement) is evaluated in a cer-
tain context (e.g. for a specific student) there will be a
value generated for it. In our example, the value generated
for the document is the graduation status for a particular
student. For this type of document, the BSQT and GSQT
succinctly represent the document evaluation and query
requirements; a simple tree traversal is required to evalu-
ate a document.

The BSQT and the GSQT structures can be applied to any
part of a document, and the BSQT and GSQT could
appear in multiple places of a document. For example, the
General Calendar published by a university would have
many GSQTs, one for each degree program for each
department.

We are currently developing a prototype system which
requires a complete specification of rule processing, syn-
thesized tree instantiation, and connection to a database
system. Concurrently, we intend to examine other issues
related to the processing of these types of query-based
documents, such as rule markup, event-condition-action
model, Document Object Model, query optimization,
workflow, and active XML documents. For example, the
event-condition-action model for rule processing can be
incorporated if we take into account the updates to the Stu-
dent History Data Store. At the end of term, when marks
for a student have been entered the graduation, require-
ments document/rule processing can be activated.

References

[1] XML.org, http://XML.org

[2] Business Rules Group, Defining business rules: What
are they really?, 3rd. edition, July 2000, http://www.Busi-
ness RulesGroup.org.

[3] R. G. Ross, The business rule book, 2nd. edition, Busi-
ness Rules Solutions, Houston, 1997.

Jae Kyu Lee, Mye M. Sohn, The extensible rule markup
language, Communications of the ACM, May 2003, Vol.
46, No. 5.

[4] James Bailey, Alexandra Poulovassilis, Peter T. Wood,
An event-condition-action language for XML,
WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA,
ACM 1-58113-449-5/02/0005.

[5] Angela Bonifati, Stefano Ceri, Stefano Paraboschi,
Active rules for XML: A new paradigm for E-services,
VLDB Journal 10: 39-47 (2001)

[6] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R.
Weber, Active XML: peer-to-peer data and web services
integration (demo), Proceedings of VLDB, 2002.

[7] R. Elmasri, S. B. Navathe, Fundamentals of database

systems 4th. edition, Addison-Wesley, 2003, ISBN 0-321-
1.
7

	Abstract
	1 Introduction
	2 System Architecture
	3 Requirements Documents
	4 Synthesized Query Trees
	4.1 Boolean Synthesized Query Tree
	4.2 General Synthesized Query Tree

	5 Conclusion and Future work
	References

