
 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2018) 000–000  

www.elsevier.com/locate/procedia 

 

1877-0509 © 2018 The Authors. Published by Elsevier B.V.  

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

Selection and peer-review under responsibility of the Complex Adaptive Systems Conference with Theme: Engineering Cyber Physical Systems.        

Complex Adaptive Systems Conference with Theme: Cyber Physical Systems and Deep Learning, CAS 2018, 

5 November – 7 November 2018, Chicago, Illinois, USA  

Predicting the future with Artificial Neural network  

Anifat Olawoyin*, Yangjuin Chen 

University of Winnipeg, Winnipeg R3B2E9, CANADA 

Abstract 

Accurate prediction of future values of time series data is crucial for strategic decision making such as inventory 

management, budget planning, customer relationship management, marketing promotion, and efficient allocation 

of resources. However, time series prediction can be very challenging especially when there are elements of 

uncertainty including natural disaster, change in government policies and weather condition.  In this research, four 

different multilayer perceptron (MLP) artificial neural networks have been discussed and compared with 

Autoregressive Integrated Moving Average (ARIMA) for this task. The models are evaluated using two statistical 

performance evaluation measures, Root Mean Squared Error (RMSE) and coefficient of determination (R2). The 

experimental result shows that a 4-layer MLP architecture using the tanh activation function in each of the hidden 

layer and a linear function in the output layer has the lowest prediction error and the highest coefficient of 

determination among the configured multilayer perceptron neural networks. In addition, comparative analysis of 

performance result reveals that the multilayer perceptron neural network MLP has a lower prediction error than the 

ARIMA model. 

 

© 2018 The Authors. Published by Elsevier B.V.   

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

Selection and peer-review under responsibility of the Complex Adaptive Systems Conference with Theme: Engineering Cyber 

Physical Systems. 

 
Keywords: Artificial Neural Network, ARIMA, Multilayer Perceptron, Time Series, Data Preprocessing 

* Corresponding author. E-mail address: olawoyin-a@uwinnipeg.ca 

1. Introduction 

Machine learning is a domain of computational intelligence focusing on models that can iteratively learn from 

data to find hidden insights and patterns without being explicitly programmed. Learning methods can be supervised, 

semi-supervised or unsupervised. The Artificial neural network (ANN) is a form of the supervised machine learning 

http://www.sciencedirect.com/science/journal/22107843
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000 

model that mimics a biology nervous system. The ANN can detect patterns and trends that are too complex for human 

or other statistical models such as non-linearity in time series data to analyse. Real world applications of the ANN 

include pattern classification such as handwritten recognition, time series prediction, image compression, credit 

scoring for loan approval, and machine control, just to name a few.  

This research designs a Multilayer Perceptron neural network for time series prediction and compares this with 

one of the traditional statistical time series prediction techniques known as the Autoregressive Integrated Moving 

Average, ARIMA. The study varies the number of hidden layers and investigates the best activation function for a set 

of data. In addition, this study explores the significance of pre-processing in time series prediction through data 

transformation by which a dataset having 5 attributes and 1,098,044 instances is converted to another dataset having 

2 attributes and 366 instances by using aggregation, equal frequency binning and feature selection techniques.  

The rest of this paper is organized as follows: Section 2 gives the background information and related works, 

Section 3 presents the main theoretical framework, Section 4 describes the implementation details, Section 5 is devoted 

to the experimental result and discussion. Finally, a short conclusion is set forth in Section 6. 

2. Related Work 

Artificial Neural network (ANN) has been applied to time series forecasting problems by many researchers. The 

study in [1] employed the Elman recurrent neural network (ERNN) with stochastic time effective functions for 

predicting price indices of stock markets. The ERNN can keep memory of recent events in predicting the future. The 

study in [2] used the Multilayer Feed Forward Neural Network (MLFFNN) and the Nonlinear Autoregressive models 

with the Exogenous Input (NARX) Neural Network to forecast exchange rates in a multivariate framework. 

Experimental findings indicated that the MLFFNN and NARX were more efficient when compared with the 

Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential Generalized Autoregressive 

Conditional Heteroskedastic (EGARCH). 

Another advanced statistical technique for predicting future time series is the Autoregressive Integrated Moving 

Average (ARIMA) model, which assumes that the time series data are stationary. That is, the data are not time 

dependent. Thus, to use the ARIMA for time series prediction requires checking for stationarity; and a common 

approach to do this is to use the augmented Dickey-Fuller test (ADF) to test the presence of a unit root in a sample. 

Specifically, if the p-value is greater than 0.05, null hypothesis is accepted.  

    Besides, the hybrid techniques combining ARIMA and ANN have been shown to be successful by [3,4, 5, 6]. 

However, in [3] it is assumed that the linear and non-linear pattern can be separately modelled, their relationship is 

additive, and the residual from the linear model will contain only the non-linear pattern which may lead to performance 

degeneration, for instance, if the relationship is multiplicative. The empirical evidence from the study in [7] showed 

that such integrated approaches may not necessarily outperform the individual forecasting techniques. Although, the 

authors in [4] proposed a hybrid model to overcome the limitation of the traditional hybrid models and guarantee that 

the model will not be worse than using the individual ARIMA and artificial neural network, this assurance cannot be 

true in all cases. Hence, in this study we focus on the individual model comparison using the parking tickets dataset. 

 

3.0 THEORETICAL FRAMEWORK 

3.1 Artificial Neural Network (ANN) 

The Artificial Neural network (ANN) is made up of a series of interconnected nodes that simulate individual 

neurons like a biological neural system. The ANN can be used for classification, pattern recognition and forecasting 

problem in situations of complex processes characterized by chaotic features such as trends and seasonality observed 

in parking ticket data, nonlinear and non-stationary in stock market data, chaotic features in ozone concentration 

measurements and weather related problems with non-linear relationships between inputs and outputs. 

The earlier ANN has only a single layer and follows a local learning rule known as the Widrow-Hoff or Perceptron 

Learning Rule (PLP) to update the weights associated with a network. A single layer neural network has no hidden 

layer; each input neuron has an associated weight and the output neuron uses a simple Linear Threshold Unit (LTU) 

activation function. The activation function commonly used in most artificial network configurations is the sigmoid 



 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000  3 

function because of its ability to combine linear, curvilinear and constant behaviors, as well as being smoothly 

differentiable. 

The single perceptron output is defined by 

𝒕 = 𝒘𝟎 + 𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐 … + 𝒘𝒎𝒙𝒎         (1) 

where  t = threshold, 𝒘𝟏, 𝒘𝟐 … 𝒘𝒎 are the associated weight of the input attributes 𝒙𝟏, 𝒙𝟐 … 𝒙𝒎. 

The major drawbacks of a simple neural network include: 

• Single neurons cannot solve complex tasks; 

• It is restricted to linear calculations.  

• Nonlinear features need to be generated by hand, an expensive operation. 

The focus of this paper is the Multilayer Perceptron (MLP). A multi-layer perceptron is a feedforward neural 

network consisting of a set of inputs, one or more hidden layers and an output layer. The layers in MLP are fully 

connected such that neurons between adjacent layers are fully pairwise connected while neurons within a layer share 

no connection. 

The input represents the raw data (𝑥1, … , 𝑥𝑛) fed into the network. The raw data and the weight are fed into the 

hidden layer. The input to the hidden layer is thus given as 

 𝐼 =  𝑓(𝑥) = ∑ (𝑥𝑖𝑤𝑖)𝑛
𝑖=1   (1) 

The hidden layer is the processing unit where the learning occurs. The hidden layer transforms the values received 

from the input layer using an activation function. A commonly used activation function is the sigmoid function given 

as 

 σ = 1/(1 + e-x) (2) 

Other activation functions are: 

i. tanh(x)- non-linearity activation function is a scaled sigmoid function given as: 

 

𝑡𝑎𝑛ℎ(𝑥) =
2

1+𝑒−2𝑥 − 1 (3) 

tanh(x) can also be expressed in the form of sigmoid as 2σ(2x) – 1.   

ii. Rectifier Linear unit (RELU) is an activation function with a threshold of zero given as: 

 𝑓(𝑥) = max (0, 𝑥)        (5) 

 The output of the hidden layer is given as: 

H = 𝑓(𝐴(𝐼)) = 𝑓(𝐴(𝑓(𝑥)) = 𝑓(𝐴(∑ (𝑥𝑖𝑤𝑖)𝑛
𝑖=1 )   (6) 

where A is the activation function. Assuming that the sigmoid gives 

H = 1/(1 + 𝑒− ∑ 𝑥𝑖𝑤𝑖
𝑚
𝑖=1 )        (7) 

The output layer receives the output and the associated weight of the hidden layer neurons as inputs. The 

output 𝑌 of the output layer assuming a sigmoid function is given as 

𝑌 =  𝑓(𝐴(∑ ℎ𝑗𝑤𝑗
𝑚
𝑗=1 ))        (8) 

where  ℎ𝑗  and 𝑤𝑗  are the output and weight of individual neurons of the hidden layer.  

The activation function of the output layer is commonly a linear function, and depending on the task, a tanh or a 

sigmoid function may be applicable. 

A multilayer perceptron architecture having 2 hidden layers denoted as 2-layer multilayer perceptron neural 

network is shown in Figure 2 

The main issue with a Multilayer Perceptron neural network is weight adjustment in the hidden layer which is 

necessary to reduce the error at the output layer. The weight adjustment in the hidden layer is achieved using 

backpropagation algorithm.  The back propagation takes the sequence of training samples (time series data for this 

study): 



4 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000 

 (𝑥1, 𝑦1), (𝑥2, 𝑦2) … … . , (𝑥𝑛 , 𝑦𝑛)  

as the input and produces a sequence of weights (𝑤0, 𝑤1, 𝑤2 … … . 𝑤𝑛) starting from some initial weight 𝑤0, usually 

chosen at random [4]. Generally, the backpropagation rule is given as: 

∆w =  w − 𝑤𝑜𝑙𝑑 = −η
𝜕𝐸(𝑤)

𝜕𝑤
  =  η ∂𝑥       (9) 

where 𝑤 represents the weights, E(w) is the cost function that measures how far the current network’s output is from 

the desired one. ∂E(w)/∂w is the partial derivative of the cost function E that specifies the direction of the weight 

adjustment to reduce the error,  is the learning rate, measured as the number steps for each iteration of the weight 

update equation.  

The weight change for the hidden layer is given as: 

∆w =  η ∂𝑗𝑥𝑖          (10) 

where ∂𝑗 = 𝑜𝑗 (1 − 𝑜𝑗 ) ∑ 𝑤𝑗𝑧 ∂𝑗
. 

The weight change for the output layer is given as: 

∆w =  η ∂𝑧𝑜𝑗          (11) 

where ∂𝑧 = 𝑜𝑗 (1 − 𝑜𝑗 )(𝑇 − 𝑜𝑗 ), and T is the target output and  𝑜𝑗  is the output. 

The network is trained by adjusting the network weights as defined in equation 9 -11 above to minimize the 

output errors on a set of training data.  

The training of a multilayer perceptron can be summarized as: 

• Given a dataset D with (𝑥1, … , 𝑥𝑛) input and P patterns for the network to learn  

• The network with n input units is fully connected to h nonlinear hidden layers via connection weight 𝑤𝑖𝑗  

associated with each input unit. 

• The hidden layer is fully connected to T output units via connection weight 𝑤𝑖𝑗  associated with each neuron 

in the hidden layer. 

• The training is initiated with random initial weight for each neuron in the network.  

• An appropriate error function  𝐸(𝑤𝑗𝑧), for instance the Mean Square Error (MSE) to minimize by the 

network is predetermined. 

• The learning rate η is also predetermined. 

• The weight associated with each neuron in the hidden layer and the output layer is updated using the 

equation: ∆w = −η
𝜕𝐸(𝑤)

𝜕𝑤
  until the error function is minimized. 

A momentum 𝛼 is an inertia term used to diminish fluctuations of weight changes over consecutive iterations. 

Thus, the weight update equation becomes: 

∆𝑤 = −η
𝜕𝐸(𝑤)

𝜕𝑤
+   𝛼 ∆𝑤𝑖𝑗       (12)  

            

Figure 1: Single Layer Perceptron Neural Network   Figure 1: Multi-Layer Neural network (MLP) 

      

 

 

 

 

 

Y=  𝑓(𝐴(∑ ℎ𝑗 𝑤𝑗
𝑚
𝑗 =1 )) 

 



 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000  5 

3.2 The Auto Regressive Integrated Moving Average (ARIMA) 

ARIMA is proposed by Box and Jenkins [2].  The model assumes that time series is stationary and follows the 

normal distribution. To achieve the notion of stationary in time series, the model subtracts an observation at time t 

from an observation at time t - 1. Here, the name ‘ARIMA’ stands for  

i. Autoregressive, AR - the lag of the stationary time series data. AR is represented as p in the model. 

ii. Integrated, I - a differencing transformation applied to time series to make it stationary. A stationary series is 

independent of observation time, represented as d in the model. 

iii. Moving average, MA - the lag of the forecast errors and is represented as, q in the model. 

Thus, a non -seasonal ARIMA model can be summarized as  𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) where: 

p is the number of autoregressive terms; 

d is the number of non-seasonal differences; 

q is the number of moving average terms. 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)  Forecasting equation is defined with respect to the number of differencing necessary to make the 

time series data stationary as follows: 

Let Y=   original series;   y = stationary series; d = 0 (indicating  no difference); then  𝑦𝑡 = 𝑌𝑡. 

First difference, d = 1 then  𝑦𝑡 = 𝑌𝑡 − 𝑌𝑡−1. 

Second Difference, d = 2 then  𝑦𝑡 = (𝑌𝑡 − 𝑌𝑡−1) −  𝑌𝑡−1 − 𝑌𝑡−2=  𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2
1. 

To use ARIMA for time series prediction requires checking for stationarity, a common approach is to use the 

augmented Dickey-Fuller test (ADF). The ADF tests the presence of a unit root in a sample; if the p-value is greater 

than 0.05, null hypothesis is accepted. This research uses the statsmodels package in python to implement the ARIMA 

model for the dataset. 

4.0 IMPLEMENTATION 

 

4.1 Development Environment and Tools 
 

All our experiments are performed on a 64-bit operating system. The processor is 2.4GHz Intel(R) core™i5 laptop, 

8GB installed memory. Programming language is Python, and Development environment is Enthought Canopy.  The 

used Machine learning tool is Scikit-learn [9], Keras libraries [10] with Pandas, NumPy, stats Models and Matplotlib. 

4.2 Dataset 

The dataset for this study is a set of parking contravention transactions updated monthly by the city of Winnipeg 

on open data government license available in [11]. The dataset has five attributes and over a million instances 

comprising of parking tickets issued between January 1st, 2010 and March 31st, 2017. For this paper, seven years’ 

data (2010-2016) are used. The description and preview of the dataset is presented in Table 1 and table 2, respectively. 

Table 1:Dataset Description 

Dataset Name Number of attributes Number of Instances 

Parking_Contravention_Citaitons.csv 5    1.09M 

Table 2: Sample data 

Issue Date Ticket Number Violation Street Location 

12/13/2016 12:59:55 PM 70219201 01Meter Expired Hargrave ST (49.8884066, -97.142226) 

12/13/2016 12:58:05 PM 74920668 05Overtime Kenneth ST (49.839005, -97.149891) 

12/13/2016 12:53:09 PM 75508386 05Overtime Girton BLVD 
 

12/13/2016 12:51:36 PM 73418686 01Meter Expired Portage AVE (49.89496, -97.136288) 

 

 
1 Robert Nau Lecture notes on forecasting: Fuqua School of Business. Duke Universityhttp://people.duke.edu/~rnau/Slides_on_ARIMA_models-

-Robert_Nau.pdf 



6 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000 

 

In Table 2, the data types of the five attributes are as follows: 

Issue Date – Timestamp; 

Ticket Number – Transaction unique identifier; 

Violation (offence) – Text; 

Street – Text; 

Location – (x, y) (coordinate). 

 

 4.3 Evaluation 

The models are evaluated using the root mean square error (RMSE) and coefficient of determination (R2).  

• The RMSE is the square root of mean square error, a risk metric corresponding to the expected value of the 

squared error loss function, defined as: 

   𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜎̌𝑡 − 𝜎𝑇)2𝑛

𝑖=1
.      (13) 

• The coefficient of determination is a measure of goodness of the model. It explains how well future samples are 

likely to be predicted by the model [4]. The value of R2 can be negative or positive. A negative R2 defines an 

arbitrary worse model, defined as 

   𝑅2 = 1 −  
∑ (𝑦𝑖− 𝑦̅𝑖 )2𝑛−1

𝑖=0

∑ (𝑦𝑖− 𝑦̅ )2𝑛−1
𝑖=0

  , where 𝑦̅ =
1

𝑛 ∑ 𝑦𝑖
𝑛−1
𝑖=0

.    (14) 

4.4 Implementation Chart 

This study pre-processes the dataset before designing the models. The output of the pre-processing serves as 

inputs to the two major models under consideration. The Multilayer Perceptron neural network is run first, and then 

followed by the ARIMA model. Comparative analysis of the results is done after the experiment. The working flow 

for this study is depicted in Figure 3. 

 

5 Experiment and Results  

5.1 Pre-processing 

The pre-processing stage involves aggregation of the dataset into daily counts and weekly average is then 

calculated. Using a feature selection, the end-date of each week is taken as the period and the weekly average is the 

time series data. Thus, after the pre-processing stage the dataset has 2 attributes and 366 instances. Sample outputs of 

the pre-processing stage are presented in table 3.  

The summary statistics for the dataset presented in table 4 shows that the minimum weekly mean between year 

2010 and 2016 is 178 tickets while the maximum is 1341 tickets. The graph for the dataset presented in figure 4 shows 

that there is a spike in ticket numbers around January-February each year when the snow related violation tickets are 

issued.  

5.2 ARIMA (p, d, q) Model 

The assumption of the ARIMA model is that the time series is independent of time. Thus, the Augmented Dickey-

Fuller (ADF) test is performed to test for stationarity in time series data. The ADF null hypothesis states that a sample 

data has unit root, and the data is not stationary while the alternative hypothesis states that the data is stationary.  If 

the p-value > 0.05 the null hypothesis is accepted and if p-value < 0.05 the null hypothesis is rejected. 

The result of the Augmented Dickey-Fuller (ADF) presented in table 4 shows that the p-value < 0.05. Thus, the data 

is stationary, and the null hypotheses is rejected.  

Since the time series is stationary, the value of parameter d is assumed to be zero (𝑑 = 0). 

The significant of the pre-processing stage is observed in the result of the augmented Dickey-Fuller Test. The 

mean weekly ticket calculated at the pre-processing is a useful tool in transforming time series data to stationary.  

Next, the log transformation is applied to the dataset for scaling and the ACF and PACF are plotted to determine 

the value of p and q parameters of the𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞). The Autocorrelation Function (ACF) is defined as a measure 



 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000  7 

of correlation between the time series with a lagged version of itself. 

The Partial Autocorrelation Function (PACF) is defined as the correlation between a time series with a lagged 

version of itself after removing the effect already explained by previous lag. For instance, at lag 5, say X5, the PACF 

is the correlation after removing the effect of x1, x2, x3 and x4. 

Parameter p is defined as the point where the PACF crosses the upper confidence interval for the first time. From 

the result in Figure 5, p = 1. Parameter q is defined as the point where the PACF tail off. From the result in Figure 4, 

q = 2. 

The experiment was tested with varying training percentage - 75%, 80%, 85% and 90% of the dataset and the 

remaining percentage (25%,20%,15%, and 10%) is used for testing. The 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) is implemented using  

 𝐴𝑅𝐼𝑀𝐴(1, 0, 2),  𝐴𝑅𝐼𝑀𝐴(2, 0, 2) , 𝐴𝑅𝐼𝑀𝐴(3, 0, 2) and 𝐴𝑅𝐼𝑀𝐴(4, 0, 2), respectively. The result presented in table 

5 shows performance degradation at 15% where RMSE increases for all models except  𝐴𝑅𝐼𝑀𝐴(2,0,2); hence, the 

result obtained at 10% is considered to be overfitting while 𝐴𝑅𝐼𝑀𝐴(2,0,2) using 20% testing (RMSE = 0.145; R2 = 

0.301) is taken as the baseline for comparison.     

 

5.3 Multilayer Perceptron (MLP) Neural Network 

 Similar to the ARIMA model implementation, the MLP is tested with varying training and testing percentage 

ranging from 75% to 90% and the test data ranges from 10% to 25%. Four different MLP architecture were designed 

in this paper; a 2-layer with one neuron in the hidden layer denoted as 2H1, a 2-layer with four neurons in the hidden 

layer denoted as 2H4 to test the effect of increasing neuron, a 3-layer having four neurons in one hidden layer and one 

neuron in the other layer denoted as 3H41 and 4-layer having four neurons in the second layer, one neuron in the third 

layer and one neuron in the last layer denoted as 4H411. 

 

                        

Figure 2: Implementation Chart   Figure 4: Dataset Trends Graph   Figure 5: ACF and PACF Plot 

Table 3: Pre-Processing Sample Output    Table 4. Pre-Processing Data Summary  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANN 

ARIMA(p, d, q) 

 

 

Period Weekly Mean 

 2010-01-03 178.33 

 2010-01-10 442.57 

2010-01-17 483.57 

2010-01-24 527.86 

2010-01-31 513.43 

Period Weekly Mean 

 2010-01-03 178.33 

 2010-01-10 442.57 

2010-01-17 483.57 

2010-01-24 527.86 

2010-01-31 513.43 



8 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000 

Table 5: Augmented Dickey-Fuller (ADF) Test  Table 6: ARIMA (p, d, q) Results-( RMSE and R2) 

 

       

 All the models are separately trained for up to 1000 epochs using the sigmoid activation function and a 

comparison is made using the tanh activation function. The relationship between the sigmoid and tanh activation 

functions is stated in equation (6).  The optimizer selected for the training is the Stochastic Gradient Descent (SGD) 

optimizer with a default learning rate of 0.01. The dataset is standardized using the MixMaxScaler function in the 

range (-1, 1).  An attempt to use the sigmoid activation function in the output layer resulted in negative r2 (-9.67); thus, 

a linear activation function is used for the output layer of all the architectures. The setup is presented in table 7.The 

loss function specified for all the models is the Mean Square Error (MSE), RMSE and R2 are subsequently calculated 

for evaluation. 

The result presented in Table 8 for the sigmoid activation function shows that a 2-layer with one neuron in the 

hidden layer has the best goodness of fit having correlation of determination R2 of 0.61 and an error of 0.103. Adding 

more neuron to a layer does not improve performance as seen in the result for 2H1 and 2H4. Similarly, addition of 

layer to the network does not improve the prediction capability of the network. The root means square error, RMSE 

increases from 0.103 for 2H1 network to 0.104 for 3H41 while the coefficient of determination, R2 increases to 0.66 

for 3H41 network from 0.61 for 2H1 network.  

The result from table 9 for the network designed using tanh activation function shows performance improvement 

when more layers are added to the network up to 4H411 (depicted in figure 7) where the best result is recorded. Further 

additions of layer beyond 4H411 add no value to the prediction capability and goodness of fit of the network. 

The Comparative analysis of the result presented in table 10 and figure 6 shows that the 4H411 neural network 

designed with tanh activation function has the lowest error (RMSE=0.099) having an average prediction error of 57 

tickets per week. A 2-layer MLP with one neuron in the hidden layer also has a better performance than ARIMA 

(2,0,2) having an average prediction error of 60 tickets per week. 

 Table 7: Multilayer Perceptron architecture   Table 8:  Sigmoid Activation Function Evaluation Results (RMSE and R2) 

Epoch=1000, Optimizer=SGD, learning rate=0.01, 

loss function=MSE Standardization = 

MinMaxScaler; Activation Function:  Hidden 

Layer: Sigmoid/ tanh, output: Linear  

Models No of Hidden 

Layer 

No of Neuron in 

Hidden Layer 

2H1 1 1 

2H4 1 4 

3H41 2 4,1 

4H411 3 4,1,1 

Table 9: Tanh Activation Function Evaluation Results (RMSE and R2) 

ADF Test Result 

ADF Statistic: -4.111741 

p-value: 0.000926 

Critical Values:  

1% -3.449 

5% -2.870 

10% -2.571 

Model RMSE (Test %) R2 (Test %) 

 10% 15% 20% 25% 10% 15% 20% 25% 

𝐴𝑅𝐼𝑀𝐴(1, 0, 2) 0.114 0.146 0.145 0.144 0.28 0.286 0.296 0.26 

𝑨𝑹𝑰𝑴𝑨(𝟐, 𝟎, 𝟐) 0.108 0.144 0.145 0.143 0.35 0.307 0.301 0.26 

𝐴𝑅𝐼𝑀𝐴(3, 0, 2) 0.107 0.146 0.145 0.144 0.37 0.282 0.300 0.26 

𝐴𝑅𝐼𝑀𝐴(4, 0, 2) 0.108 0.148 0.146 0.145 0.35 0.263 0.291 0.25 

Model RMSE (Test %) R2 (Test %) 

 10% 15% 20% 25% 10% 15% 20% 25% 

2H1 0.085 0.104 0.103 0.102 0.60 0.61 0.61 0.65 

2H4 0.105 0.115 0.110 0.115 0.30 0.30 0.45 0.30 

3H41 0.081 0.103 0.104 0.101 0.73 0.62 0.66 0.67 

4H411 0.102 0.128 0.126 0.125 -0.08 -0.19 -0.01 -0.09 

Model RMSE (Test %) R2 (Test %) 

 10% 15% 20% 25% 10% 15% 20% 25% 

2H1 0.083 0.102 0.101 0.099 0.70 0.70 0.74 0.75 

2H4 0.091 0.107 0.101 0.105 0.52 0.69 0.84 0.69 

3H41 0.076 0.097 0.100 0.098 0.82 0.78 0.79 0.73 

4H411 0.074 0.096 0.099 0.095 0.82 0.79 0.77 0.79 



 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000  9 

 

 

Table 10: Comparative Analysis of Results (RMSE and R2) 

Model RMSE R2 RMSE (actual dataset) 

MLP tan h (4H411) 0.099 0.77 57.25 

MLP sigmoid (2H1) 0.103 0.61 59.69 

ARIMA (2,0,2) 0.145 0.30 61.37 

 

       

Figure 3:Comparison evaluation result (RMSE and R2)      Figure 7: 4H411 MLP 

 

6.0  CONCLUSION 

The performance of the Multilayer Perceptron neural network and ARIMA models have been investigated in this 

research. Observations from the performance evaluation of the models revealed that the four MLP architectures 

designed using tanh activation function outperform the ARIMA model. Specifically, with the 4H411 model, they 

produce the best goodness of fit (R2 = 0.77) and lowest prediction error (RMSE = 0.099). The effect of adding more 

layers on the performance of a multilayer perceptron neural network is also investigated. Using the sigmoid activation 

function, a 2-layer MLP having one neuron in the hidden layer has the best performance in term of prediction error 

(RMSE = 0.103) and the coefficient of determination (R2 = 0.61) measures. The empirical evidence from this study 

indicates that adding more layers to a network configured using sigmoid function may not necessarily improve the 

predictive power of the network and may result in performance degeneration.  

Like the sigmoid activation function, the tanh activation function also has a saturation effect, however, unlike the 

sigmoid, the output of the tanh activation function is zero-centered. Thus, adding layers to a network configured using 

the tanh activation function can improve the performance of a network as demonstrated in this study. From the result 

in Table 9, it can be observed that adding more layers reduces the prediction error and improves the goodness of fit 

of the network up to the 4-layer network (4H411). 

In addition, pre-processing datasets is a necessity to some models like the ARIMA and MLP investigated in this 

study. The ARIMA model requires a stationary time series data. This is achieved by first aggregating the ticket 

transaction to daily counts and using equal weekly frequency to group the mean values and then apply the logarithm 

function to them. Standardization is a requirement for multilayer perceptron networks to remove bias that might be 

caused from wide variation in range of values of raw data during a training. From the summary of pre-processing 

stage in table 4, it can be observed that standardization is required since the minimum average ticket per week is 178 

while the maximum is 1340. This study used the MinMaxScaler function of the Scikit-learn library to transform the 

dataset to a range [-1, 1]. 

Our experiments suggest that choosing a good activation function can significantly improve the performance of a 

multilayer perceptron neural network. 

 

ACKNOWLEDGEMENTS 

 

The first author would like to thank two anonymous referees for their helpful comments. Special thanks to Dr Sheela 

Ramanna and Dr. Sergio Camorlinga, University of Winnipeg, for their helpful comments at the initial stage of this 

work. 

0

1

MLP tan h (4H411) MLP sigmoid (2H1) ARIMA (2,0,2)

Evaluation Result for Multilayer  Perceptron and 
ARIMA models

RMSE R2

 

 

 

 

x1  

 

 x2  

 

. 
.  

 

 

. 
 x𝑛  



10 A Olawoyin, Y Chen/ Procedia Computer Science 00 (2018) 000–000 

 

 

REFERENCES 

[1] J. Wang, J. Wang, W. Fang, and H. Niu, Financial time series prediction using Elman recurrent random neural networks, 

Computational Intelligence and Neuroscience, vol. 2016, Article ID 4742515, 14 pages, 2016. 

[2] Chaudhuri T. D. et al. Artificial Neural Network and Time Series Modeling Based Approach to Forecasting the Exchange 

Rate in a Multivariate Framework” Journal of Insurance and Financial Management, Vol. 1, Issue 5 (2016), pp 92-123.  

[3] Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network 

model. Neurocomputing, 50, 159-175. 
[4] Khashei, Mehdi, and Mehdi Bijari. "A novel hybridization of artificial neural networks and ARIMA models for time 

series forecasting." Applied Soft Computing 11.2 (2011): 2664-2675. 

[5] Babu, C. N., & Reddy, B. E. (2014). A moving-average filter based hybrid ARIMA–ANN model for forecasting time 

series data. Applied Soft Computing, 23, 27-38. 

[6] Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based 

on DWT decomposition. Procedia Computer Science, 48, 173-179. 

[7] Taskaya-Temizel, T., & Casey, M. C. (2005). A comparative study of autoregressive neural network hybrids. Neural 

Networks, 18(5-6), 781-789. 

[8] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). "Learning representations by back-

propagating errors". Nature. 323 (6088): 533–536.  

[9] Scikit-learn Machine Learning in Python http://scikit-learn.org/stable/index.html 

[10] Keras Deep Learning Documentation https://keras.io/ 

[11] City of Winnipeg Parking contravention dataset: https://data.winnipeg.ca/Parking/Parking-Contravention-Citations-

/bhrt-29rb/data 

http://scikit-learn.org/stable/index.html
https://keras.io/
https://data.winnipeg.ca/Parking/Parking-Contravention-Citations-/bhrt-29rb/data
https://data.winnipeg.ca/Parking/Parking-Contravention-Citations-/bhrt-29rb/data

