
Sept. 2023 ACS-4902 1

Transaction processing concepts

(Ch. 19, 3rd ed. – Ch. 17, 4th ed., 5th ed. – Ch. 21, 6th ed.

– Ch. 20, 7th ed.)

Sept. 2023 ACS-4902 2

unit of

work ACID

example essential operations

environment
assumptions

blocks
read

write

execution

model

users

cpu

interleaved

model

control

classic problems

example trxs

lost update

temporary update

incorrect summary

statesfinite state diagram

schedule

conflict

complete

strict

serial

serializability

equivalence

conflict
serializability

testing

recovery

failures

catastrophic

non-catastrophic

log

record types

location

protocol

other uses

commit point

checkpoint

5 types of trxs and recovery

cascading rollback
Transactions

Sept. 2023 ACS-4902 3

Transaction Processing

From a technical perspective, a transaction is a unit of work

in a database system

From a user’s perspective, a program execution that

accomplishes a useful task, such as:

• Change someone’s name

• Change someone’s address

• Withdraw money from an account

• Transfer money from one account to another account

• Reserve a seat on a flight

• etc

Sept. 2023 ACS-4902 4

In an online transaction processing (OLTP) environment, a

transaction is usually small and fast. It is something that must get

through the system quickly to give (typically) sub-second response.

To generate faith in the computing system, a transaction will have

the ACID properties:

• Atomic – a transaction is done in its entirety, or not at all

• Consistent – a transaction leaves the database in a correct state.

This is generally up to the programmer to guarantee.

• Isolation – a transaction is isolated from other transactions so that

there is not adverse inter-transaction interference

• Durable – once completed (committed) the result of the

transaction is not lost.

Sept. 2023 ACS-4902 5

Example of a transaction coded in a 3GL

Consider a transaction that transfers money between a customer’s

accounts.

This example uses the C programming language with embedded

SQL.

Note that each execution of the program would be a new transaction.

Database:

Customer

Cust, Name

Account

Cust, Acct, Balance

Sept. 2023 ACS-4902 6

Code Fragment

…… definitions of program data areas

cust_no

from_account

to_account

trans_amount

cust_name

Printf(“\nEnter customer identifier:”);

Scanf(“%s”, cust_no);

EXEC SQL set transaction Begin transaction

read write;

EXEC SQL Read (Customer.cust_name)

Select Name into :cust_name

From Customer

Where Cust=:cust_no;

Sept. 2023 ACS-4902 7

Code Fragment continued

Printf(“\nHello(%s)”, cust_name);

Printf(“\nTransfer from account:”);

Scanf(“%s”, from_account);

Printf(“\nTransfer to account:”);

Scanf(“%s”, to_account);

Printf(“\nTransfer the amount:”);

Scanf(“%s”, trans_amount);

Sept. 2023 ACS-4902 8

Code Fragment continued

EXEC SQL Write (Account.to_acct.Balance)

Update Account

Set Balance = Balance + :trans_amount

Where Cust = :cust_no

And Acct = :to_acct;

EXEC SQL Write (Account.from_acct.Balance)

Update Account

Set Balance = Balance - :trans_amount

Where Cust = :cust_no

And Acct = :from_acct;

EXEC SQL Commit

Commit transaction;

Sept. 2023 ACS-4902 9

Environment

Blocks

• Data is stored in blocks on disk.

• The layout of blocks is controlled by the system. You may have a

choice of variable or fixed length blocks and of a specific

maximum blocksize (although the dba group may have chosen to

always use one or two blocksizes (maybe 4K and 32K) to

simplify the system).

• Typicaly there are several records per block which has the effect

of

- Increasing storage utilization, and

- Decreasing the number of transfers required between

memory and disk.

Sept. 2023 ACS-4902 10

Environment

What happens when READ(X) is executed?

• The DBMS determines the address of the block holding X

• The block is transmitted from disk to a buffer

• X is copied from the buffer to a program variable

EXEC SQL Read (Customer.cust_name)

Select Name into :cust_name

From Customer

Where Cust=:cust_no;

Sept. 2023 ACS-4902 11

Environment

What happens when WRITE(X) is executed?

• The DBMS determines the address of the block holding X

• Unless the block is already in a buffer, the block is transmitted from
disk to a buffer

• X is copied from program variables into the buffer

• The buffer is written out to disk (a delay may occur here)

EXEC SQL Write (Account.to_acct.Balance)

Update Account

Set Balance = Balance + :trans_amount

Where Cust = :cust_no

And Acct = :to_acct;

Sept. 2023 ACS-4902 12

Environment

Users

Multiple users access the database at the same time

Program Execution Model

Multiple programs are executed concurrently.

Processor Model

A single processor. The theory developed for transaction concurrency is

based on a single processor and can be adapted for multiple processor

situations.

These last three assumptions lead us to the Interleaved model of

transaction execution.

Sept. 2023 ACS-4902 13

Environment

Interleaved model of transaction execution

Several transactions, initiated by any number of users, are

concurrently executing. Over a long enough time interval, several

transactions may have executed without any of them completing.

T1

T2

T3

t1 t2 t3 t4 t5 Time

Transaction

Sept. 2023 ACS-4902 14

Why do transactions need Concurrency Control?

If we do not protect transactions from other transactions the

database can become inconsistent and/or incorrect information

derived from the database.

Consider the 3 classic transaction problems

• Lost update

• Temporary update

• Incorrect summary

Sept. 2023 ACS-4902 15

Why do transactions need Concurrency Control?

Our examples will deal with a simple database intended to keep

track of the number of seats reserved on individual flights.

Flight

F-id, F_seats_res, …

Sample data

F-id F_seats_res

10 120

12 160

20 100
……

At any given point in time any number of users may be entering

transactions into the system.

Suppose we have three types of transactions:

• Cancel N seats on one flight and reserve N seats on

another

• Reserve M seats on a flight

• Count the total number of reservations

Sept. 2023 ACS-4902 16

Why do transactions need Concurrency Control?

We outline the transactions below.

For simplicity we make a liberal interpretation of our statements.

For example:

- READ(X): read the flight record for flight X. (To simplify

our notation, we assume that the program variable is also

named X.)

- X:=X - N: F_seats_res for flight X is decremented by N.

- X:=X + M: F_seats_res for flight X is increased by M.

- WRITE(X): write the value of program variable X into

F_seats_res for flight X.

Sept. 2023 ACS-4902 17

Transaction1 Transaction2 Transaction3

READ(X) READ(X) SUM:=0

X:=X-N X:=X+M READ(X)

WRITE(X) WRITE(X) SUM:=SUM+X

READ(Y) READ(Y)

Y:=Y+N SUM:=SUM+Y

WRITE(Y) READ(Z)

SUM:=SUM+Z

Why do transactions need Concurrency Control?

Exec SQL select F_seats_res into X’

from Flights

where F-id = X

X’ := X’ – N

Exec SQL update Flights

Set F_seats_res = X’

where F-id = X

Transaction1:

... …

Sept. 2023 ACS-4902 18

Lost Update Problem

We have Transactions 1 and 2 concurrently executing in the

system. They happen to interleave in the following way, which

results in an incorrect value stored for flight X (try this for

X=10, Y=12, N=5 and M=8).

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 READ(X)

4 X:=X+M

5 WRITE(X)

6 READ(Y)

7 WRITE(X)

8 Y:=Y+N

9 WRITE(Y)

Time Transaction1 Transaction2

1 p1_X = 10

2 p1_X = 5

3 p2_X = 10

4 p2_X = 18

5 d_X = 5

6 p1_Y = 12

7 d_X = 18

8 p1_Y = 17

9 d_Y = 17

Sept. 2023 ACS-4902 19

P1

N = 5;

X;

Y;

… …

P2

M = 8;

X;

Y;

… …

F-id

X

Y

… …

F-seats-res.

10

12

Sept. 2023 20ACS-4902

X = 10

Y = 12

N = 5

M = 8

T1 T2

d_X = 5

d_Y = 17

d_X = 13

T2 T1

d_X = 18 d_X = 13

d_Y = 17

d_X and d_Y represent the

values of X and Y in the

database.

Transaction1 Transaction2

READ(X) READ(X)

X:=X-N X:=X+M

WRITE(X) WRITE(X)

READ(Y)

Y:=Y+N

WRITE(Y)

Sept. 2023 ACS-4902 21

P1

N = 5;

X;

Y;

… …

P2

M = 8

X;

Y;

… …

F-id

X

Y

… …

F-seats-res.

10

12

F-id

X

Y

… …

F-seats-res.

10

12

by executing P1

and P2 serially F-id

X

Y

… …

F-seats-res.

13

17

Sept. 2023 ACS-4902 22

Why do transactions need Concurrency Control?

Temporary Update Problem

We have transactions 1 and 2 running again. This time Transaction 1

terminates before it completes – it just stops, perhaps it tried to

execute an illegal instruction or accessed memory outside its

allocation. The important point is that it doesn’t complete its unit of

work; Transaction 2 reads ‘dirty data’ using a value derived from an

inconsistent database state.

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 WRITE(X)

4 READ(X)

5 X:=X+M

6 WRITE(X)

7 READ(Y)

8 terminates!

Sept. 2023 ACS-4902 23

Why do transactions need Concurrency Control?

Incorrect Summary Problem

Transactions 1 and 3 are executing and interleaved in such a way that

the total number of seats calculated by transaction 3 is incorrect.

(X=10, Y=12, Z = 2, N=5 and M=8)

Time Transaction1 Transaction3

1 SUM:=0

2 READ(X)

3 X:=X-N

4 WRITE(X)

5 READ(X)

6 SUM:=SUM+X

7 READ(Y)

8 SUM:=SUM+Y

9 READ(Y)

10 Y:=Y+N

11 WRITE(Y)

12 READ(Z)

13 SUM:=SUM+Z

Time Transaction1 Transaction3

1 SUM = 0

2 p1_X =10

3 p1_X = 5

4 d_X = 5

5 p3_X = 5

6 SUM = 5

7 p3_Y = 12

8 SUM = 17

9 p1_Y = 12

10 p1_Y = 17

11 d_Y = 17

12 p3_Z = 2

13 SUM = 19

Sept. 2023 ACS-4902 24

X = 10

Y = 12

Z = 2

N = 5

M = 8

T1 T3

d_X = 5

d_Y = 17

d_Z = 2

sum = 24

T3 T1

sum = 24 d_X = 5

d_Y = 17

d_Z = 2

Transaction1 Transaction3

READ(X) SUM:=0

X:=X-N READ(X)

WRITE(X) SUM:=SUM+X

READ(Y) READ(Y)

Y:=Y+N SUM:=SUM+Y

WRITE(Y) READ(Z)

SUM:=SUM+Z

Sept. 2023 ACS-4902 25

Why do we need to provide transaction recovery?

Transactions can fail:

• Catastrophic (media failure)

Hard disk crash

Fire, theft, flood, …

• Non-catastrophic (system failure)

Computer failure – memory becomes unreliable

Transaction error – e.g. divide by zero

Transaction aborts itself

Concurrency control system aborts a transaction

Sept. 2023 ACS-4902 26

To allow for recovery we use a Log, which contains several records

for each transaction

1. [start_transaction, T] Indicates that transaction T has started

execution.

2. [write_item, T, X, old_value, new_value] Indicates that

transaction T has changed the value of database item X from

old_value to new_value.

3. [Read_item, T, X] Indicates that transaction T has read the

value of database item X.

4. [commit, T] Indicates that transaction T has completed

successfully, and affirms that its effect can be committed

(recorded permanently) to the database.

5. [abort, T] Indicates that transaction T has been aborted.

6. [Checkpoint]: A checkpoint record is written into the log

periodically. At that point, the system writes out to the

database on disk all DBMS buffers that have been modified.

Example: [write_item, 1, (account, ‘123456789’, balance), 10,000, 13,000]

Sept. 2023 ACS-4902 27

To allow for recovery we use a Log

• The log should be on a separate disk

• The system always writes to the log before it writes to the database

-Allows for redo and undo operations

Sept. 2023 ACS-4902 28

Commit Point

A transaction has committed when it reaches its Commit Point (when the

commit command is explicitly performed).

At this point:

• The DBMS force-writes all changes/updates made by a transaction to

the log

• Then the DBMS force-writes a commit record for the transaction

T

R(y) W(x)

buffer

At the commit point of

of a transaction

At a check point

(periodically)

At a check point

(periodically)
DB log

Sept. 2023 ACS-4902 29

Checkpoint

A DBMS will execute a checkpoint in order to simplify the recovery

process. The checkpoints occur periodically, arranged by a DBA (DB

Administrator).

At a checkpoint any committed transactions will have their database

writes (updates/changes) physically written to the database.

(The changes made by unaccomplished transactions may also be

written to the database.)

This is a four-step process

• Suspend transaction execution temporarily

• The DBMS force-writes all database changes to the database

• The DBMS writes a checkpoint record to the log and force-

writes the log to disk

• Transaction execution is resumed

Sept. 2023 ACS-4902 30

Transaction types at recovery time

After a system crash some transactions will need to be redone or

undone.

Consider the five types below. Which need to be redone/undone after

the crash?

Time

T1

T2

T3

T4

T5

Time of

checkpoint

Time of

failure

No redo, no undo

redo

undo

redo

ignored

Sept. 2023 ACS-4902 31

Transactions States

Consider the following state transition diagram

Active

Partially

committed

Committed

Terminated

Failed

begin

read/write

end

abort
abort

commit

Sept. 2023 ACS-4902 32

Transaction Processing

Schedule or History

• order of execution of operations of concurrent transactions

• example

S: R2(X); W2(X); R1(X); R1(Y); R2(Y); W2(Y); C1; C2;

where

R - READ

W - WRITE

C - COMMIT

A - ABORT

T1: R1(X); R1(Y); C1;

T2: R2(X); W2(X); R2(Y); W2(Y); C2;

Sept. 2023 ACS-4902 33

Schedule or History

Sa: R1(X); R2(X); W1(X); R1(Y); W2(X); W1(Y); C1; C2;

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 READ(X)

4 X:=X+M

5 WRITE(X)

6 READ(Y)

7. WRITE(X)

8. Y:=Y+N

9. WRITE(Y)

10. Commit

11 Commit

R1(X)

R2(X)

W1(X)

W2(X)

W1(Y)

R1(Y)

C1

C2

Sept. 2023 ACS-4902 34

Schedule or History

Sb: R1(X); W1(X); R2(X); W2(X); R1(Y); A1; C2;

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 WRITE(X)

4 READ(X)

5 X:=X+M

6 WRITE(X)

7 READ(Y)

8 terminates!

R1(X)

W1(X)

R2(X)

W2(X)

R1(Y)
A1

Sept. 2023 ACS-4902 35

Conflict

Two operations in a schedule conflict if they belong to two different

transactions, are accessing the same data item X and one of the

operations is a WRITE.

Examples:

R1(X) W2(X) in: R1(X); W1(X); R2(X); W2(X); R1(Y); A1; C2;

W1(X) W2(X) in: R1(X); W1(X); R2(X); W2(X); R1(Y); A1; C2;

W1(X) R2(X) in: R1(X); W1(X); R2(X); W2(X); R1(Y); A1; C2;

Sept. 2023 ACS-4902 36

Cascading rollback:

• An uncommitted transaction has to be rolled back because it reads

an item from a transaction that fails.

Example:

Se: R1(X); W1(X); R2(X); R1(Y); W2(X);W1(Y); A1; A2;

• Time consuming

• Avoided if there is a rule that a transaction can only read items

that were written by committed transactions.

Time Transaction1 Transaction2

1 R1(X)

2 W1(X)

3 R2(X)

4 R1(Y)

5 W2(X)

6 W1(Y)

7 abort

8 abort

Sept. 2023 ACS-4902 37

Complete Schedule

• A schedule S for transactions T = {T1, T2, …, TN} is complete if

• all the operations are exactly those for all transactions in the

set T including Commit or Abort as the last operation of

each.

• The order of appearance of operations in S for any Ti in {T1

T2 … TN} is the same as their appearance in Ti .

S: R2(X); W2(X); R1(X); R1(Y); R2(Y); W2(Y); C1; C2;

T1: R1(X); R1(Y); C1;

T2: R2(X); W2(X); R2(Y); W2(Y); C2;

Sept. 2023 ACS-4902 38

Recoverable Schedule

Recoverable: (Once a transaction is committed, it should never be

necessary to roll back.)

A schedule S is recoverable if no transaction T in S commits until

all transactions T’ that have written an item that T reads have

committed.

The meaning of “transaction T reads another transaction T’ ”:

A transaction T reads from transaction T’ in a schedule S if some

item X is first written by T’ and then read by T; and T’ should not

have been aborted before T reads item X, and there should be no

transactions that writes X after T’ writes it and before T reads it.

T’

T

X
write

read

Sept. 2023 ACS-4902 39

Recoverable Schedule

Example (Recoverable schedules):

Sa: R1(X); W1(X); R2(X); R1(Y); W2(X); C2; A1;

(non-recoverable)

R1(X); W1(X); R1(Y); A1;

R2(X); W2(X); C2;

Sb: R1(X); R2(X); W1(X); R1(Y); W2(X); C2;W1(Y); C1;

(recoverable but suffers from the lost update problem)

R1(X); W1(X); R1(Y); W1(Y); C1;

R2(X); W2(X); C2;

Sept. 2023 40ACS-4902

Recoverable Schedule

Example (Recoverable schedules):

Sc: R1(X); W1(X); R2(X); R1(Y); W2(X);W1(Y); C1; C2;

(recoverable)

R1(X); W1(X); R1(Y); W1(Y); C1;

R2(X); W2(X); C2;

Sd: R1(X); W1(X); R2(X); R1(Y); W2(X);W1(Y); A1; A2;

(recoverable but cascading rollback)

R1(X); W1(X); R1(Y); W1(Y); A1;

R2(X); W2(X); A2;

Sept. 2023 ACS-4902 41

A schedule S is recoverable if no transaction T in S commits until all

transactions T’ that have written an item that T reads have committed.

Is the following schedule recoverable?

S: R1(X); W1(X); R1(Y); R2(X); W2(X); C2; W1(Y); C1;

R1(X); W1(X); R1(Y); W1(Y); C1;

R2(X); W2(X); C2;

Sept. 2023 ACS-4902 42

Cascadeless Schedule

Cascadeless (Avoid cascading rollback):

Every transaction in the schedule reads only items that were written by

committed transaction.

Example:

S1: R1(X); W1(X); R1(Y); W1(Y); C1; R2(X); W2(X); C2;

R1(X); W1(X); R1(Y); W1(Y); C1;

R2(X); W2(X); C2;

S2: R1(X); W1(X); R2(Y); R1(Y); W1(Y); W2(Y); C1; R2(X); W2(X); C2;

R1(X); W1(X); R1(Y); W1(Y); C1;

R2(Y); W2(Y) R2(X); W2(X); C2;

Sept. 2023 ACS-4902 43

Strict Schedule

• a transaction can neither read nor write an item X until the last

transaction that wrote X has committed or aborted.

• In a strict schedule, the process of undoing a W(X) operation of an

aborted transaction is simply to restore the before image (BFIM or

old_value).

• This strategy can not be used for recoverable or cascadeless

schedules.

Example:

S1: R1(X); W1(X); R2(Y); W2(Y); C1; R2(X); W2(X); C2;

(strict)

S2: R1(X); W1(X); W2(X); A1; C2;

(non-strict)

Sept. 2023 ACS-4902 44

Strict Schedule

Example:

Sf: R1(X); R2(X); W1(X, 5); W2(X, 8); C2; A1;

(before the transaction, X = 9)

[write_item, T1, X, 9, 5]

T1 is aborted, X will be restored to 9.

However, X has already been changed

to X = 8 by T2. Hence, it is incorrect.

Sept. 2023 ACS-4902 45

Recoverable

A schedule S is recoverable if no transaction T in S commits

until all transactions T’ that have written an item that T

reads have committed.

Cascadeless

Every transaction in the schedule reads only items that were

written by committed transaction.

Strict

a transaction can neither read nor write an item X until the

last transaction that wrote X has committed or aborted.

Comparison of the three schedules

Sept. 2023 ACS-4902 46

Serial Schedule

• A schedule is said to be serial if the transactions execute in a non-

interleaved sequence. That is, all operations for any transaction T

are executed consecutively.

• A serial schedule is considered correct.

• Example

R2(X) W2(X) R2(Y) W2(Y) C2 R1(X) R1(Y) C1

• Serial schedules limit concurrency. Because of the tremendous

speed difference between cpu operations and I/O operations, we

cannot leave the cpu idle while a transaction waits for I/O.

Sept. 2023 ACS-4902 47

Serializability

• A schedule is said to be serializable if it is equivalent to a serial

schedule

• What do we mean by equivalent?

Text mentions result equivalence and conflict equivalence.

Sept. 2023 ACS-4902 48

Result equivalence

• Two schedules are said to be result equivalent if they produce the

same database state.

• Result equivalence is not useful to us because two different

schedules could accidentally produce the same database state for

one set of initial values, but not for another set.

T1

read_item(x);

x := x + 10;

write_item(x);

T2

read_item(x);

x := x * 1.1;

write_item(x);

T1 and T2 are two different transactions. When x = 100, however, they produce the

same result.

Sept. 2023 ACS-4902 49

Conflict equivalence

• Two schedules are said to be conflict equivalent if

- they have the same operations (coming from the same set of transactions)

- the ordering of any two conflicting operations is the same in both schedules

• Recall

Two operations conflict if they belong to two different transactions, are accessing

the same data item X and one of the operations is a WRITE

Conflict Serializability

A schedule S is conflict serializable if it is conflict equivalent to some serial

schedule S’.

Sept. 2023 ACS-4902 50

R1(X), R2(Y), W2(Y), W1(X), W2(X), C1, C2 R1(X), W1(X), C1, R2(Y), W2(Y), W2(X), C2

R1(X), R2(X), W2(X), W1(X), C1, C2 R1(X), W1(X), C1, R2(X), W2(X), C2

R2(X), W2(X), C2, R1(X), W1(X), C1R1(X), R2(X), W2(X), W1(X), C1, C2

Sept. 2023 ACS-4902 51

Testing a Schedule for Conflict Serializability

• We’ll construct a graph (called a precedence graph) where

• nodes represent transactions

• edges represent dependencies between transactions

read-write

write-read

write-write

• a schedule with no cycles is conflict serializable

Sept. 2023 ACS-4902 52

Testing a Schedule for Conflict Serializability

Consider a schedule S:

• For each transaction Ti in S create a node Ti in the precedence

graph

• For each case in S where

READj(X) occurs after WRITEi(X)

create an edge Ti Tj in the precedence graph

• For each case in S where

WRITEj(X) occurs after WRITEi(X)

create an edge Ti Tj in the precedence graph

• For each case in S where

WRITEj(X) occurs after READi(X)

create an edge Ti Tj in the precedence graph

• the schedule S is serializable if and only if the precedence graph

has no cycles.

Sept. 2023 ACS-4902 53

Example

T1

READ(X)

X:=X-N

WRITE(X)

READ(Y)

Y:=Y+N

WRITE(Y)

T2

READ(X)

X:=X+M

WRITE(X)

Time

1

2

3

4

5

6

7

8

9

10

11

T1
T2

Sept. 2023 ACS-4902 54

Example

T1

READ(X)

X:=X-N

WRITE(X)

READ(Y)

Y:=Y+N

WRITE(Y)

T2

READ(X)

X:=X+M

WRITE(X)

Time

1

2

3

4

5

6

7

8

9

10

11

T1 T2

Sept. 2023 55ACS-4902

R1(X); W1(X); R1(Y); W1(Y);

R2(X); W2(X);

R1(X); W1(X); R1(Y); W1(Y);

R2(X); W2(X);

Sept. 2023 ACS-4902 56

Comments

• This test might be difficult to implement in practice

• Since transactions are submitted continuously, when would a

schedule begin and end?

• Theory of serializability forms the basis of protocols (rules) for a

concurrency subsystem

