
Sept. 2023 Dr. Yangjun Chen ACS-4902 1

Outline

• Signature Files

- Signature for attribute values

- Signature for records

- Searching a signature file

•Signature Trees

- Signature tree construction

- Searching a signature tree

- About balanced signature trees

Sept. 2023 Dr. Yangjun Chen ACS-4902 2

•Signature file

- A signature file is a set of bit strings, which are called

signatures.

- In a signature file, each signature is constructed for a

record in a table, a block of text, or an image.

- When a query arrives, a query signature will be

constructed according to the key words involved in the

query. Then, the signature file will be searched against

the query signature to discard non-qualifying signatures,

as well as the objects represented by those signatures.

Sept. 2023 Dr. Yangjun Chen ACS-4902 3

•Signature file

- Generate a signature for an attribute value

 Before we generate the signature for an attribute

 value, three parameters have to be determined

 F: number of 1s in bit string

 m: length of bit string

 D: number of attribute values in a record (or

 average number of the key words of in a block of

 text)

 Optimal choice of the parameters:

 m ln2 = F D

Sept. 2023 Dr. Yangjun Chen ACS-4902 4

•Signature file

 - Decompose an attribute value (or a key word) into a

 series of triplets

 - Using a hash function to map a triplet to an integer p,

 indicating that the pth bit in the signature will be set to 1.

 Example: Consider the word “professor”. We will decompose

 it into 6 triplets:

 “pro”, “rof”, “ofe”, “fes”, “ess”, “sor”.

Assume that hash(pro) = 2, hash(rof) = 4, hash(ofe) =8, and

hash(fes) = 9.

 Signature: 010 100 011 000

Sept. 2023 Dr. Yangjun Chen ACS-4902 5

•Signature file

- Generate a signature for a record (or a block of text)

block: ... SGML ... databases ... information ...

word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110 object signature (OS)

superimposing

Sept. 2023 Dr. Yangjun Chen ACS-4902 6

name

•Signature file

- Generate a signature for a record (or a block of text)

1011 0110
1011 1001

1010 0111
0111 0110
0111 0101
0101 1100
1110 0100

1010 1011

s1
s2

s3
s4

s5

s6
s7

s8

relation:

John male

... ...

signature file:

sex

Sept. 2023 Dr. Yangjun Chen ACS-4902 7

•Signature file

- Search a signature file

 When a query arrives, the query signature will be constructed and

the object signatures are scanned and many non-qualifying objects

are discarded.

- When comparing the query signature sq and an object signature s,

three possible outcomes: (1) the object matches the query; that is, for

every bit set in sq, the corresponding bit in the object signature s is

also set (i.e., s sq = sq) and the object contains really the query

word; (2) the object doesn’t match the query (i.e., s sq sq); and (3)

the signature comparison indicates a match but the object in fact

doesn’t match the search criteria (false drop).

Sept. 2023 Dr. Yangjun Chen ACS-4902 8

•Signature file

- Search a signature file

block: ... SGML ... databases ... information ...

110 110 111 110 object signature (OS):

queries:

SGML

XML

informatik

query signatures:

010 000 100 110

011 000 100 100

110 100 100 000

matching results:

match with OS

no match with OS

false drop

Sept. 2023 Dr. Yangjun Chen ACS-4902 9

•Signature file

- Search a signature file

query: John male

query signature: 1010 0101

1011 0110
1011 1001
1010 0111
0111 0110
0111 0101
0101 1100
1110 0100
1010 1011

s 1

s 2

s 3

s 4

s 5

s 6

s 7

s 8

Sept. 2023 Dr. Yangjun Chen ACS-4902 10

• Signature tree

- Signature tree construction

 Consider a signature si of length m. We denote it as si = si[1].. si[m],

where each si[j] {0, 1} (j = 1, ..., m). We also use si(j1, ..., jh) to denote

a sequence of pairs with respect to si: (j1, si[j1])(j2, si[j2]) ... (jh, si[jh]),

where 1 jk m for k {1, ..., h}.

 Definition (signature identifier) Let S = s1.s2sn denote a signature

file. Consider si (1 i n). If there exists a sequence: j1, ..., jh such that

for any k i (1 k n) we have si(j1, ..., jh) sk(j1, ..., jh), then we say

si(j1, ..., jh) identifies the signature si or say si(j1, ..., jh) is an identifier of

si.

Sept. 2023 Dr. Yangjun Chen ACS-4902 11

• Signature tree

 - Signature tree construction

 Example:

 s8(5, 1, 4) = (5, 1)(1, 1)(4, 0)

 For any i 8 we have si(5, 1, 4) s8(5, 1, 4). For instance,

 s5(5, 1, 4) = (5, 0)(1, 0)(4, 1) s8(5, 1, 4), s2(5, 1, 4) = (5, 1)(1, 1)(4, 1)

 s8(5, 1, 4), and so on.

 s1(5, 4, 1) = (5, 0)(4, 1)(1, 1)

 For any i 1 we have si(5, 4, 1) s1(5, 4, 1).

1011 0110
1011 1001
1010 0111
0111 0110
0111 0101
0101 1100
1110 0100
1010 1011

s 1

s 2

s 3

s 4

s 5

s 6

s 7

s 8

Sept. 2023 Dr. Yangjun Chen ACS-4902 12

• Signature tree

 - Signature tree construction

Definition (signature tree) A signature tree for a signature file S = s1.s2sn,

where si sj for i j and |sk| = m for k = 1, ..., n, is a binary tree T such that

1. For each internal node of T, the left edge leaving it is always labeled with

0 and the right edge is always labeled with 1.

2. T has n leaves labeled 1, 2, ..., n, used as pointers to n different positions

of s1, s2, ... and sn in S. Let v be a leaf node. Denote p(v) the pointer to

the corresponding signature.

3. Each internal node v is associated with a number, denoted sk(v), to tells

which bit will be checked.

4. Let i1, ..., ih be the numbers associated with the nodes on a path from the

root to a leaf v labeled i (then, this leaf node is a pointer to the ith

signature in S, i.e., p(v) = i). Let p1, ..., ph be the sequence of labels of

edges on this path. Then, (j1, p1) ... (jh, ph) makes up a signature identifier

for si, si(j1, ..., jh).

Sept. 2023 Dr. Yangjun Chen ACS-4902 13

• Signature tree

 - Signature tree construction

011 001 000 101

111 011 001 111

111 101 010 111

011 001 101 111
011 101 110 101
011 111 110 101
011 001 111 111
111 011 111 111

s1

s2

s3
s4

s5
s6
s7
s8

1

7 4

4 7

8 5

1. 3.

2. 8.

4. 7. 5. 6.

0

0

0

0 0

0

1

1 1

1

1

1 0

1

Sept. 2023 Dr. Yangjun Chen ACS-4902 14

Algorithm sig-tree-generation(file)

begin

 construct a root node r with sk(r) = 1;

 /*where r corresponds to the first signature s1 in the signature file*/

 for j = 2 to n do

 call insert(sj);

end

Procedure insert(s)

begin

 stack root;

 while stack not empty do

1 {v pop(stack);

2 if v is not a leaf then

3 {i sk(v);

4 if s[i] = 1 then

 {let a be the right child of v; push(stack, a);}

5 else {let a be the left child of v; push(stack, a);}

6 }

7 else (*v is a leaf.*)

Sept. 2023 Dr. Yangjun Chen ACS-4902 15

8 { compare s with the signature s0 pointed to by p(v);

9 assume that the first k bit of s agree with s0;

10 but s differs from s0 in the (k + 1)th position;

11 w v; replace v with a new node u with sk(u) = k + 1;

12 if s[k + 1] = 1 then

 make s and w be respectively the right and left children of u

13 else make w and s be the right and left children of u,

 respectively;}

14 }

end

Sept. 2023 Dr. Yangjun Chen ACS-4902 16

• Signature tree

 - Signature tree construction

1

1

s 1
s 1 s 2

4 s 1

s 2 s 3

1

4

s 2 s 3 s 1 s 4

7

Insert s2

Insert s4

Insert s3

Insert s1 S 1 011001000101
S 2 111011001111
S 3 111101010111
S 4 011001101111

Signature file

Sept. 2023 Dr. Yangjun Chen ACS-4902 17

• Signature tree

 - Searching of a signature tree

 Let sq be a query signature. The ith position of sq is denoted

 as sq[i]. During the traversal of a signature tree, the inexact

 matching is done as follows:

 (i) Let v be the node encountered and sq [i] be the position to

 be checked.

 (ii) If sq [i] = 1, we move to the right child of v.

 (iii) If sq [i] = 0, both the right and left child of v will be explored.

Sept. 2023 Dr. Yangjun Chen ACS-4902 18

Algorithm signature-tree-search

input: a query signature sq;

output: a set of signatures which survive the checking;

1. R .

2. Push the root of the signature tree into stackp.

3. If stackp is not empty, v pop(stackp); else return(R).

4. If v is not a leaf node, i sk(v);

 If sq (i) = 0, push cr and cl into stackp;

 (where cr and cl are v’s right and left child, respectively.)

 otherwise, push only cr into stackp.

5. Compare sq with the signature pointed by p(v).

 /*p(v) - pointer to the block signature*/

 If sq matches, R R {p(v)}.

6. Go to (3).

Sept. 2023 Dr. Yangjun Chen ACS-4902 19

• Signature tree

 - Searching of a signature tree

 query signature: sq = 000 100 100 000.

1

7 4

4 7

8 5

1. 3.

2. 8.

4. 7. 5. 6.

0

0

0

0 0

0

1

1 1

1

1

1 0

1

Sept. 2023 Dr. Yangjun Chen ACS-4902 20

• Signature tree

 - About balanced signature trees

 A signature tree can be quite skewed.

S1: 100 100 100 100

S2: 010 010 010 010
S3: 001 001 001 001
S4: 000 110 010 010
S5: 000 011 001 001
S6: 000 001 100 100
S7: 000 000 110 010
S8: 000 000 010 110

1

2

3

41

5

6

7

1.

2.

3.

4.

5.

6.

7. 8.

Sept. 2023 Dr. Yangjun Chen ACS-4902 21

• Signature tree

 - About balanced signature trees

 Weight-based method:

 A signature file S = s1.s2sn can be considered as a

 boolean matrix. We use S[i] to represent the ith column of S.

 We calculate the weight of each S[i], i.e., the number of 1s

 appearing in S[i], denoted w(S[i]). Then, we choose an j such

 that |w(S[i]) – n/2| is minimum. Here, the tie is resolved

 arbitrarily. Using this j, we divide S into two groups g1 = { ,

 ..., } with each [j] = 0 (p = 1, ..., k) and g2 = { ,

 ..., } with each [j] = 1 (q = k + 1, ..., n).

1i
s

ki
s

pi
s

1ki
s

ni
S

qi
s

Sept. 2023 Dr. Yangjun Chen ACS-4902 22

• Signature tree

 - About balanced signature trees

 Weight-based method (continued):

 In a next step, we consider each gi (i = 1, 2) as a single

signature file and perform the same operations as above,

leading to two trees generated for g1 and g2, respectively.

Replacing g1 and g2 with the corresponding trees, we get

another tree. We repeat this process until the leaf nodes of a

generated tree cannot be divided any more.

Sept. 2023 Dr. Yangjun Chen ACS-4902 23

• Signature tree

 - About balanced signature trees

 Example:

S1: 100 100 100 100

S2: 010 010 010 010
S3: 001 001 001 001
S4: 000 110 010 010
S5: 000 011 001 001
S6: 000 001 100 100
S7: 000 000 110 010
S8: 000 000 010 110

8

g

1

g

2

g1 = {s1, s3, s5, s6}

g2 = {s2, s4, s7, s8}

8

2 5

g11 g12 g21 g22

g11 = {s3, s5}

g12 = {s6, s1}

g21 = {s8, s7}

g22 = {s4, s2}

Sept. 2023 Dr. Yangjun Chen ACS-4902 24

• Signature tree

 - About balanced signature trees

Algorithm balanced-tree-generation(file)

input: a signature file.

output: a signature tree.

Begin

 let S = file; N |S|;

 if N > 1 then {

 choose j such that |w(S[i]) – N/2| is minimum;

 let g1 = { , ..., } with each [j] = 0 (p = 1, ..., k);

 let g2 = { , , ..., } with each [j] = 1 (q = k + 1, ..., N)
1i

s
ki

s
pi

s

1ki
s

Nki
s

 qi
s

Sept. 2023 Dr. Yangjun Chen ACS-4902 25

 generate a tree containing a root r and two child nodes marked with

 g1 and g2, respectively;

 skip(r) j;

 replace the node marked g1 with balanced-tree-generation(g1);

 replace the node marked g2 with balanced-tree-generation(g2);}

 else return;

end
8

2 5

5 1 7 2

3 5. 6. 1. 8. 7. 4. 2.

