
Sept. 2023 Dr. Yangjun Chen ACS-4902 1

Database security and authorization

(Ch. 22, 3rd ed. – Ch. 23, 4th ed. – Ch. 24, 6th – Ch.

30, 7th ed.)

o Database Security Control

o SQL Injection

o Encryption and Decryption

Sept. 2023 Dr. Yangjun Chen ACS-4902 2

How do we protect the database from unauthorized access?

Who should be able to see employee salaries, student

grades, … ?

Who should be able to update … ?

Techniques include/involve:

•passwords

•log-in process - new entry for the log:

{who, where, when}

•privileges

•Encryption and decryption

•accounts - system (DBA), user

security

Sept. 2023 Dr. Yangjun Chen ACS-4902 3

We study two mechanisms:

•Discretionary access control (DAC)

•privileges such as read, write, update are granted to

users

•a certain amount of discretion is given to the owner of

data or anyone else with appropriate authority

•Mandatory access control (MAC)

•multilevel security is applied to data and users

•controlled by a central authority, not by owners of an
object

•the owner/creator of an object does not decide who has
clearance to see the object

security

Sept. 2023 Dr. Yangjun Chen ACS-4902 4

Note:

•US DoD (US Department of Defense) has four basic

divisions for systems: A, B, C, D

•lowest to highest is D, C1, C2, B1, B2, B3, A1

•C1, C2, B1, B2, B3, A1 require DAC

•B1, B2, B3, A1 require MAC

security

Sept. 2023 Dr. Yangjun Chen ACS-4902 5

Discretionary access control

(in the context of relational systems)

•based on granting and revoking of privileges

•privileges are assigned at two levels:

•account (user) - each account can be assigned

privileges (rights or capabilities)

•relation - the privilege to access a particular relation is

controlled (restricted)

Discretionary

Sept. 2023 Dr. Yangjun Chen ACS-4902 6

Discretionary access control

•account level

•create - schema, table, view

•alter - indexes, table (attributes, indexes)

•drop - table, index, view

•example

•grant createtab to A1;

if A1 now creates a table X, then A1 owns X, and has all

privileges on table X, and A1 can grant privileges to

others

Discretionary

Sept. 2023 Dr. Yangjun Chen ACS-4902 7

Discretionary access control

•relation level

•privileges on relations and columns

•type of access: read, write, update

•access matrix model:

subject1

object1 object2 object3

subject2

subject3

read/write/update
Users/

accounts/

programs

Relations/records/columns/views

Discretionary

operations

Sept. 2023 Dr. Yangjun Chen ACS-4902 8

Discretionary access control:

suppose A1 executes:

•create table employee (…);

•create table department (…);

•grant insert, delete on employee, department to A2;

•grant select on employee, department to A3;

•grant update on employee(salary) to A4;

A1

employee department

A2

A3

all

insert, delete

select

all

insert, delete

select

employee.salary

A4 update

Discretionary

Sept. 2023 Dr. Yangjun Chen ACS-4902 9

Discretionary access control: Views

•suppose A1 executes:

create view EmployeesInDiv5 as

select name, position, manager

from employee e, department d

where d.div = 5 and e.deptno = d.deptno;

grant select on EmployeesInDiv5 to A4;

employee department

A4

all

select

all

EmployeesInDiv5

A1 all

Discretionary

Sept. 2023 Dr. Yangjun Chen ACS-4902 10

Mandatory access control for multilevel security

Bell LaPadula model:

•specifies the allowable paths of information flow:

information with high secret - information with low

secret

•set of subjects S, and a set of objects O

Mandatory

S:

user

account

programs

O:

field

tuple

column

relation

view

Sept. 2023 Dr. Yangjun Chen ACS-4902 11

•each s in S and o in O has a fixed security class

class(s) a clearance of s

class(o) a classification level of o

•security classes are ordered by <=

U (Unclassified) <= C (confidential) <=

S (Secret) <= TS (Top Secret)

(public <= sensitive <= top secret)

Sept. 2023 Dr. Yangjun Chen ACS-4902 12

Mandatory access control for multilevel security

Two properties of the Bell LaPadula model:

•Simple Security Property

a subject s is not allowed read access to an object o

unless

class(s) >= class(o)

Mandatory

To see something, your clearance must

be at least that of what you want

In the military model, the security clearance of someone

receiving a piece of information must be at least as high as

the classification of the information

Sept. 2023 Dr. Yangjun Chen ACS-4902 13

Mandatory access control for multilevel security

Second property of the Bell LaPadula model:

•Star Property

a subject s is not allowed write access to an object o

unless

class(s) <= class(o)

Mandatory

In the military model, a person writting some information at

one level may pass that information along only to people at

levels no lower than the level of the person

To create/update something, your

clearance must be no greater than the

object you are creating/updating

Sept. 2023 Dr. Yangjun Chen ACS-4902 14

Mandatory access control for multilevel security

Implementation of the Bell LaPadula model:

•for each original attribute in a relation, add a classification

attribute

•add a classification attribute for the tuple (row) - value is

maximum of all classifications within the tuple

•these classification attributes are transparent to the user

Mandatory

Sept. 2023 Dr. Yangjun Chen ACS-4902 15

Mandatory access control for multilevel security

Implementation example: suppose U <= C <= S

Mandatory

Employee relation

Smith 40,000 Fair

Brown 80,000 Good

Name Salary JobPerformance The user view

without MAC

Smith U 40,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC system view

with MAC

Sept. 2023 Dr. Yangjun Chen ACS-4902 16

Mandatory access control for multilevel security

Implementation example:

Mandatory

Stored Rows:

we store only the required tuples that then allow us to

materialize tuples for lower levels

For example,

allows us to materialize tuples for Classes U, C, and S:

U:

C:

S:

Smith U 40,000 C Fair S S

Smith null null

Smith 40,000 null

Smith 40,000 Fair

Sept. 2023 Dr. Yangjun Chen ACS-4902 17

Smith U 40,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC

Name Salary JobPerformace

Smith null null

Name Salary JobPerformace

Smith 40,000 null

Brown null Good

Name Salary JobPerformance

Smith 40,000 fair

Brown 80,000 Good

U: C:

S:

Sept. 2023 Dr. Yangjun Chen ACS-4902 18

Mandatory access control for multilevel security

Implementation example:

Mandatory

What does a class C user see if he/she executes

Select * from Employee

Smith 40,000 null

Name Salary JobPerformance

Smith U 40,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC

Brown null Good

Sept. 2023 Dr. Yangjun Chen ACS-4902 19

Mandatory access control for multilevel security

Implementation example:

Mandatory

What happens if a class C user executes

Update Employee set Salary=100,000

Smith U 40,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC

Smith U 100,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC

Brown C 100,000 C Good C C

Sept. 2023 Dr. Yangjun Chen ACS-4902 20

Name Salary JobPerformance

Smith null null

Name Salary JobPerformance

Smith 100,000 null

Brown 100,000 Good

Name Salary JobPerformance

Smith 40,000 fair

Brown 80,000 Good

U: C:

S:

Smith U 100,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC

Brown C 100,000 C Good C C

Sept. 2023 Dr. Yangjun Chen ACS-4902 21

Mandatory access control for multilevel security

Implementation example:

Mandatory

Stored Rows:

our update example required a row to be polyinstantiated

For example, updating the Salary field in

requires two rows for us to be able to materialize records for

classes S, C, and U

Brown C 80,000 S Good C S

Brown C 80,000 S Good C S

Brown C 100,000 C Good C C

Sept. 2023 Dr. Yangjun Chen ACS-4902 22

Mandatory access control for multilevel security

Implementation example:

Mandatory

What does a class C user see if he/she executes

Select * from Employee

Smith U 100,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC

Brown C 100,000 C Good C C

Smith 100,000 null

Name Salary JobPerformance

Brown 100,000 Good

Sept. 2023 Dr. Yangjun Chen ACS-4902 23

SQL Injection

SQL injection is a web security vulnerability that allows an

attacker

•to interfere with the queries that an application makes to its

database.

•to view data that they are not normally able to access. This

might include data belonging to other users, or any other data

that the application itself is not able to access.

•In many cases, an attacker can modify or delete some data,

causing persistent changes to the application's content or

behavior.

•In some situations, an attacker can escalate an SQL injection

attack to compromise the underlying server or other back-end

infrastructure, or perform a denial-of-service attack.

SQL Injection

What is the impact of a successful SQL injection attack?

•A successful SQL injection attack can result in

unauthorized access to sensitive data, such as

passwords, credit card details, or personal user

information.

•Many high-profile data breaches in recent years have

been the result of SQL injection attacks, leading to

reputational damage and regulatory fines.

•In some cases, an attacker can obtain a persistent

backdoor into an organization's systems, leading to a

long-term compromise that can go unnoticed for an

extended period.

Dr. Yangjun Chen ACS-4902 24

SQL Injection Examples

What is the impact of a successful SQL injection attack?

There are a wide variety of SQL injection vulnerabilities,

attacks, and techniques, which arise in different situations.

Some common SQL injection examples include:

• Retrieving hidden data, where you can modify an SQL query

to return additional results.

• Subverting application logic, where you can change a query

to interfere with the application's logic.

• UNION attacks, where you can retrieve data from different

database tables.

• Examining the database, where you can extract information

about the version and structure of the database.

• Blind SQL injection, where the results of a query you control

are not returned in the application's responses.

Dr. Yangjun Chen ACS-4902 25

https://portswigger.net/web-security/sql-injection#retrieving-hidden-data
https://portswigger.net/web-security/sql-injection#subverting-application-logic
https://portswigger.net/web-security/sql-injection/union-attacks
https://portswigger.net/web-security/sql-injection/examining-the-database
https://portswigger.net/web-security/sql-injection/blind

Retrieving hidden data

Consider a shopping application that displays

products in different categories. When the user

clicks on the Gifts category, their browser will

request an URL.

https://insecure-website.com/products?category='Gifts'

Superstore

kitchen gift garden… … …

Commodity categories:

Dr. Yangjun Chen ACS-4902 26

https://insecure-website.com/products?category=Gifts
https://insecure-website.com/products?category=Gifts

Sept. 2023 Dr. Yangjun Chen ACS-4902 27

Retrieving hidden data

Consider a shopping application that displays

products in different categories. When the user

clicks on the Gifts category, their browser requests

the URL:

https://insecure-website.com/products?category='Gifts'

This causes the application to make an SQL query

to retrieve details of the relevant products from the

database:

SELECT * FROM products

WHERE category = 'Gifts’

AND released = 1

The restriction released = 1 is

being used to hide products that

are not released. For unreleased

products, presumably, released

= 0.

https://insecure-website.com/products?category=Gifts
https://insecure-website.com/products?category=Gifts

This SQL query asks the database to return

•all details (*)

•from the products table

•where the category is Gifts

•and released is 1

The restriction released = 1 is being

used to hide products that are not released.

For unreleased products, presumably
released = 0.

Dr. Yangjun Chen ACS-4902 28

The application doesn't implement any defenses

against SQL injection attacks, so an attacker can

construct an attack like:

https://insecure-

website.com/products?category=’Gifts’--

This results in the SQL query:

SELECT * FROM products WHERE category =

'Gifts'-- AND released = 1

The key thing here is that the double-dash sequence -- is a

comment indicator in SQL and means that the rest of the

query is interpreted as a comment. This effectively removes
the remainder of the query, so it no longer includes AND

released = 1. This means that all products are displayed,

including unreleased products.

https://insecure-website.com/products?category=
https://insecure-website.com/products?category=Gifts’--

Going further, an attacker can cause the application to

display all the products in any category, including

categories that they don't know about:

https://insecure-

website.com/products?category='Gifts'+OR+1

=1--

This results in the SQL query:

SELECT * FROM products WHERE category =

'Gifts' OR 1=1 -- AND released = 1

The modified query will return all items where either the

category is Gifts, or 1 is equal to 1. Since 1=1 is always

true, the query will return all items.

Dr. Yangjun Chen ACS-4902 30

Subverting application logic

Consider an application that lets users log in with

a username and password. If a user submits the

username wiener and the password

bluecheese, the application checks the

credentials by performing the following SQL query:

SELECT * FROM users WHERE username =

'wiener' AND password = 'bluecheese'

• If the query returns the details of a user, then the

login is successful. Otherwise, it is rejected.

Dr. Yangjun Chen ACS-4902 31

• Here, an attacker can log in as any user without a

password simply by using the SQL comment

sequence -- to remove the password check from

the WHERE clause of the query. For example,

submitting the username administrator’ -- and a

blank password results in the following query:

SELECT * FROM users WHERE username =

'administrator’-- AND

password='bluecheese'

This query returns the user whose username is

administrator and successfully logs the attacker in as

that user.
Dr. Yangjun Chen ACS-4902 32

Retrieving data from other database tables

• In cases where the results of an SQL

query are returned within the

application's responses, an attacker can

leverage an SQL injection vulnerability to

retrieve data from other tables within the

database.

• This is done using the UNION keyword,

which lets you execute an additional

select query and append the results to

the original query.
Dr. Yangjun Chen ACS-4902 33

For example, if an application executes the

following query containing the user input "Gifts":

SELECT name, description FROM

products WHERE category = 'Gifts'

then an attacker can submit the input:

UNION SELECT username, password

FROM users--

This will cause the application to return all

usernames and passwords along with the names

and descriptions of products.

Dr. Yangjun Chen ACS-4902 34

Examining the database

Following initial identification of an SQL injection

vulnerability, it is generally useful to obtain some

information about the database itself. This

information can often pave the way for further

exploitation.

You can query the version details for the

database. The way that this is done depends on

the database type, so you can infer the database

type from whichever technique works. For

example, on Oracle you can execute:

SELECT * FROM v$version

Dr. Yangjun Chen ACS-4902 35

You can also determine what database tables exist,

and which columns they contain. For example, on

most databases you can execute the following query

to list the tables:

SELECT * FROM information_schema.tables

Dr. Yangjun Chen ACS-4902 36

Blind SQL injection vulnerabilities

• Many instances of SQL injection are blind

vulnerabilities. This means that the application

does not return the results of the SQL query or

the details of any database errors within its

responses.

• Blind vulnerabilities can still be exploited to

access unauthorized data, but the techniques

involved are generally more complicated and

difficult to perform.

Dr. Yangjun Chen ACS-4902 37

Depending on the nature of the vulnerability and the

database involved, the following techniques can be

used to exploit blind SQL injection vulnerabilities:

• You can change the logic of the query to

trigger a detectable difference in the

application's response depending on the truth of

a single condition. This might involve injecting a

new condition into some Boolean logic, or

conditionally triggering an error such as a divide-

by-zero.

Dr. Yangjun Chen ACS-4902 38

• You can conditionally trigger a time delay in the

processing of the query, allowing you to infer the

truth of the condition based on the time that the

application takes to respond.

• You can trigger an out-of-band network

interaction, using OAST techniques (Out-of-band

application security testing). This technique is

extremely powerful and works in situations where

the other techniques do not. Often, you can

directly exfiltrate data via the out-of-band channel,

for example by placing the data into a DNS-lookup
for a domain that you control.

Dr. Yangjun Chen ACS-4902 39

Protection against SQL Injection

Protection against SQL injection attacks can be

achieved by applying certain programming rules to

all Web accessible procedures and functions.

• Bind Variables (using parameterized

statements)

- The use of bind-variables (also known as

parameters) protects against injection attacks

and also improves performance.

Dr. Yangjun Chen ACS-4902 40

Protection against SQL Injection

Consider the following example using Java and

JDBC:

PreparedStatement stmt =

conn.preparedStatement(“SELECT * FROM

EMPLOYEEE WHERE EMPLOYEE_ID = ? AND

PASSWARD = ?”);

stmt.setString(1, employee_id);

stmt.setString(2, passward);

ResultSet resultSet = stmt.executeQuery();

Dr. Yangjun Chen ACS-4902 41

Protection against SQL Injection

Filtering Input (Input Validation)

• This technique can be used to remove escape

characters from input strings by using the SQL

replace function. For example, the delimiter single

quote (’) can be replaced by two single quotes(’’).

• Some SQL manipulation attacks can be prevented

by using this technique, since escape characters

can be used to inject manipulation attacks.

• However, because there can be a large number of

escape characters, this technique is not reliable.

Dr. Yangjun Chen ACS-4902 42

Protection against SQL Injection

Function Security

Database functions, both standard and

customed, should be restricted, as they can be

exploited in the SQL function injection attacks.

-SQL Aggregate Functions

-SQL Comparison Functions

-SQL String Functions

-SQL Math Functions

-SQL Date Functions

-SQL Window Functions

Need to write a program to

restrict these functions.

Dr. Yangjun Chen ACS-4902 43

https://www.sqltutorial.org/sql-aggregate-functions/
https://www.sqltutorial.org/sql-comparison-functions/
https://www.sqltutorial.org/sql-string-functions/
https://www.sqltutorial.org/sql-math-functions/
https://www.sqltutorial.org/sql-date-functions/
https://www.sqltutorial.org/sql-window-functions/

Sept. 2023 Dr. Yangjun Chen ACS-4902 44

Encryption and decryption

• Symmetric encryption

• Asymmetric encryption

Encryption and Decryption

Symmetric encryption is a type of encryption
where only one key (a secret key) is used to
both encrypt and decrypt electronic
information.

•The entities communicating via symmetric
encryption must exchange the key so that it
can be used in the decryption process.

•This encryption method differs from
asymmetric encryption where a pair of keys,
one public and one private, is used to encrypt
and decrypt messages.

Dr. Yangjun Chen ACS-4902 45

https://www.cryptomathic.com/news-events/blog/differences-between-hash-functions-symmetric-asymmetric-algorithms

Encryption and Decryption

Asymmetric keys are the foundation of Public Key
Infrastructure (PKI) - a cryptographic scheme

•Requiring two different keys, one to lock or encrypt the
plaintext, and one to unlock or decrypt the cyphertext.
Neither key will do both functions.

•One key is published (public key) and the other is kept
private (private key).

•This system also is called asymmetric key cryptography.

Dr. Yangjun Chen ACS-4902 46

https://cpl.thalesgroup.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki

Sept. 2023 Dr. Yangjun Chen ACS-4902 47

•If the lock/encryption key is the one published,
the system enables private communication from
the public to the unlocking key's owner.

Alice Bob

public key: (n, e)

encrypt a text using

the public key – lock key

encrypted text: T

decrypt T using

the private key: d

lock key

unlock key

public key – lock key

private key – unlock key

•If the unlock/decryption key is the one published,
then the system serves as a signature verifier of
documents locked by the owner of the private key.

Alice Bob

public key: d

decrypt T using

the public key: d

encrypted text: T

encrypt a text using

the private key: (n, e)

unlock key

lock key

Dr. Yangjun Chen ACS-4902 48

public key – unlock key

private key – lock key

Encryption and Decryption

Key distribution

– Suppose that Bob wants to send information

to Alice. If they decide to use RSA (an encryption

algorithm, proposed by Rivest, Shamir, Adleman),

Bob must know Alice's public key to encrypt the

message and Alice must use her private key to

decrypt the message.

– To enable Bob to send his encrypted messages,
Alice transmits her public key (n, e) to Bob via a

reliable, but not necessarily secret, route. Alice's
private key d is never distributed.

Dr. Yangjun Chen ACS-4902 49

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob

Encryption and Decryption

Encryption
• After Bob obtains Alice's public key (n, e), he can send

a message M to Alice.

• To do it, he first turns M (strictly speaking, the un-

padded plaintext) into an integer m (strictly speaking,

the padded plaintext), such that 0 ≤ m < n by using an

agreed-upon reversible protocol known as a padding

scheme. He then computes the ciphertext c, using

Alice's public key e, corresponding to

me  c (mod) n

This can be done reasonably quickly, even for very large

numbers, using modular exponentiation.

• Bob then transmits c to Alice.

Dr. Yangjun Chen ACS-4902 50

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Padding_schemes
https://en.wikipedia.org/wiki/Modular_exponentiation

Encryption and Decryption

Decryption

•Alice can recover m from c by using her private

key exponent d by computing

cd  (me)d (mod) n

Given m, she can recover the original

message M by reversing the padding scheme.

Dr. Yangjun Chen ACS-4902 51

public key= (n, e)

Sept. 2023 Dr. Yangjun Chen ACS-4902 52

How to create a lock (encrypt) key: (n, e)?

How to create an unlock (decrypt) key: d?

How to encrypt integer m using (n, e)?

How to decrypt integer c using d?

Sept. 2023 Dr. Yangjun Chen ACS-4902 53

Encryption and Decryption

Example

1. Choose two distinct prime numbers, such as

p = 61, q = 53

2. Compute n = p  q giving

n = 61  53 = 3233

3. Compute the Carmichael’s totient function of the product

as (n) = lcm(p - 1, q - 1), giving

(3233) = lcm(60, 52) = 780

4. Choose any number 1 < e < 780 that is coprime to 780.

Choosing a prime number for e leaves us only to check

that e is not a divisor of 780.

lcm – least common multiple

coprime – two numbers have

no common factors other than 1

Determine the

public key:

(n, e)

Encryption and Decryption

Example

4. Choose any number 1 < e < 780 that is coprime to 780.

Choosing a prime number for e leaves us only to check

that e is not a divisor of 780.

Let e = 17.

5. Compute d, the modular multiplicative inverse of e (i.e.,

e is a number satisfying 1 = (e  d) mod 780), yielding

d = 413,

as 1 = (17  413) mod 780.

(17  413 = 7021 = 9  780 + 1)

Determine the

private key d

Dr. Yangjun Chen ACS-4902 54

Encryption and Decryption

Example

The public key is (n = 3233, e = 17). For a padded

plaintext message m, the ciphertext is

c = me mod n = m17 mod 3233.

The private key is d = 413. By using d, we can get

m = cd mod n = c413 mod 3233.

For instance, in order to encrypt m = 65, we calculate

c = 6517 mod 3233 = 2790

To decrypt c = 2790, we calculate

m = = 2790d mod 3233 = 2790413 mod 3233 = 65.

Dr. Yangjun Chen ACS-4902 55

Encryption and Decryption

Comments:

• Both of these calculations can be computed

efficiently using the square-and-multiply algorithm

for modular exponentiation.

• In real-life situations the primes selected would be

much larger; in our example it would be trivial to

factor n, 3233 (obtained from the freely available

public key) back to the primes p and q. e, also

from the public key, is then inverted to get d

(according to 1 = (e  d) mod 780), thus acquiring

the private key.
lcm(p - 1, q - 1) = 780n = p  q = 3233

Sept. 2023 Dr. Yangjun Chen ACS-4902 57

(a  b) mod m

Modular exponentiation:

= (a mod m)  (b mod m) mod m

2790413 mod 3233

= (27902 mod 3233)  2790411 mod 3233

= (7784100 mod 3233)  (2790411 mod 3233)

= (249 mod 3233)  (2790411 mod 3233)

= (249  2790 mod 3233)  (2790410 mod 3233)

= … … = 65

