
Introduction

• Outline

 - Object-identifier, object structure

 - Encapsulation

 - Type and class hierarchy

 - Structured and unstructured objects

 - Polymorphism and operator overloading

 - Multiple inheritance

Introduction

• OO has roots in Programming languages

• SIMULA (simulation language) has the concept of

classes - late 60s

• SMALL TALK is the first pure OO language

• Hybrid languages incorporate OO concepts into an

already exisiting programming language

– Example: C++

Introduction

• Programming objects only exist during the program

execution

• Database objects need to exist permanently

(persistent objects)

• Concepts such as encapsulation, inheritance, identity

and evolving relationships must be applied in the

context of OODBMS

• OODBMS must also support transactions,

concurrency, recovery

Object Identity

Each object in the DB has a unique identity (OID)

even though the value of an object changes, its identity

must not change (the OID is immutable)

 if an object is deleted its OID must not be assigned to

any other object

These two properties imply that an object identifier must not

depend on an attribute

 Some systems use the physical address of the object in

storage as an OID

Relational database tables have a primary key

value can change

could have same object - two tables - different primary

keys

Object Structure

• In OODB, the value of a complex object can be

constructed from other objects

• Each object can be viewed as a triple

– (i, c, v)

– where i is the unique object identifier (OID)

– c is the constructor or an indication of how the object

value is constructed (operator)

– v is the value of the object (state)

• Basic constructors are atom, tuple, set

– Others: list, array

Object Structure

• The value v can be interpreted on the basis of the

constructor c

• Example:

– if c = atom then v = atomic value

o1 = (i1, atom, Houston)

o2 = (i2, atom, Bellaire)

o3 = (i3, atom, Sugarland)

o4 = (i4, atom, 5)

o5 = (i5, atom, Research)

o6 = (i6, atom, 22-May-78)

The value ‘Houston’

Object Structure

• Example:

– if c = tuple then v = < a1:i1..an:in >

o8 = (i8, tuple, < dname:i5, dnumber: i4, mgr: i9,

locations:i7, employees:i10, projects: i11>)

o9 = (i9, tuple, < manager:i12, managerstartdate: i6>)

Object Structure

• Example:

– if c = set then v = {i1,i2,i3}

o7 = (i7, set, { i1, i2 , i3 })

o10 = (i10, set, { i12, i13 , i14 })

o11 = (i11, set, { i15, i16 , i17 })

Type Constructors

Define type department
tuple(
 dname string
 dnumber integer
 mgr tuple (manager employee
 startdate: date)
 locations set (string)
 employees set (employee)
 projects set (project))

Define type employee
tuple(
 name string
 ssn string
 birthdate date
 work_in department)

We will have references
to other objects

Type Constructors

O8 tuple

Dname dnumber mgr locations employees projects

i5

Research

atom
i4

5

atom
i9 tuple

Manager managerstartdate

tuple
i12

i10
set

tuple
i13 tuple

i14
i6 atom

22-May-78

Encapsulation

• Encapsulation - Structure of an object is not visible to the

external world

– all operations on an object are predefined

– some operations may be used to create, destroy, modify

the values or retrieve the values of an object

– External users only have access to the interface of the

object (signature) which defines the names and types of

all parameters to each operation

– Methods specify the implementation of operations

– A method is invoked (call) by sending a message

Encapsulation

• In a RDBMS, the structure of an object is visible to all

users

– That is, a relation and attributes are visible

– All database operations (selection, insertion,

deletion..) are applicable to any relation (all object

types)

• In an OODBMS, one can divide a structure into visible

and hidden parts

– The hidden attributes are completely encapsulated

and accessed only through pre-defined operations

Encapsulation/Persistence

• It is customary for an OODBMS to be closely coupled
with an OO programming language

• An OO programming language is used to specify the
method implementations

– O2 uses O2C … O2C is C adapted for objects

– ObjectStore uses C++

• In an OODBMS, not all objects are persistent; some are
transient

• In an EER or relational model, all objects are persistent

Type and Class Hierarchies

Types are different from classes even though they lead to

the same structures

A type has a name, a set of attributes (instance variables)

and operations (methods)

A new type can be defined based on other predefined

types leading to a Type hierarchy

An object can belong to a type

Type definitions do not generate objects of their own

Example: Person: Name, Address, Birthdate, Age

Employee subtype of Person: Salary, HireDate

Class Hierarchies

Class is a collection of objects meaningful to some

application

 In most OODBs, a class is a collection of objects

belonging to the same type

A class is defined by its name and the collection of

objects included in the class

We can also define subclasses and superclasses creating

a class hierarchy

 In OODBs the concept of a type and class are the same.

Hence, the hierarchies are the same.

 Each class then has a particular type and holds a

collection of persistent objects of that type

Complex Objects

Motivation for the development of OO systems is to

represent complex objects

Two types of complex objects:

Unstructured

Structured

Complex Objects

Unstructured Complex Object

– The structure of these objects is not known to the

DBMS

– Only the application programs can interpret the

objects

– Ex: Bitmap images - BLOB (Binary large objects)

– These objects require a large amount of storage and

not a part of the standard type definitions

Unstructured Complex Object

– DBMS may retrieve only a portion of the object

– DBMS may use caching and buffering to prefetch

portions of the object

– The DBMS does not have the capability to directly

process selection conditions based on values of these

objects unless the application programs provide the code

– In OODBMS, this is done by defining an Abstract data

type with operations for selection, comparison, etc

– These feature allows the OODBM to have an extensible

type system

• That is, new types can be created and hence libraries of

new types

Complex Objects

 Structured Complex Object

– The object structure is defined and known to the

DBMS

– Object Structure is defined using type constructors

(set, atom, tuple)

– Two types of reference semantics exist between a

complex object and its component:

 Ownership

 Reference

Complex Objects

Complex Objects

Ownership Semantics

– Subobjects are encapsulated within a complex object

are considered a part of the complex object

Reference Semantics

– Components of a complex object are themselves

independent objects, but at the same time may be

considered a part of the complex object

O8 tuple

Dname dnumber mgr locations employees projects

Research 5 i9 tuple

Manager managerstartdate

tuple
i12

i10
set

tuple
i13 tuple

i14
i6 atom

22-May-78

 The ownership semantics leads to an

is-part-of or is-component-of relationship

are employees part of the department?

 The is-part-of relationship (or ownership semantics) means

that the encapsulated objects can be accessed by the

methods of that object and deleted if the object is deleted

Complex Objects

 The reference semantics leads to an

is-associated-with relationship

are the employees associated with the department?

An OODBMS should provide the storage options for

clustering the component objects together in order to

increase efficiency

 The mechanism of building objects from complex object

structures is called object assembly

Complex Objects

Other OO concepts

 Polymorphism

– An operator can be applied to different types of

objects

– When an operator has distinct implementations then

we have operator overloading

– Example: + when applied to integers implies integer

addition

– + when applied to sets implies set union

Other OO concepts

 Polymorphism

Example:

Geometry_Object: Shape, Area, CenterPoint

• Rectangle subtype_of

Geometry_Object(Shape=‘rectangle’): Width, height

• Triangle subtype_of

Geometry_Object(Shape=‘triangle’): side1, side2, angle

• Circle subtype_of Geometry_Object(Shape=‘circle’):

Radius

Area is a method that would be different for each sub-Type

 Strongly Typed systems:

Method selection is done at compile time (early binding)

Weakly Typed systems:

Method selection is done at run time (late binding).

Lisp and Small Talk are examples late-binding

Other OO concepts

Multiple Inheritance:

allowed in O2

leads to a lattice

– One problem: if a subtype inherits two distinct methods
with the same name from two different supertypes

– A solution: check for ambiguity when the subtype is created
and let the user choose the function

– Another solution: use some system default

– A third solution: disallow multiple inheritance if ambiguity
occurs

Other OO concepts

 Selective Inheritance:

– When a subtype inherits only a few methods

– This mechanism is not usually provided by OODBMS

Other OO concepts

Versions:

– Ability to maintain several versions of an object

– Commonly found in many software engineering and

concurrent engineering environments

– Merging and reconciliation of various versions is left to

the application program

– Some systems maintain a version graph

Configuration:

– A configuration is a collection compatible versions of

modules of a software system (a version per module)

Other OO concepts

