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Introduction

OO has roots in Programming languages

SIMULA (simulation language) has the concept of
classes - late 60s

SMALL TALK is the first pure OO language

Hybrid languages incorporate OO concepts into an
already exisiting programming language

— Example: C++




Introduction

» Programming objects only exist during the program
execution

» Database objects need to exist permanently
(persistent objects)

« Concepts such as encapsulation, inheritance, identity
and evolving relationships must be applied in the
context of OODBMS

« OODBMS must also support transactions,




Object Identity

<~ Each object in the DB has a unique identity (OID)

<-even though the value of an object changes, its identity
must not change (the OID is immutable)

< If an object Is deleted its OID must not be assigned to
any other object

<~ These two properties imply that an object identifier must not
depend on an attribute

& Some systems use the physical address of the object In
storage as an OID

<=~ Relational database tables have a primary key
<-value can change




ODbject Structure

« |In OODB, the value of a complex object can be
constructed from other objects

» Each object can be viewed as a triple
— (1,¢,V)
— where 1 Is the unique object identifier (OID)

— ¢ Is the constructor or an indication of how the object
value Is constructed (operator)

— VIS the value of the object (state)
 Basic constructors are atom, tuple, set
— Others: list, array




Object Structure

« The value v can be interpreted on the basis of the

constructor c

« Example:
— If ¢ = atom then v = atomic value
o, = (I, atom, Houston)
0, = (I,, atom, Bellaire)
05 = (I3, atom, Sugarland)
o, = (I4, atom, 5)
0: = (I5, atom, Research)

The value ‘Houston’




Object Structure

« Example:
— ifc=tuple thenv = < a;:i,..a i >

0g = (g, tuple, < dname:i;, dnumber: i,, mgr: Ig,
locations:i,, employees:i,,, projects: i;;,>)

04 = (lg, tuple, < manager:i,,, managerstartdate: i;>)




Object Structure

« Example:
— ifc=setthen v = {i,,i,,i5}
0, = (Iz, set, {1y, 15,13 })
019 = (I10, S€L, {112, 113, 114 })
0y = (Iyq, S€t, { I35, 116, 117 })




Type Constructors

Define type employee
tuple(
name string
ssn string
birthdate date
work_in department )
Define type department \ ,
tuple( We will have references
up I to other objects
name string
dnumber integer /
mer tuple ( manager employee
startdafe: date)
locations set (string)

employees set (employgee )




Type Constructors

tuple




Encapsulation

 Encapsulation - Structure of an object Is not visible to the
external world

— all operations on an object are predefined

— Some operations may be used to create, destroy, modify
the values or retrieve the values of an object

— External users only have access to the interface of the
object (signature) which defines the names and types of
all parameters to each operation

— Methods specify the implementation of operations
— A method is invoked (call) by sending a message




Encapsulation

* In a RDBMS, the structure of an object is visible to all
users

— That is, a relation and attributes are visible

— All database operations (selection, insertion,
deletion..) are applicable to any relation (all object

types)

e |n an OODBMS, one can divide a structure into visible
and hidden parts

— The hidden attributes are completely encapsulated
and accessed only through pre-defined operations




Encapsulation/Persistence

 Itis customary for an OODBMS to be closely coupled
with an OO programming language
* An OO programming language Is used to specify the
method implementations
— 02 uses 0O2C ... O2C is C adapted for objects

— ObjectStore uses C++

* Inan OODBMS, not all objects are persistent, some are

transient
* In an EER or relational model, all objects are persistent

'—““



Type and Class Hierarchies

= Types are different from classes even though they lead to
the same structures

<= A type has a name, a set of attributes (instance variables)
and operations (methods)

< A new type can be defined based on other predefined
types leading to a Type hierarchy

<= An object can belong to a type

<~ Type definitions do not generate objects of their own
< Example: Person: Name, Address, Birthdate, Age
< Employee subtype of Person: Salary, HireDate

m



Class Hierarchies

<~ Class 1s a collection of objects meaningful to some
application

<= In most OODBEs, a class is a collection of objects
belonging to the same type

<= A class iIs defined by its name and the collection of
objects included in the class

<~ We can also define subclasses and superclasses creating
a class hierarchy

< In OODBs the concept of a type and class are the same.
Hence, the hierarchies are the same.

<~ Each class then has a particular type and holds a
collection of persistent objects of that type

—“ﬂ



Complex Objects

< Motivation for the development of OO systems is to
represent complex objects

= Two types of complex objects:
< Unstructured
< Structured




Complex Objects

<= Unstructured Complex Object

— The structure of these objects is not known to the
DBMS

— Only the application programs can interpret the
objects

— EX: Bitmap images - BLOB (Binary large objects)

— These objects require a large amount of storage and
not a part of the standard type definitions




Complex Objects

<= Unstructured Complex Object
— DBMS may retrieve only a portion of the object

— DBMS may use caching and buffering to prefetch
portions of the object

— The DBMS does not have the capability to directly
process selection conditions based on values of these
objects unless the application programs provide the code

— In OODBMS, this is done by defining an Abstract data
type with operations for selection, comparison, etc

— These feature allows the OODBM to have an extensible
type system

 That is, new types can be created and hence libraries of

r—'wv‘



Complex Objects

<= Structured Complex Object

— The object structure is defined and known to the
DBMS

— Object Structure Is defined using type constructors
(set, atom, tuple)

— Two types of reference semantics exist between a
complex object and its component:

< Ownership
= Reference




Complex Objects

< Ownership Semantics

— Subobjects are encapsulated within a complex object
are considered a part of the complex object

& Reference Semantics

— Components of a complex object are themselves
Independent objects, but at the same time may be
considered a part of the complex object




Research




Complex Objects

<~ The ownership semantics leads to an
Is-part-of or is-component-of relationship
<-are employees part of the department?

<~ The Is-part-of relationship (or ownership semantics) means
that the encapsulated objects can be accessed by the
methods of that object and deleted if the object is deleted




Complex Objects

- The reference semantics leads to an
Is-associated-with relationship
<-are the employees associated with the department?

< An OODBMS should provide the storage options for
clustering the component objects together in order to
Increase efficiency

< The mechanism of building objects from complex object
structures Is called object assembly




Other OO concepts

<= Polymorphism
— An operator can be applied to different types of
objects

— When an operator has distinct implementations then
we have operator overloading

— Example: + when applied to integers implies integer
addition

— + when applied to sets implies set union




Other OO concepts

<= Polymorphism
< Example:
Geometry Object: Shape, Area, CenterPoint

« Rectangle subtype_ of
Geometry Object(Shape=‘rectangle’): Width, height

* Triangle subtype of
Geometry Object(Shape=‘triangle’): sidel, side2, angle

 Circle subtype of Geometry Object(Shape=°‘circle’):
Radius

Area Is a method that would be different for each sub-Type




Other OO concepts

<= Strongly Typed systems:
Method selection is done at compile time (early binding)

& Weakly Typed systems:
Method selection is done at run time (late binding).
Lisp and Small Talk are examples late-binding




Other OO concepts

<= Multiple Inheritance:
<-allowed Iin O2

& |eads to a lattice

— One problem: if a subtype inherits two distinct methods
with the same name from two different supertypes

— A solution: check for ambiguity when the subtype is created
and let the user choose the function

— Another solution: use some system default
— A third solution: disallow multiple inheritance if ambiguity

OCCUrs




Other OO concepts

<~ Selective Inheritance:
— When a subtype inherits only a few methods
— This mechanism is not usually provided by OODBMS




Other OO concepts

<= Versions:
— Ability to maintain several versions of an object

— Commonly found in many software engineering and
concurrent engineering environments

— Merging and reconciliation of various versions Is left to
the application program

— Some systems maintain a version graph

<= Configuration:

— A configuration is a collection compatible versions of
modules of a software system (a version per module




