
Introduction

• Outline

 - Object-identifier, object structure

 - Encapsulation

 - Type and class hierarchy

 - Structured and unstructured objects

 - Polymorphism and operator overloading

 - Multiple inheritance

Introduction

• OO has roots in Programming languages

• SIMULA (simulation language) has the concept of

classes - late 60s

• SMALL TALK is the first pure OO language

• Hybrid languages incorporate OO concepts into an

already exisiting programming language

– Example: C++

Introduction

• Programming objects only exist during the program

execution

• Database objects need to exist permanently

(persistent objects)

• Concepts such as encapsulation, inheritance, identity

and evolving relationships must be applied in the

context of OODBMS

• OODBMS must also support transactions,

concurrency, recovery

Object Identity

Each object in the DB has a unique identity (OID)

even though the value of an object changes, its identity

must not change (the OID is immutable)

 if an object is deleted its OID must not be assigned to

any other object

These two properties imply that an object identifier must not

depend on an attribute

 Some systems use the physical address of the object in

storage as an OID

Relational database tables have a primary key

value can change

could have same object - two tables - different primary

keys

Object Structure

• In OODB, the value of a complex object can be

constructed from other objects

• Each object can be viewed as a triple

– (i, c, v)

– where i is the unique object identifier (OID)

– c is the constructor or an indication of how the object

value is constructed (operator)

– v is the value of the object (state)

• Basic constructors are atom, tuple, set

– Others: list, array

Object Structure

• The value v can be interpreted on the basis of the

constructor c

• Example:

– if c = atom then v = atomic value

o1 = (i1, atom, Houston)

o2 = (i2, atom, Bellaire)

o3 = (i3, atom, Sugarland)

o4 = (i4, atom, 5)

o5 = (i5, atom, Research)

o6 = (i6, atom, 22-May-78)

The value ‘Houston’

Object Structure

• Example:

– if c = tuple then v = < a1:i1..an:in >

o8 = (i8, tuple, < dname:i5, dnumber: i4, mgr: i9,

locations:i7, employees:i10, projects: i11>)

o9 = (i9, tuple, < manager:i12, managerstartdate: i6>)

Object Structure

• Example:

– if c = set then v = {i1,i2,i3}

o7 = (i7, set, { i1, i2 , i3 })

o10 = (i10, set, { i12, i13 , i14 })

o11 = (i11, set, { i15, i16 , i17 })

Type Constructors

Define type department
tuple(
 dname string
 dnumber integer
 mgr tuple (manager employee
 startdate: date)
 locations set (string)
 employees set (employee)
 projects set (project))

Define type employee
tuple(
 name string
 ssn string
 birthdate date
 work_in department)

We will have references
to other objects

Type Constructors

O8 tuple

Dname dnumber mgr locations employees projects

i5

Research

atom
i4

5

atom
i9 tuple

Manager managerstartdate

tuple
i12

i10
set

tuple
i13 tuple

i14
i6 atom

22-May-78

Encapsulation

• Encapsulation - Structure of an object is not visible to the

external world

– all operations on an object are predefined

– some operations may be used to create, destroy, modify

the values or retrieve the values of an object

– External users only have access to the interface of the

object (signature) which defines the names and types of

all parameters to each operation

– Methods specify the implementation of operations

– A method is invoked (call) by sending a message

Encapsulation

• In a RDBMS, the structure of an object is visible to all

users

– That is, a relation and attributes are visible

– All database operations (selection, insertion,

deletion..) are applicable to any relation (all object

types)

• In an OODBMS, one can divide a structure into visible

and hidden parts

– The hidden attributes are completely encapsulated

and accessed only through pre-defined operations

Encapsulation/Persistence

• It is customary for an OODBMS to be closely coupled
with an OO programming language

• An OO programming language is used to specify the
method implementations

– O2 uses O2C … O2C is C adapted for objects

– ObjectStore uses C++

• In an OODBMS, not all objects are persistent; some are
transient

• In an EER or relational model, all objects are persistent

Type and Class Hierarchies

Types are different from classes even though they lead to

the same structures

A type has a name, a set of attributes (instance variables)

and operations (methods)

A new type can be defined based on other predefined

types leading to a Type hierarchy

An object can belong to a type

Type definitions do not generate objects of their own

Example: Person: Name, Address, Birthdate, Age

Employee subtype of Person: Salary, HireDate

Class Hierarchies

Class is a collection of objects meaningful to some

application

 In most OODBs, a class is a collection of objects

belonging to the same type

A class is defined by its name and the collection of

objects included in the class

We can also define subclasses and superclasses creating

a class hierarchy

 In OODBs the concept of a type and class are the same.

Hence, the hierarchies are the same.

 Each class then has a particular type and holds a

collection of persistent objects of that type

Complex Objects

Motivation for the development of OO systems is to

represent complex objects

Two types of complex objects:

Unstructured

Structured

Complex Objects

Unstructured Complex Object

– The structure of these objects is not known to the

DBMS

– Only the application programs can interpret the

objects

– Ex: Bitmap images - BLOB (Binary large objects)

– These objects require a large amount of storage and

not a part of the standard type definitions

Unstructured Complex Object

– DBMS may retrieve only a portion of the object

– DBMS may use caching and buffering to prefetch

portions of the object

– The DBMS does not have the capability to directly

process selection conditions based on values of these

objects unless the application programs provide the code

– In OODBMS, this is done by defining an Abstract data

type with operations for selection, comparison, etc

– These feature allows the OODBM to have an extensible

type system

• That is, new types can be created and hence libraries of

new types

Complex Objects

 Structured Complex Object

– The object structure is defined and known to the

DBMS

– Object Structure is defined using type constructors

(set, atom, tuple)

– Two types of reference semantics exist between a

complex object and its component:

 Ownership

 Reference

Complex Objects

Complex Objects

Ownership Semantics

– Subobjects are encapsulated within a complex object

are considered a part of the complex object

Reference Semantics

– Components of a complex object are themselves

independent objects, but at the same time may be

considered a part of the complex object

O8 tuple

Dname dnumber mgr locations employees projects

Research 5 i9 tuple

Manager managerstartdate

tuple
i12

i10
set

tuple
i13 tuple

i14
i6 atom

22-May-78

 The ownership semantics leads to an

is-part-of or is-component-of relationship

are employees part of the department?

 The is-part-of relationship (or ownership semantics) means

that the encapsulated objects can be accessed by the

methods of that object and deleted if the object is deleted

Complex Objects

 The reference semantics leads to an

is-associated-with relationship

are the employees associated with the department?

An OODBMS should provide the storage options for

clustering the component objects together in order to

increase efficiency

 The mechanism of building objects from complex object

structures is called object assembly

Complex Objects

Other OO concepts

 Polymorphism

– An operator can be applied to different types of

objects

– When an operator has distinct implementations then

we have operator overloading

– Example: + when applied to integers implies integer

addition

– + when applied to sets implies set union

Other OO concepts

 Polymorphism

Example:

Geometry_Object: Shape, Area, CenterPoint

• Rectangle subtype_of

Geometry_Object(Shape=‘rectangle’): Width, height

• Triangle subtype_of

Geometry_Object(Shape=‘triangle’): side1, side2, angle

• Circle subtype_of Geometry_Object(Shape=‘circle’):

Radius

Area is a method that would be different for each sub-Type

 Strongly Typed systems:

Method selection is done at compile time (early binding)

Weakly Typed systems:

Method selection is done at run time (late binding).

Lisp and Small Talk are examples late-binding

Other OO concepts

Multiple Inheritance:

allowed in O2

leads to a lattice

– One problem: if a subtype inherits two distinct methods
with the same name from two different supertypes

– A solution: check for ambiguity when the subtype is created
and let the user choose the function

– Another solution: use some system default

– A third solution: disallow multiple inheritance if ambiguity
occurs

Other OO concepts

 Selective Inheritance:

– When a subtype inherits only a few methods

– This mechanism is not usually provided by OODBMS

Other OO concepts

Versions:

– Ability to maintain several versions of an object

– Commonly found in many software engineering and

concurrent engineering environments

– Merging and reconciliation of various versions is left to

the application program

– Some systems maintain a version graph

Configuration:

– A configuration is a collection compatible versions of

modules of a software system (a version per module)

Other OO concepts

