Introduction

Outline

Object-identifier, object structure
Encapsulation

Type and class hierarchy

Structured and unstructured objects
Polymorphism and operator overloading
Multiple inheritance

Introduction

OO has roots in Programming languages

SIMULA (simulation language) has the concept of
classes - late 60s

SMALL TALK is the first pure OO language

Hybrid languages incorporate OO concepts into an
already exisiting programming language

— Example: C++

Introduction

» Programming objects only exist during the program
execution

» Database objects need to exist permanently
(persistent objects)

« Concepts such as encapsulation, inheritance, identity
and evolving relationships must be applied in the
context of OODBMS

« OODBMS must also support transactions,

Object Identity

<~ Each object in the DB has a unique identity (OID)

<-even though the value of an object changes, its identity
must not change (the OID is immutable)

< If an object Is deleted its OID must not be assigned to
any other object

<~ These two properties imply that an object identifier must not
depend on an attribute

& Some systems use the physical address of the object In
storage as an OID

<=~ Relational database tables have a primary key
<-value can change

ODbject Structure

« |In OODB, the value of a complex object can be
constructed from other objects

» Each object can be viewed as a triple
— (1,¢,V)
— where 1 Is the unique object identifier (OID)

— ¢ Is the constructor or an indication of how the object
value Is constructed (operator)

— VIS the value of the object (state)
 Basic constructors are atom, tuple, set
— Others: list, array

Object Structure

« The value v can be interpreted on the basis of the

constructor c

« Example:
— If ¢ = atom then v = atomic value
o, = (I, atom, Houston)
0, = (I,, atom, Bellaire)
05 = (I3, atom, Sugarland)
o, = (I4, atom, 5)
0: = (I5, atom, Research)

The value ‘Houston’

Object Structure

« Example:
— ifc=tuple thenv = < a;:i,..a i >

0g = (g, tuple, < dname:i;, dnumber: i,, mgr: Ig,
locations:i,, employees:i,,, projects: i;;,>)

04 = (lg, tuple, < manager:i,,, managerstartdate: i;>)

Object Structure

« Example:
— ifc=setthen v = {i,,i,,i5}
0, = (Iz, set, {1y, 15,13 })
019 = (I10, S€L, {112, 113, 114 })
0y = (Iyq, S€t, { I35, 116, 117 })

Type Constructors

Define type employee
tuple(
name string
ssn string
birthdate date
work_in department)
Define type department \ ,
tuple(We will have references
up I to other objects
name string
dnumber integer /
mer tuple (manager employee
startdafe: date)
locations set (string)

employees set (employgee)

Type Constructors

tuple

Encapsulation

 Encapsulation - Structure of an object Is not visible to the
external world

— all operations on an object are predefined

— Some operations may be used to create, destroy, modify
the values or retrieve the values of an object

— External users only have access to the interface of the
object (signature) which defines the names and types of
all parameters to each operation

— Methods specify the implementation of operations
— A method is invoked (call) by sending a message

Encapsulation

* In a RDBMS, the structure of an object is visible to all
users

— That is, a relation and attributes are visible

— All database operations (selection, insertion,
deletion..) are applicable to any relation (all object

types)

e |n an OODBMS, one can divide a structure into visible
and hidden parts

— The hidden attributes are completely encapsulated
and accessed only through pre-defined operations

Encapsulation/Persistence

 Itis customary for an OODBMS to be closely coupled
with an OO programming language
* An OO programming language Is used to specify the
method implementations
— 02 uses 0O2C ... O2C is C adapted for objects

— ObjectStore uses C++

* Inan OODBMS, not all objects are persistent, some are

transient
* In an EER or relational model, all objects are persistent

'—““

Type and Class Hierarchies

= Types are different from classes even though they lead to
the same structures

<= A type has a name, a set of attributes (instance variables)
and operations (methods)

< A new type can be defined based on other predefined
types leading to a Type hierarchy

<= An object can belong to a type

<~ Type definitions do not generate objects of their own
< Example: Person: Name, Address, Birthdate, Age
< Employee subtype of Person: Salary, HireDate

m

Class Hierarchies

<~ Class 1s a collection of objects meaningful to some
application

<= In most OODBEs, a class is a collection of objects
belonging to the same type

<= A class iIs defined by its name and the collection of
objects included in the class

<~ We can also define subclasses and superclasses creating
a class hierarchy

< In OODBs the concept of a type and class are the same.
Hence, the hierarchies are the same.

<~ Each class then has a particular type and holds a
collection of persistent objects of that type

—“ﬂ

Complex Objects

< Motivation for the development of OO systems is to
represent complex objects

= Two types of complex objects:
< Unstructured
< Structured

Complex Objects

<= Unstructured Complex Object

— The structure of these objects is not known to the
DBMS

— Only the application programs can interpret the
objects

— EX: Bitmap images - BLOB (Binary large objects)

— These objects require a large amount of storage and
not a part of the standard type definitions

Complex Objects

<= Unstructured Complex Object
— DBMS may retrieve only a portion of the object

— DBMS may use caching and buffering to prefetch
portions of the object

— The DBMS does not have the capability to directly
process selection conditions based on values of these
objects unless the application programs provide the code

— In OODBMS, this is done by defining an Abstract data
type with operations for selection, comparison, etc

— These feature allows the OODBM to have an extensible
type system

 That is, new types can be created and hence libraries of

r—'wv‘

Complex Objects

<= Structured Complex Object

— The object structure is defined and known to the
DBMS

— Object Structure Is defined using type constructors
(set, atom, tuple)

— Two types of reference semantics exist between a
complex object and its component:

< Ownership
= Reference

Complex Objects

< Ownership Semantics

— Subobjects are encapsulated within a complex object
are considered a part of the complex object

& Reference Semantics

— Components of a complex object are themselves
Independent objects, but at the same time may be
considered a part of the complex object

Research

Complex Objects

<~ The ownership semantics leads to an
Is-part-of or is-component-of relationship
<-are employees part of the department?

<~ The Is-part-of relationship (or ownership semantics) means
that the encapsulated objects can be accessed by the
methods of that object and deleted if the object is deleted

Complex Objects

- The reference semantics leads to an
Is-associated-with relationship
<-are the employees associated with the department?

< An OODBMS should provide the storage options for
clustering the component objects together in order to
Increase efficiency

< The mechanism of building objects from complex object
structures Is called object assembly

Other OO concepts

<= Polymorphism
— An operator can be applied to different types of
objects

— When an operator has distinct implementations then
we have operator overloading

— Example: + when applied to integers implies integer
addition

— + when applied to sets implies set union

Other OO concepts

<= Polymorphism
< Example:
Geometry Object: Shape, Area, CenterPoint

« Rectangle subtype_ of
Geometry Object(Shape=‘rectangle’): Width, height

* Triangle subtype of
Geometry Object(Shape=‘triangle’): sidel, side2, angle

 Circle subtype of Geometry Object(Shape=°‘circle’):
Radius

Area Is a method that would be different for each sub-Type

Other OO concepts

<= Strongly Typed systems:
Method selection is done at compile time (early binding)

& Weakly Typed systems:
Method selection is done at run time (late binding).
Lisp and Small Talk are examples late-binding

Other OO concepts

<= Multiple Inheritance:
<-allowed Iin O2

& |eads to a lattice

— One problem: if a subtype inherits two distinct methods
with the same name from two different supertypes

— A solution: check for ambiguity when the subtype is created
and let the user choose the function

— Another solution: use some system default
— A third solution: disallow multiple inheritance if ambiguity

OCCUrs

Other OO concepts

<~ Selective Inheritance:
— When a subtype inherits only a few methods
— This mechanism is not usually provided by OODBMS

Other OO concepts

<= Versions:
— Ability to maintain several versions of an object

— Commonly found in many software engineering and
concurrent engineering environments

— Merging and reconciliation of various versions Is left to
the application program

— Some systems maintain a version graph

<= Configuration:

— A configuration is a collection compatible versions of
modules of a software system (a version per module

