
Sept. 2023 Yangjun Chen ACS-4902 1

Database

T
ran

sactio
n
 M

an
ag

em
en

t

S
p
atial an

d
 tem

p
o
ral D

atab
ases

an
d
 d

ata stream

D
atab

ase S
y
stem

 A
rch

itectu
re

S
y
stem

 C
atalo

g

Q
u
ery

 P
ro

cessin
g
 an

d

O
p
tim

izatio
n
,

E
n
h
an

ced
 E

R
-d

iag
ram

Not included in the

final.

In
d
ex

es

S
earch

 en
g
in

e in
 w

eb
 b

ro
w

ser

Final: Dec. 9 (Saturday), 1:30 pm – 4:30 pm

1L04, book closed

Sept. 2023 Yangjun Chen ACS-4902 2

Main frame computer

Client-Server Computer Architecture

Client-Server Database Architecture

Sept. 2023 Yangjun Chen ACS-4902 3

Client-Server Computer Architecture

- Terminals are replaced with PCs and workstations

- Mainframe computer is replaced with specialized

servers (with specific functionalities).

File server, DBMS server, mail server, print server, …

Client Client Client

Print server File server DBMS server

… ...

… ...

network

Sept. 2023 Yangjun Chen ACS-4902 4

Database System Architectures

client

site1

client

site2

server

site3
client

site n

server

Communication

network

… ...

Sept. 2023 Yangjun Chen ACS-4902 5

Client-Server Architecture in DBMSs

- database client

user interface, data dictionary functions, DBMS

interaction with programming language compiler, global

query optimization, structuring of complex objects from

the data in the buffers, ...

- database server

data storage on disk, local concurrency control and

recovery, buffering and caching of disk storage, ...

- database connection

ODBC - open database connectivity

API - application programming interface

Sept. 2023 Yangjun Chen ACS-4902 6

mata data for a relational schema

relation names, attribute names, attribute

domains (data types)

description of key constraints

views, storage structure, indexes

security, authorization, owner of each
relation

Sept. 2023 Yangjun Chen ACS-4902 7

Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS

software - SQL.)

REL_NAME ATTR_NAME ATTR_TYPE MEMBER_OF_PK MEMBER_OF_FK FK_RELATION

EMPLOYEE FNAME VSTR15 no no

EMPLOYEE SUPERSSN STR9 no yes EMPLOYEE

EMPLOYEE DNO INTEGER no yes DEPARTMENT

... ...

... ...

REL_AND_ATTR_CATALOG

Sept. 2023 Yangjun Chen ACS-4902 8

Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS

software - SQL.)

REL_NAME KEY_NUM MEMBER_ATTR

REL_NAME INDEX_NAME MEMBER_ATTR INDEX_TYPE ATTR_NO ASC_DESC

RELATION_KEYS

VIEW_NAME QUERY

VIEW_QUERIES

RELATION_INDEXES

VIEW_NAME ATTR_NAME ATTR_NUM

VIEW_ATTRIBUTES

Sept. 2023 Yangjun Chen ACS-4902 9

REL_NAME INDEX_NAME MEMBER_ATTR INDEX_TYPE ATTR_NO ASC_DESC

RELATION_INDEXES

Works_on I1 SSN Primary 1 ASC

Works_on I1 Pno Primary 2 ASC

Works_on I2 SSN Clustering 1 ASC

Sept. 2023 Yangjun Chen ACS-4902 10

Index file: I1

(<k(i), p(i)> entries)

Data file: Works_on

123456789 1

123456789 2

123456789 3

234567891 1

SSN Pno hours

234567891 2

345678912 2

345678912 3

456789123 1

... ...

Primary index:

...

123456789 1

234567891 2

... ...

Sept. 2023 Yangjun Chen ACS-4902 11

Index file: I2

(<k(i), p(i)> entries)

Data file: Works_on

123456789 1

123456789 2

123456789 3

234567891 1

SSN Pno hours

234567891 2

345678912 2

345678912 3

456789123 1

... ...

Clustering index:

...

123456789

234567891

345678912

456789123

Sept. 2023 Yangjun Chen ACS-4902 12

Create View Works_on1

AS Select FNAME, LNAME, PNAME, hours

From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER

VIEW_NAME QUERY

VIEW_QUERIES

Works_on1 Select FNAME, LNAME, PNAME, hour

… ...

Sept. 2023 Yangjun Chen ACS-4902 13

VIEW_NAME ATTR_NAME ATTR_NUM

VIEW_ATTRIBUTES

Works_on1 FNAME 1

Works_on1 LNAME 2

Works_on1 PNAME 3

Works_on1 hours 4

Sept. 2023 Yangjun Chen ACS-4902 14

Meta data

DDL (SDL)

compilers

Query and DML

parser and verifier

Query and DML

compilers

Query and DML

optimizer

Authorization and

security checking

External-to-conceptual

mapping

Specification in

DDL, SDL

Sept. 2023 Yangjun Chen ACS-4902 15

Processing a high-level query

Translating SQL queries into relational

algebra expressions

Basic algorithms

- Sorting: internal sorting and external

sorting

- Implementing the SELECT operation

- Implementing the JOIN operation

- Other operations

Heuristics for query optimization

Sept. 2023 Yangjun Chen ACS-4902 16

• Steps of processing a high-level query

Scanning, Parsing, Validating

Query in a high-level language

Intermediate form of query

Query optimization

Execution plan

Query code generation

Code to execute the query

Runtime database processor

Result of query

Sept. 2023 Yangjun Chen ACS-4902 17

• Translating SQL queries into relational algebra

- decompose an SQL query into query blocks

query block - SELECT-FROM-WHERE clause

Example: SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX(SALARY)

FROM EMPLOEE

WHERE DNO = 5);

SELECT MAX(SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > c

Sept. 2023 Yangjun Chen ACS-4902 18

SELECT MAX(SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > c

F MAX SALARY(DNO=5(EMPLOYEE))

LNAME FNAME(SALARY>C(EMPLOYEE))

• Translating SQL queries into relational algebra

- translate query blocks into relational algebra expressions

Sept. 2023 Yangjun Chen ACS-4902 19

• Basic algorithms

- sorting: internal sorting and external sorting

- algorithm for SELECT operation

- algorithm for JOIN operation

- algorithm for PROJECT operation

- algorithm for SET operations

- implementing AGGREGATE operation

- implementing OUTER JOIN

Sept. 2023 Yangjun Chen ACS-4902 20

• Sorting algorithms

- internal sorting - sorting in main memory:

sort a series of integers,

sort a series of keys

sort a series of records

- different sorting methods:

simple sorting

heap sorting

- external sorting – sorting a file which cannot

be accommodated completely in main memory

Sept. 2023 Yangjun Chen ACS-4902 21

- A simple sorting algorithm

Algorithm

Input: an array A containing n integers.

Output: sorted array.

1. i := 2;

2. Find the least element a from A(i) to A(n);

3. If a is less than A(i - 1), exchange A(i - 1) and a;

4. i := i + 1; goto step (2).

Sept. 2023 Yangjun Chen ACS-4902 22

- Merge-sorting

Algorithm Merge-sorting(s)

Input: a sequences s = < x1, ..., xm>

Output: a sorted sequence.

1. If |s| = 1, then return s;

2. k := m/2;

3. s1 := Merge-sorting(x1, ..., xk);

4. s2 := Merge-sorting(xk+1, ..., xm);

5. return(Merge(s1, s2));

Not included in the final

Sept. 2023 Yangjun Chen ACS-4902 23

- Merging algorithm

Algorithm(s1, s2)

Input: two sequences: s1 - x1  x2 ...  xm and s2 - y1  y2 ...  yn

Output: a sorted sequence: z1  z2 ...  zm+n.

1.[initialize] i := 1, j := 1, k := 1;

2.[find smaller] if xi  yj goto step 3, otherwise goto step 5;

3.[output xi] zk.:= xi, k := k+1, i := i+1. If i  m, goto step 2;

4.[transmit yj  ...  yn] zk, ..., zm+n := yj, ..., yn. Terminate the algorithm;

5.[output yj] zk.:= yj, k := k+1, j := j+1. If j  n, goto step 2;

6.[transmit xi  ...  xm] zk, ..., zm+n := xi, ..., xm. Terminate the algorithm;

Not included in the final

Sept. 2023 Yangjun Chen ACS-4902 24

• Basic algorithms

-quick sorting

main idea:

Algorithm quick_sort(from, center, to)

Input: from - pointer to the starting position of array A

center - pointer to the middle position of array A

to - pointer to the end position of array A

Output: sorted array: A’

0. i := 1; j := n;

1. Find the first element a = A(i) larger than or equal to A(center) from

A(from) to A(to); (i is used to scan from left to right.)

2. Find the first element b = A(j) smaller than or equal to A(center) from

A(to) to A(from); (j is used to scan from right to left.)

3. If i < j then exchange a and b;

4. Repeat step from 1 to 3 until j <= i;

5. If from < j then recursive call quick_sort(from,(from + j)/2, j);

6. If i < to then recursive call quick_sort(i, (i+ to)/2, to);

Not included in the final

Sept. 2023 Yangjun Chen ACS-4902 25

• Basic algorithms

- quick sorting

main idea:

1st step: 3 1 6 5 4 8 10 7

2nd step: 3 2 1 5 8 9 10 7

3rd step: 3 2 1 4 5 6 8 9 10 7

centerfrom to

29

6 4

Smaller than 5 greater than 5

i j

The center element is 5.

i = j = 5

Sept. 2023 Yangjun Chen ACS-4902 26

• Basic algorithms

- quick sorting

4th step: 4 5 6 10

5th step: 1 2 3 4

centerfrom to

3 7

tofrom center

i = 2

j = 2

8 92 1

Sept. 2023 Yangjun Chen ACS-4902 27

6th step: 1

The sequence contains only one element, no sorting.

7th step: 3 4

i = j = 1

8th step: 4

from tocenter

The center element is 4.

The sequence contains only one element, no sorting.

1 2 3 4 5

Sept. 2023 Yangjun Chen ACS-4902 28

18,

19,

18,

• Basic algorithms

- quick sorting

3, 4, 6, 1, 10, 9, 5, 20, 19, 18, 17, 2, 1, 14, 13, 12, 11, 8, 16, 15

3, 4, 6, 1, 10, 9, 5, 15, 19, 17, 2, 1, 14, 13, 12, 11, 8, 16, 20

18,16,3, 4, 6, 1, 10, 9, 5, 15, 17, 2, 1, 14, 13, 12, 11, 8, 20

3, 4, 6, 1, 10, 9, 5, 15, 16, 8, 17, 2, 1, 14, 13, 12, 11, 19, 20

i=17

j=16

3, 4, 6, 1, 10, 9, 5, 15, 16, 8, 17, 2, 1, 14, 13, 12, 11

i j

The center element is 18.

Sept. 2023 Yangjun Chen ACS-4902 29

Heapsort

• Combines the better attributes of merge sort and

insertion sort.

– Like merge sort, but unlike insertion sort, running time

is O(n lg n).

– Like insertion sort, but unlike merge sort, sorts in

place.

• Introduces an algorithm design technique

– Create data structure (heap) to manage information

during the execution of an algorithm.

• The heap has other applications beside sorting.

– Priority Queues

Sept. 2023 Yangjun Chen ACS-4902 30

Data Structure Binary Heap

• Array viewed as a nearly complete binary tree.
– Physically – linear array.

– Logically – binary tree, filled on all levels (except
lowest.)

• Map from array elements to tree nodes and vice
versa
– Root – A[1], Left[Root] – A[2], Right[Root] – A[3]

– Left[i] – A[2i]

– Right[i] – A[2i+1]

– Parent[i] – A[i/2]
A[i]

A[2i] A[2i + 1]

A[2] A[3]

Sept. 2023 Yangjun Chen ACS-4902 31

Data Structure Binary Heap
• length[A] – number of elements in array A.

• heap-size[A] – number of elements in heap stored in A.

– heap-size[A]  length[A]

24 21 23 22 36 29 30 34 28 27 24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

Searching the tree in breadth-first

fashion, we will get the array.

Sept. 2023 Yangjun Chen ACS-4902 32

Heap Property (Max and Min)

• Max-Heap

– For every node excluding the root, the value stored in

that node is at most that of its parent: A[parent[i]]  A[i]

• Largest element is stored at the root.

• In any subtree, no values are larger than the value

stored at the subtree’s root.

• Min-Heap

– For every node excluding the root, the value stored in

that node is at least that of its parent: A[parent[i]]  A[i]

• Smallest element is stored at the root.

• In any subtree, no values are smaller than the value

stored at the subtree’s root

Sept. 2023 Yangjun Chen ACS-4902 33

Heaps in Sorting
• Use max-heaps for sorting.

• The array representation of a max-heap is not sorted.

• Steps in sorting

(i) Convert the given array of size n to a max-heap (BuildMaxHeap)

(ii) Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it

belongs.

• That leaves n – 1 elements to be placed in their appropriate

locations.

• However, the array of first n – 1 elements is no longer a max-

heap.

• Float the element at the root down one of its subtrees so that

the array remains a max-heap (MaxHeapify)

• Repeat step (ii) until the array is sorted.

Sept. 2023 Yangjun Chen ACS-4902 34

Maintaining the heap property

• Suppose two subtrees are max-heaps,

but the root violates the max-heap

property.

• Fix the offending node by exchanging the value at the node

with the larger of the values at its children.

– May lead to the subtree at the child not being a max

heap.

• Recursively fix the children until all of them satisfy the max-

heap property.

Sept. 2023 Yangjun Chen ACS-4902 35

MaxHeapify – Example

26

14 20

24 17 19 13

12 18 11

14

14

2424

14

14

1818

14

MaxHeapify(A, 2)

26

14 20

24 17 19 13

12 18 11

14

14

2418

14

14

1824

14

1

2 3

4 5 6 7

8
9 10

Sept. 2023 Yangjun Chen ACS-4902 36

Procedure MaxHeapify

MaxHeapify(A, i)

1. l  left(i) (* A[l] is the left child of A[i] .*)

2. r  right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest  l

5. else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest  r

8. if largest i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i)

are max-heaps.

A[largest] must be

the largest among

A[i], A[l] and A[r].

Sept. 2023 Yangjun Chen ACS-4902 37

Building a heap

• Use MaxHeapify to convert an array A into

a max-heap.

• How?

• Call MaxHeapify on each element in a

bottom-up manner.

BuildMaxHeap(A)

1. heap-size[A]  length[A]

2. for i  length[A]/2 downto 1 (*A[length[A]/2 +1],

3. do MaxHeapify(A, i) A[length[A]/2 +2],

… are leaf nodes.*)

Sept. 2023 Yangjun Chen ACS-4902 38

Heapsort(A)

HeapSort(A)

1. BuildMaxHeap(A)

2. for i  length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A]  heap-size[A] – 1

5. MaxHeapify(A, 1)

Time complexity: O(n·logn)

Sept. 2023 Yangjun Chen ACS-4902 39

• Basic algorithms

- External sorting method:

Several parameters:

b - number of file blocks

nR - number of initial runs

nB - available buffer space

nR = b/ nB

Example: nB = 5 blocks, b = 80 blocks,

nR = 16 initial runs

dM - number of runs that can be merged together in each pass
…

 …

…

a run

file:

…

a block
… …

Sept. 2023 Yangjun Chen ACS-4902 40

• Basic algorithms

- External sorting method:

set i  1;

j  b; /*size of the file in blocks*/

k  nB; /*size of buffer in blocks*/

m  j/k; /*number of runs*/

/*sort phase*/

while (i  m)

do { read next k blocks of the file into the buffer or if there are less than

blocks remaining then read in the remaining blocks;

sort the records in the buffer and write as a temporary subfile;

i  i +1;

}

Sept. 2023 Yangjun Chen ACS-4902 41

• Basic algorithms

- External sorting method:

/*merge phase: merge subfiles until only 1 remains*/

set i  1;

p  logk-1 m; /*p is the number of passes for the merging phase*/

j  m; /*number of runs*/

while (i  p)

do {n  1;

q  j /k-1; /*q is the number of subfiles to write in this pass*/

while (n  q) do

{read next k-1 subfiles or remaining subfiles (from previous

pass) one block at a time;

merge and write as new subfile;

n  n+1;}

j  q; i  i + 1;}

Sept. 2023 Yangjun Chen ACS-4902 42

• Example

5 7

4 20

18 21

10 19

30 40

51 8

6 9

17 13

12 15

11 16

4 5

7 18

21 20

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

File contains 4 runs.

sorting phase

Sept. 2023 Yangjun Chen ACS-4902 43

• Example

4 5

7 18

21 20

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

4 5

8 10 8 10

4 5

4 5

…

temporary-file1:

merging phase

Sept. 2023 Yangjun Chen ACS-4902 44

• Example

4 5

7 18

21 20

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

6 9

11 16 11 16

106 9

6 9

…

temporary-file2:

merging phase

Sept. 2023 Yangjun Chen ACS-4902 45

• Example

Buffer:

4 5

6 9 6 9

4 5

4 5

…

final file:

6 9

11 12

13 15

16 17

4 5

7 8

10 18

19 20

21 30

40 51

merging phase

Sept. 2023 Yangjun Chen ACS-4902 46

• Basic algorithms

- SELECT operation

Example:

(op1): ssn=‘123456789’(EMPLOYEE)

(op2): DNUMBER>5(DEPARTMENT)

(op3): DNO=5(EMPLOYEE)

(op4): DNO=5  SALARY>30000  SEX=‘F’(EMPLOYEE)

(op5): ESSN=‘123456789’  PNO=10(WORKS_ON)

Sept. 2023 Yangjun Chen ACS-4902 47

• Basic algorithms

- Search method for simple selection

- file scan

linear search (brute force)

binary search

- index scan

using a primary index (or hash key)

using a primary index to retrieve multiple records

using a clustering index to retrieve multiple records

Sept. 2023 Yangjun Chen ACS-4902 48

• Basic algorithms

- JOIN operation (two-way join)

R
A=B

S

Example:

DNO=DNUMBER
DEPARTMENT

DEPARTMENT
MGRSSN=SSN

EMPLOYEE

EMPLOYEE

Sept. 2023 Yangjun Chen ACS-4902 49

• Basic algorithms

- Methods for implementing JOINs

Nested-loop join:

R

... ...

S

... ...

Sept. 2023 Yangjun Chen ACS-4902 50

• Basic algorithms

- Methods for implementing JOINs

Single-loop join:

R

... ...

S
... ...

... ...

B+-tree

Sept. 2023 Yangjun Chen ACS-4902 51

• Basic algorithms

- Methods for implementing JOINs

Sort-merge join:

R

... ...

S
... ...

sorted sorted

... ...

Sept. 2023 Yangjun Chen ACS-4902 52

set i  1; j  1;

while (i  n) and (j  m)

do {if R(i)[A] > S(j)[B] then set j  j +1

else R(i)[A] < S(j)[B] then set i  i +1

else {/* R(i)[A] = S(j)[B], so we output a matched tuple*/

set k  i;

while (k  n) and (R(k)[A] = S(j)[B])

do {set l  j;

while (l  m) and (R(i)[A] = S(l)[B])

do {output a combined tuple; l  l + 1;}

set k  k +1;}

set i  k, j  l;}}

R(i)[A] S(j)[B]

Sept. 2023 Yangjun Chen ACS-4902 53

• Basic algorithms

- PROJECT operation

<Attribute list>(R)

Example:

FNAME, LNAME, SEX(EMPLOYEE)

Algorithm:

1. Construct a table according to <Attribute list> of R.

2. Do the duplication elimination.

Sept. 2023 Yangjun Chen ACS-4902 54

• Heuristics for query optimization

- Query trees and query graphs

- Heuristic optimization of query trees

- General transformation rules for relational algebra

operations

- Outline of a heuristic algebraic optimization algorithm

Sept. 2023 Yangjun Chen ACS-4902 55

- Heuristic optimization of query trees

- Generate an initial query tree for a query

- Using the rules for equivalence to transform the query tree

in such a way that a transformed tree is more efficient than

the previous one.

Example:

Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME=‘Aquarius’ and PNUMBER=PNO

and ESSN =SSN

and BDATE>‘1957-12-31’

Sept. 2023 Yangjun Chen ACS-4902 56

Initial query tree:

EMPLOYEE WORKS_ON

PROJECT




LNAME

PNAME=‘Aquarius’ and PNUMBER=PNO and ESSN=SSN and BDATE>’1957-12-31’

Sept. 2023 Yangjun Chen ACS-4902 57

First transformation:

EMPLOYEE

WORKS_ON

PROJECT



LNAME

PNUMBER=PNO

BDATE>’1957-12-31’

ESSN=SSN
PNAME=‘Aquarius’

Sept. 2023 Yangjun Chen ACS-4902 58

Second transformation:

PROJECT

WORKS_ON

EMPLOYEE



LNAME

ESSN=SSN

PNAME=‘Aquarius’

PNUMBER=PNO
BDATE>’1957-12-31’

Sept. 2023 Yangjun Chen ACS-4902 59

Third transformation:

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1957-12-31’

PNUMBER=PNO

ESSN=SSN

Sept. 2023 Yangjun Chen ACS-4902 60

Fourth transformation:

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1957-12-31’PNUMBER=PNO

ESSN=SSN

PNUMBER ESSN, PNO

ESSN SSN, LNAME

Sept. 2023 Yangjun Chen ACS-4902 61

- General transformation rules for relational algebra operations

(altogether 12 rules)

1. Cascade of : A conjunctive selection condition can be

broken into a cascade (i.e., a sequence) of individual 

operations:

c1 and c2 and …. And cn(R)  c1(c2 (... (cn(R))…))

2. Commutativity of : The  operation is commutative:

c1(c2 (R))  c2(c1 (R))

3. Cascade of : In a cascade (sequence) of  operations, all but

the last one can be ignored:

 list1( list2 (... ( listn(R))…))   list1(R),

where list1  list2  …  listn.

Sept. 2023 Yangjun Chen ACS-4902 62

- General transformation rules for relational algebra operations

(altogether 12 rules)

4. Commuting  with : If the selection condition c involves

only those attributes A1, …, An in the projection list, the two

operations can be commuted:

A1, …, An(c(R))  c(A1, …, An(R))

5. Commutativity of (and ): The operation is

commutative, as is the  operation:

R c S  S c R

R  S  S  R

Sept. 2023 Yangjun Chen ACS-4902 63

- General transformation rules for relational algebra operations

(altogether 12 rules)

6. Commuting  with (or ): If all the attributes in the

selection condition c involves only the attributes of one of the

relations being joined - say, R - the two operations can be

commuted as follows:

c(R S)  (c(R)) S

If c is of the form: c1 and c2, and c1 involves only the

attributes of R and c2 involves only the attributes of S,

then:

c(R S)  (c1(R)) (c2(S))

Sept. 2023 Yangjun Chen ACS-4902 64

- General transformation rules for relational algebra operations

(altogether 12 rules)

7. Commuting  with (or ): Suppose that the projection list

is L = {A1, …, An, B1, …, Bm}, where A1, …, An in R and

B1, …, Bm in S. If the join condition c involves L, we have

8. Commutativity of set operations: The set operation “” and

“” are commutative, but “-” is not.

9. Associativity of , ,  and : These four operations are

individually associative; i.e., if  stands for any one of these

four operations, we have:

(R  S)  T  R  (S  T)

 L(R C S) ( A1, …, An (R)) ( B1, …, Bm (S))c

Sept. 2023 Yangjun Chen ACS-4902 65

- General transformation rules for relational algebra operations

(altogether 12 rules)

10. Commuting  with set operations: The  operation commutes

with “”, “” and “-”. If  stands for any one of these

three operations, we have:

c(R  S)  c(R)  c(S)

11. The  operation commutes with :

 L(R  S)  ( L(R))  ( L(S))

12. Converting a (, ) sequence into : If the condition c of a

 that follows a  corresponds to a join condition, convert

then (, ) sequence into as follows:

c(R  S)  R c S

Sept. 2023 Yangjun Chen ACS-4902 66

- General transformation rules for relational algebra operations

(other rules for transformation)

DeMorgan’s rule:

NOT (c1 AND c2)  (NOT c1) OR (NOT c2)

NOT (c1 OR c2)  (NOT c1) AND (NOT c2)

Sept. 2023 Yangjun Chen ACS-4902 67

unit of

work ACID

example essential operations

environment
assumptions

blocks
read

write

execution

model

users

cpu

interleaved

model

control

classic problems

example trxs

lost update

temporary update

incorrect summary

statesfinite state diagram

schedule

conflict

complete
recoverable,

cascadeless,strict

serial

serializability

equivalence

conflict
serializability

testing

recovery

failures

catastrophic

non-catastrophic

log

record types

location
protocol

other uses

commit point

checkpoint

5 types of trxs and recovery

cascading rollback
Transactions

Sept. 2023 Yangjun Chen ACS-4902 68

ACID principles:

To generate faith in the computing system, a transaction will have

the ACID properties:

• Atomic – a transaction is done in its entirety, or not at all

• Consistent – a transaction leaves the database in a correct state.

This is generally up to the programmer to guarantee.

• Isolation – a transaction is isolated from other transactions so that

there is not adverse inter-transaction interference

• Durable – once completed (committed) the result of the transaction

is not lost.

Sept. 2023 Yangjun Chen ACS-4902 69

Environment

Interleaved model of transaction execution

Several transactions, initiated by any number of users, are

concurrently executing. Over a long enough time interval, several

transactions may have executed without any of them completing.

T1

T2

T3

t1 t2 t3 t4 t5 Time

Transaction

Sept. 2023 Yangjun Chen ACS-4902 70

Lost Update Problem

We have Transactions 1 and 2 concurrently executing in the system. They

happen to interleave in the following way, which results in an incorrect value

stored for flight X (try this for X=10, Y=12, N=5 and M=8).

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 READ(X)

4 X:=X+M

5 WRITE(X)

6 READ(Y)

7 WRITE(X)

8 Y:=Y+N

9 WRITE(Y)

Sept. 2023 Yangjun Chen ACS-4902 71

Temporary Update Problem
We have transactions 1 and 2 running again. This time Transaction 1 terminates

before it completes – it just stops, perhaps it tried to execute an illegal instruction

or accessed memory outside its allocation. The important point is that it doesn’t

complete its unit of work; Transaction 2 reads ‘dirty data’ using a value derived

from an inconsistent database state.

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 WRITE(X)

4 READ(X)

5 X:=X+M

6 WRITE(X)

7 READ(Y)

8 terminates!

Sept. 2023 Yangjun Chen ACS-4902 72

Incorrect Summary Problem

Transactions 1 and 3 are executing and interleaved in such a way that

the total number of seats calculated by transaction 3 is incorrect.
Time Transaction1 Transaction3

1 SUM:=0

2 READ(X)

3 X:=X-N

4 WRITE(X)

5 READ(X)

6 SUM:=SUM+X

7 READ(Y)

8 SUM:=SUM+Y

9 READ(Y)

10 Y:=Y+N

11 WRITE(Y)

12 READ(Z)

13 SUM:=SUM+Z

Sept. 2023 Yangjun Chen ACS-4902 73

To allow for recovery we use a Log

• The log contains several records for each transaction

1. [start_transaction, T] Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value] Indicates that transaction T has

changed the value of database item X from old_value to new_value.

3. [Read_item, T, X] Indicates that transaction T has read the value of database

item X.

4. [commit, T] Indicates that transaction T has completed successfully, and

affirms that its effect can be committed (recorded permanently) to the

database.

5. [abort, T] Indicates that transaction T has been aborted.

6. [Checkpoint]: A checkpoint record is written into the log periodically at that

point when the system writes out to the database on disk all DBMS buffers

that have been modified.

Sept. 2023 74Yangjun Chen ACS-4902

T

R(y) W(x)

buffer

At the commit point of

of a transaction

At a check point

(periodically)

At a check point

(periodically)
DB log

Sept. 2023 Yangjun Chen ACS-4902 75

Transaction types at recovery time

After a system crash some transactions will need to redone or

undone.

Consider the five types below. Which need to be redone/undone after

the crash?

Time

T1

T2

T3

T4

T5

Time of

checkpoint

Time of

failure

Sept. 2023 Yangjun Chen ACS-4902 76

Recoverable

A schedule S is recoverable if no transaction T in S commits

until all transactions T’ that have written an item that T

reads have committed.

Cascadeless

Every transaction in the schedule reads only items that were

written by committed transaction.

Strict

a transaction can neither read nor write an item X until the

last transaction that wrote X has committed or aborted.

Comparison of the three schedules

Sept. 2023 Yangjun Chen ACS-4902 77

Serializability

• A schedule is said to be serializable if it is equivalent to a serial

schedule

• What do we mean by equivalent?

Text mentions result equivalence and conflict equivalence

Sept. 2023 Yangjun Chen ACS-4902 78

Conflict equivalence

• Two schedules are said to be conflict equivalent if the ordering of

any two conflicting operations is the same in both schedules

• Recall

Two operations conflict if they belong to two different

transactions, are accessing the same data item X and one of the

operations is a WRITE

Conflict Serializability

A schedule S is conflict serializable if it is conflict equivalent to some

serial schedule S’

Sept. 2023 Yangjun Chen ACS-4902 79

T1

READ(X)

X:=X-N

WRITE(X)

READ(Y)

Y:=Y+N

WRITE(Y)

T2

READ(X)

X:=X+M

WRITE(X)

Time

1

2

3

4

5

6

7

8

9

10

11

T1 T2

Sept. 2023 Yangjun Chen ACS-4902 80

protocols

locking

what is a lock

binary locks

Shared & exclusive

2PL

basic

conservative

strict

deadlock
prevention

timestamp
based

wait-die

wound-wait

waiting
based

cautious

waiting

no
waiting

detection
wait-for

graph

livelock

starvation

timestamps

transactions

database items read timestamp

write timestampalgorithm

multiversion
timestamp based

2PL based
optimistic

introduction

other
topics

granularity

phantoms

interactive
transactions

SQL
Isolation levels

Concurrency
Control

Multi-granularity

Sept. 2023 Yangjun Chen ACS-4902 81

Locking

• field value in a row

• row

• block

• table

• database

What is a lock?

A lock is a variable associated with a database item that describes

the status of the database item with respect to database operations

that can be applied to the database item.

Locks are managed by the Lock Manager within the DBMS

Database items that could be locked vary from a field value up to

a whole database:

Sept. 2023 Yangjun Chen ACS-4902 82

Binary Locks: operations

lock_item(X)

• used to gain exclusive access to item X

• if a transaction executes lock_item(X) then

if lock(X)=0 then

the lock is granted {lock(X) is set to 1} and the

transaction can carry on

{the transaction is said to hold a lock on X}

otherwise

the transaction is placed in a wait queue until

lock_item(X) can be granted

{i.e. until some other transaction unlocks X}

Sept. 2023 Yangjun Chen ACS-4902 83

Binary Locks: operations

unlock_item(X)

• used to relinquish exclusive access to item X

• if a transaction executes unlock_item(X) then

lock(X) is set to 0

{note that this may enable some other blocked transaction

to resume execution}

Sept. 2023 Yangjun Chen ACS-4902 84

Shared and Exclusive Locks

Three operations:

read_lock(X)

write_lock(X)

unlock(X)

Use a multiple-mode lock with three possible states

read-locked

write-locked

unlocked

Sept. 2023 Yangjun Chen ACS-4902 85

Shared and Exclusive Locks: operations

read_lock(X)

• used to gain shared access to item X

• if a transaction executes read_lock(X) then

if lock(X) is not “write_locked” then

the lock is granted

{lock(X) is set to “read_locked”,

the “no_of_readers” is incremented by 1},

and the transaction can carry on

{the transaction is said to hold a share lock on X}

otherwise

the transaction is placed in a wait queue until

read_lock(X) can be granted

{i.e. until some transaction relinquishes exclusive

access to X}

Sept. 2023 Yangjun Chen ACS-4902 86

write_lock(X)

• used to gain exclusive access to item X

• if a transaction executes write_lock(X) then

if lock(X) is “unlocked” then

the lock is granted {lock(X) is set to “write_locked”},

and the transaction can carry on

{the transaction is said to hold an exclusive lock on X}

otherwise

the transaction is placed in a wait queue until

write_lock(X) can be granted

{i.e. until all other transactions have relinquished their

access rights to X - that could be a single “writer” or

several “readers”}

Shared and Exclusive Locks: operations

Sept. 2023 Yangjun Chen ACS-4902 87

unlock(X)

• used to relinquish access to item X

• if a transaction executes unlock(X) then

if lock(X) is “read_locked” then

decrement no_of_readers by 1

if no_of_readers=0 then set lock(X) to “unlocked”

otherwise

set lock(X) to “unlocked”

{note that setting lock(X) to “unlocked” may enable a

blocked transaction to resume execution}

Shared and Exclusive Locks: operations

Sept. 2023 Yangjun Chen ACS-4902 88

Shared and Exclusive Locks

locking protocol (rules); a transaction T

• must issue read_lock(X) before read-item(X)

• must issue write_lock(X) before write-item(X)

• must issue unlock(X) after all read_item(X) and write_item(X)

operations are completed

• will not issue a read_lock(X) if it already holds a read or write

lock on X (can be relaxed, to be discussed)

• will not issue a write_lock(X) if it already holds a read or write

lock on X (can be relaxed, to be discussed)

• will not issue an unlock unless it already holds a read lock or

write lock on X

Sept. 2023 Yangjun Chen ACS-4902 89

Shared and Exclusive Locks (2PL)

Conversion of Locks

Recall a transaction T

• will not issue a read_lock(X) if it already holds a read or write

lock on X

Can permit a transaction to downgrade a lock from a write to

a read lock

• will not issue a write lock(X) if it already holds a read or write

lock on X

Can permit a transaction to upgrade a lock on X from a read

to a write lock if no other transaction holds a read lock on X

Sept. 2023 90Yangjun Chen ACS-4902

Shared and Exclusive Locks (2PL)

Two-phase locking: A transaction is said to follow the two-phase

locking protocol if all locking operations (read-lock, write-lock)

precede the first unlock operations in the transaction.

• previous protocols do not guarantee serializability

• Serializability is guaranteed if we enforce the two-phase

locking protocol:

all locks must be acquired before any locks are relinquished

• transactions will have a growing and a shrinking phase

• any downgrading of locks must occur in the shrinking phase

• any upgrading of locks must occur in the growing phase

Sept. 2023 Yangjun Chen ACS-4902 91

Variations on 2PL

Basic 2PL

• previous protocol

Conservative 2PL

• transactions must lock all items prior to the transaction

executing

• if any lock is not available then none are acquired - all must be

available before execution can start

• free of deadlocks

Strict 2PL

• a transaction does not release any write-locks until after it

commits or aborts

• most popular of these schemes

• recall strict schedule avoids cascading rollback

Sept. 2023 92Yangjun Chen ACS-4902

Deadlock

Deadlock occurs when two or more transactions are in a

simultaneous wait state, each one waiting for one of the others to

release a lock.

T1
read_lock(Y)

read_item(Y)

write_lock(X)

waiting

T2

read_lock(X)

read_item(X)

write_lock(Y)

waiting

Sept. 2023 Yangjun Chen ACS-4902 93

Deadlock Prevention

1. Conservative 2PL

2. Always locking in a predefined sequence

3. Timestamp based

4. Waiting based

5. Timeout based

Sept. 2023 Yangjun Chen ACS-4902 94

Deadlock Prevention - Timestamp based

• Each transaction is assigned a timestamp (TS)

If a transaction T1 starts before transaction T2,

then TS(T1) < TS(T2); T1 is older than T2

• Two schemes:

Wait-die

Wound-wait

• Both schemes will cause aborts even though deadlock would

not have occurred

Sept. 2023 Yangjun Chen ACS-4902 95

Deadlock Prevention: Wait-die

Suppose Ti tries to lock an item locked by Tj.

If Ti is the older transaction then Ti will wait.

Otherwise, Ti is aborted and restarts later with the same timestamp.

Tj

Ti

x
wait

Tj

Ti

x
abort

Sept. 2023 Yangjun Chen ACS-4902 96

Deadlock Prevention: Wound-wait

Suppose Ti tries to lock an item locked by Tj.

If Ti is the older transaction

then Tj is aborted and restarts later with the same timestamp;

otherwise Ti is allowed to wait.

Tj

Ti

x

die

Tj

Ti

x
wait

Sept. 2023 Yangjun Chen ACS-4902 97

Deadlock Prevention - Waiting based

• No timestamps

• Two schemes:

no waiting

cautious waiting

• Both schemes will cause aborts even though deadlock would

not have occurred

Sept. 2023 Yangjun Chen ACS-4902 98

Deadlock Prevention: No waiting

Suppose Ti tries to lock an item locked by Tj

If Ti is unable to get the lock

then Ti is aborted and restarted after some time delay

Transactions may be aborted and restarted needlessly

Sept. 2023 Yangjun Chen ACS-4902 99

Deadlock Prevention: Cautious waiting

Suppose Ti tries to lock an item locked by Tj.

If Tj is not waiting on another transaction,

then Ti is allowed to wait;

otherwise Ti is aborted.

Tj

Ti

x

Ti waits or aborts depending on

whether Tj is waiting for some other

transaction or not.

Sept. 2023 Yangjun Chen ACS-4902 100

Example: Deadlock Detection

T1
read_lock(Y)

read_item(Y)

write_lock(X)

waiting

T2

read_lock(X)

read_item(X)

write_lock(Y)

waiting

Wait-for graph:

has a cycle!

T1 T2

Sept. 2023 Yangjun Chen ACS-4902 101

Concurrency Control - Timestamps

• Each transaction is assigned a timestamp (TS)

If a transaction T1 starts before transaction T2,

then TS(T1) < TS(T2); T1 is older than T2

• whereas locking synchronizes transaction execution so that the

interleaved execution is equivalent to some serial schedule,

timestamping synchronizes transaction execution so that the

interleaved execution is equivalent to a specific serial

execution - namely, that defined by the chronological order of

the transaction timestamps.

Sept. 2023 102Yangjun Chen ACS-4902

Consider four transactions: T1, T2, T3, T4.

Assume that TS(T1) < TS(T2) < TS(T3) < TS(T4).

We may have 4! = 24 different serial execution of these transactions. Each of

them is considered correct:

T1  T2  T3  T4

T2  T1  T3  T4

… …

T4  T3  T2  T1

But the method based on ‘timestamps’ synchronizes the interleaved execution

of transactions so that it is equivalent to a specific serial execution:

T1  T2  T3  T4

Sept. 2023 Yangjun Chen ACS-4902 103

Database Item Timestamps

• Each database item X has 2 timestamps:

• the read timestamp of X, read_TS(X), is the largest

timestamp among all transaction timestamps that have

successfully read X.

• the write timestamp of X, write_TS(X), is the largest

timestamp among all transaction timestamps that have

successfully written X.

T1

T3

x

T2

T4

read_TS(X) = timestamp of T4

Sept. 2023 104Yangjun Chen ACS-4902

Timestamp Ordering (TO) Algorithm

• When a transaction T tries to read or write an item X, the

timestamp of T is compared to the read and write timestamps

of X to ensure the timestamp order of execution is not violated.

• If the timestamp order of execution is violated, then T is

aborted and resubmitted later with a new timestamp.

• Deadlock will not occur.

• Cascading rollback can occur.

• Cyclic restart of a transaction can occur.

Tj

Ti

x

abort

read_TS(X) = timestamp of Ti

r w

Sept. 2023 Yangjun Chen ACS-4902 105

Timestamp Ordering (TO) Algorithm - in detail

• If T issues write_item(X) then

if {read_TS(X) > TS(T) or write_TS(X) > TS(T)} then abort T

otherwise (*TS(T)  read_TS(X) and TS(T)  write_TS(X)*)

execute write_item(X)

set write_TS(X) to TS(T)

• if T issues read_item(X) then

if write_TS(X) > TS(T) then abort T

• otherwise (*TS(T)  write_TS(X)*)

execute read_item(X)

set read_TS(X) to max{TS(T), read_TS(X)}

T

T

x

read_TS(x) = TS(T) abort

Sept. 2023 106Yangjun Chen ACS-4902

Why does the cascading rollback can occur?

Tj

Ti

x

abort

y

Tk

abort

w
r

r

w

The abortion of Tj leads to the abortion of Tk.

not compatible

Sept. 2023 Yangjun Chen ACS-4902 107

Concurrency Control - Multiversion 2PL

• Basic idea is to keep older version of data items around.

• When a transaction requires access to an item, an appropriate

version is chosen to maintain serializability, if possible.

• Some read operations that would be rejected by other techniques

can still be accepted by reading an older version of an item.

• Particularly adaptable to temporal databases.

• No cascading rollback.

• Deadlock can occur.

• In general, requires more storage.

Sept. 2023 Yangjun Chen ACS-4902 108

Concurrency Control - Multiversion 2PL

• Three locking modes: read, write, certify

• Two versions of data items

• Certify lock is issued before a transaction’s commit on all those data

items which are currently write-locked by itself.

• Avoids cascading aborts

read write certify

read yes yes no

write yes no no

certify no no no

Lock compatibility

table:

Sept. 2023 109Yangjun Chen ACS-4902

Concurrency Control - Multiversion 2PL

read write certify

read yes yes no

write yes no no

certify no no no

held by another

transaction

T

x

certify

y z

w w w

x y z

T

x

x

w

T 
r

T 
r

x

T
w

x is changed

to x
certify

T
w

x

T
r

x

Wrong if no certify

Sept. 2023 110Yangjun Chen ACS-4902

Granularity of Data Items and Multiple Granularity Locking

• Database is formed of a number of named data items.

• Data item:

a database record

a field value of a database record

a disk block

a whole table

a whole file

a whole database

• The size of data item is often called the data item granularity.

fine granularity - small data size

coarse granularity - large data size

Sept. 2023 Yangjun Chen ACS-4902 111

Granularity of Data Items and Multiple Granularity Locking

• The larger the data item size is, the lower the degree of concurrency.

• The smaller the data size is, the more the number of items in the

database.

A larger number of active locks will be handled by the lock

manager.

More lock and unlock operations will be performed, causing

a higher overhead.

More storage space will be required for the lock table.

What is the best item size?

Answer: it depends on the types of transactions involved.

Sept. 2023 Yangjun Chen ACS-4902 112

Granularity of Data Items and Multiple Granularity Locking

• Multiple granularity level locking

Since the best granularity size depends on the given transaction, it

seems appropriate that a database system supports multiple levels

of granularity, where the granularity level can be different for

various mixes of transactions.

dbGranularity hierarchy:

f1 f2

p11 p12 p1n p21 p22 p2m

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r1m1 r1mk

... ...

...

Sept. 2023 Yangjun Chen ACS-4902 113

Granularity of Data Items and Multiple Granularity Locking

• Solution: intention locks.

Three types of intention locks:

1. Intention-shared (IS) indicates that a shared lock(s) will be

requested on some descendant node(s).

2. Intention-exclusive (IX) indicates that an exclusive lock(s)

will be requested on some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current

node is locked in shared mode but an exclusive lock(s) will

be requested on some descendant node(s).

Sept. 2023 Yangjun Chen ACS-4902 114

Granularity of Data Items and Multiple Granularity Locking

• Lock compatibility matrix for multiple granularity locking

IS yes yes yes yes no

IX yes yes no no no

S yes no yes no no

SIX yes no no no no

X no no no no no

IS IX S SIX X

Sept. 2023 115Yangjun Chen ACS-4902

db

f1 f2

p11 p12 p1n p21 p22 p2m

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk

... ...

...

Sept. 2023 Yangjun Chen ACS-4902 116

Granularity of Data Items and Multiple Granularity Locking

• Multiple granularity locking (MGL) protocol:

1. The lock compatibility must be adhere to.

2. The root of the granularity hierarchy must be locked first, in any

mode.

3. A node N can be locked by a transaction T in S or IS mode only

if the parent of node N is already locked by transaction T in either

IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode

only if the parent of node N is already locked by transaction T in

either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any

node (to enforce the 2PL protocol).

6. A transaction T can unlock a node N only if none of the children of

node N are currently locked by T.

Sept. 2023 Yangjun Chen ACS-4902 117

Granularity of Data Items and Multiple Granularity Locking

• Example:

T1: updates all the records in file f1.

T2: read record r1nj.

T1:

IX(db)

X(f1)

write-item(f1)

unlock(f1)

unlock(db)

T2:

IS(db)

IS(f1)

IS(p1n)

S(r1nj)

read-item(r1nj)

unlock(r1nj)

unlock(p1n)

unlock(f1)

unlock(db)

Sept. 2023 118Yangjun Chen ACS-4902

Granularity of Data Items and Multiple Granularity Locking

T1:

IX(db)

X(f1)

write-item(f1)

unlock(f1)

unlock(db)

T2:

IS(db)

IS(f1)

IS(p1n)

S(r1nj)

read-item(r1nj)

unlock(r1nj)

unlock(p1n)

unlock(f1)

unlock(db)

Sept. 2023 Yangjun Chen ACS-4902 119

Concurrency - other topics

• Phantoms

a phantom with respect to transaction T1 is a new record

that comes into existence, created by a concurrent

transaction T2, that satisfies a search condition used by T1.

• consider transactions that include the following operations:

T1
SELECT * FROM a

WHERE id BETWEEN 5 AND 10

T2
INSERT INTO a

VALUES (id, name) (7, ‘joe’)

Id name

1 … …

2 … …

3 …

5 …

6 …

10 … …

a

insert (7, ‘joe’)

Sept. 2023 Yangjun Chen ACS-4902 120

Concurrency - other topics

• Interactive transactions

values written to a user terminal prior to commit could

be used as input to other transactions

this inter-transaction dependency is outside the scope of

any DBMS concurrency controls

Sept. 2023 Yangjun Chen ACS-4902 121

Concurrency - in SQL databases

• SQL isolation levels

SET TRANSACTION

< SERIALIZABLE |

REPEATABLE READ |

READ COMMITTED |

READ UNCOMMITTED >

If write lock is kept till T is

committed, but read lock

can be released earlier.

If write lock is kept till T is
committed, and a read lock on
X cannot be released until all
read operations on X have been
conducted.

Sept. 2023 Yangjun Chen ACS-4902 122

Concurrency - SQL

Phenomena description

P1 dirty read

(transaction can read data that is not committed)

P2 nonrepeatable read

(transaction can read the same row twice,

and it could be different)

P3 phantom

Sept. 2023 Yangjun Chen ACS-4902 123

Concurrency - SQL

Phenomena occurs?

P1 P2 P3

serializable no no no

repeatable read no no yes

read committed no yes yes

read uncommitted yes yes yes

Sept. 2023 Yangjun Chen ACS-4902 124

techniques

deferred update

immediate update

shadow paging

multidatabase

concepts

types of failures

types of
database updating

wrt time

wrt location

cache
dirty bit

flush
WAL protocol

cascading rollback

idempotent

Recovery

Sept. 2023 Yangjun Chen ACS-4902 125

Concepts

Recovery … “database is restored to some state from the past

so that a correct state - close to the time of failure - can be

reconstructed from that past state”

Recovery is needed to ensure the atomicity of transactions ,

and their durability (ACID properties)

• How is recovery implemented? …. typically a log plays

an important part

• BFIM - before image - an undo entry

• AFIM - after image - a redo entry

Sept. 2023 Yangjun Chen ACS-4902 126

Concepts

An update to the database is called a:

• deferred update if the database update does not actually

occur until after a transaction reaches its commit point

• recall that when a transaction reaches its commit

point all changes have been recorded (persistently) in

the log

• what are the implications for recovery?

• is undo needed?

• is redo needed?

Sept. 2023 Yangjun Chen ACS-4902 127

T

R(y) W(x)

buffer

At the commit point of

of a transaction

At a check point

(periodically) 

At a check point

(periodically)
DB log

Sept. 2023 Yangjun Chen ACS-4902 128

Transaction types at recovery time

Consider the five types below. Which need to be redone

after the crash?

T1

T2

T3

Time

T

r

a

n

s

a

c

t

i

o

n

T4

T5

Time of

checkpoint

Time of

failure

Recovery Technique for Deferred Update

No redo, no undo

redo

No redo, no undo

redo

ignored

Sept. 2023 Yangjun Chen ACS-4902 129

Concepts

An update to the database is called an:

• immediate update if the update can occur before the

transaction reaches its commit point

• a very typical situation in practice

• what are the implications for recovery?

• is undo needed?

• is redo needed?

Sept. 2023 Yangjun Chen ACS-4902 130

T

R(y) W(x)

buffer

At the commit point of

of a transaction

At a check point

(periodically)

At a check point

(periodically)
DB log

Sept. 2023 Yangjun Chen ACS-4902 131

Transaction types at recovery time

Consider the five types below. Which need to be undone /

redone after the crash?

T1

T2

T3

Time

T

r

a

n

s

a

c

t

i

o

n

T4

T5

Time of

checkpoint

Time of

failure

Recovery Technique for Immediate Update

No redo, no undo

redo

undo

redo

ignored

Sept. 2023 Yangjun Chen ACS-4902 132

What is shadow paging?

It is a technique pioneered in System R where changes are

made to a copy of a page (block). When a transaction

commits, the copy becomes the current page and the

original is discarded

Recovery Technique for Shadow Paging

Sept. 2023 Yangjun Chen ACS-4902 133

How a single transaction would be handled:

Suppose transaction A starts up:

•the current page table (directory) is copied to the shadow

page table (shadow directory)

•if the transaction updates a page, the original page is not

altered, rather a copy is created and that is modified

•the copy is pointed to by the current page table - the

shadow page table is never modified

Recovery Technique for Shadow Paging

Sept. 2023 Yangjun Chen ACS-4902 134

page 5

page 1

page 4

page 2

page 3

page 6

Database disk blocks (pages)

current directory

1

2

3

4

5

6

shadow directory

1

2

3

4

5

6

Sept. 2023 Yangjun Chen ACS-4902 135

page 5(old)

page 1

page 4

page 2(old)

page 3

page 6

Database disk blocks (pages)

current directory

1

2

3

4

5

6

shadow directory

1

2

3

4

5

6

page 2(new)

page 5(new)

Sept. 2023 Yangjun Chen ACS-4902 136

Security control

Discretionary access control

Mandatory access control

SQL injection

Asymmetric encryption

Sept. 2023 Yangjun Chen ACS-4902 137

How do we protect the database from unauthorized access?

Who should be able to see employee salaries, student

grades, … ?

Who should be able to update … ?

Techniques include/involve:

•passwords

•log-in process - new entry for the log:

{who, where, when}

•privileges

•encryption

•accounts - system (DBA), user

Sept. 2023 Yangjun Chen ACS-4902 138

We study two mechanisms:

•Discretionary access control (DAC)

•privileges such as read, write, update are granted to

users

•a certain amount of discretion is given to the owner or

anyone else with appropriate authority

•Mandatory access control (MAC)

•multilevel security is applied to data and users

•controlled by a central authority, not by owners of an
object

•the owner/creator of an object does not decide who has
clearance to see the object

Sept. 2023 Yangjun Chen ACS-4902 139

Discretionary access control

•account level

•create - schema, table, view

•alter - indexes, table (attributes, indexes)

•drop - table, index, view

•example

•grant createtab to A1 ;

if A1 now creates a table X, then A1 owns X, and has all

privileges on table X, and A1 can grant privileges to

others

Sept. 2023 Yangjun Chen ACS-4902 140

Discretionary access control

•relation level

•type of access: read, write, update

•privileges on relations and columns

•access matrix model:

subject1

object1 object2 object3

subject2

subject3

read/write/update
Users/

accounts/

programs

Relations/records/columns/views

operations

Sept. 2023 Yangjun Chen ACS-4902 141

Discretionary access control: suppose A1 executes:

•create table employee (…);

•create table department (…);

•grant insert, delete on employee, department to A2;

•grant select on employee, department to A3;

•grant update on employee(salary) to A4;

A1

employee department

A2

A3

all

insert, delete

select

all

insert, delete

select

employee.salary

A4 update

Sept. 2023 Yangjun Chen ACS-4902 142

Mandatory access control for multilevel security

Bell LaPadula model:

•specifies the allowable paths of information flow:

information with high secret - information with low secret

•set of subjects S, and a set of objects O

S:

user

account

programs

O:

relation

tuple

column

view

operation

Sept. 2023 Yangjun Chen ACS-4902 143

•each s in S and o in O has a fixed security class

class(s) a clearance of s

class(o) a classification level of o

•security classes are ordered by <=

U (Unclassified) <= C (confidential) <=

S (Secret) <= TS (Top Secret)

(public <= sensitive <= top secret)

Sept. 2023 Yangjun Chen ACS-4902 144

Mandatory access control for multilevel security

Two properties of the Bell LaPadula model:

•Simple Security Property

a subject s is not allowed read access to an object o

unless

class(s) >= class(o)
To see something, your clearance must

be at least that of what you want

In the military model, the security clearance of someone

receiving a piece of information must be at least as high as

the classification of the information

Sept. 2023 Yangjun Chen ACS-4902 145

Mandatory access control for multilevel security

Second property of the Bell LaPadula model:

•Star Property

a subject s is not allowed write access to an object o

unless

class(s) <= class(o)

In the military model, a person writting some information at

one level may pass that information along only to people at

levels no lower than the level of the person

To create/update something, your

clearance must be no greater than the

object you are creating/updating

Sept. 2023 Yangjun Chen ACS-4902 146

Mandatory access control for multilevel security

Implementation of the Bell LaPadula model:

•for each original attribute in a relation, add a classification

attribute

•add a classification attribute for the tuple (row) - value is

maximum of all classifications within the tuple

•these classification attributes are transparent to the user

Sept. 2023 Yangjun Chen ACS-4902 147

Mandatory access control for multilevel security

Implementation example: suppose U <= C <= S

Employee relation

Smith 40,000 Fair

Brown 80,000 Good

Name Salary JobPerformance The user view

without MAC

Smith U 40,000 C Fair S S

Brown C 80,000 S Good C S

Name C1 Salary C2 JobPerformance C3 TC system view

with MAC

Sept. 2023 148Yangjun Chen ACS-4902

SQL Injection

SQL injection is a web security vulnerability that allows an

attacker

•to interfere with the queries that an application makes to its

database.

•to view data that they are not normally able to access. This

might include data belonging to other users, or any other data

that the application itself is not able to access.

•In many cases, an attacker can modify or delete some data,

causing persistent changes to the application's content or

behavior.

•In some situations, an attacker can escalate an SQL injection

attack to compromise the underlying server or other back-end

infrastructure, or perform a denial-of-service attack.

Sept. 2023 Yangjun Chen ACS-4902 149

Consider a shopping application that displays

products in different categories. When the user

clicks on the Gifts category, their browser requests

the URL:

https://insecure-website.com/products?category='Gifts'

This causes the application to make an SQL query

to retrieve details of the relevant products from the

database:

SELECT * FROM products

WHERE category = 'Gifts’

AND released = 1

Retrieving hidden data

https://insecure-website.com/products?category=Gifts
https://insecure-website.com/products?category=Gifts

Sept. 2023 Yangjun Chen ACS-4902 150

The application doesn't implement any defenses

against SQL injection attacks, so an attacker can

construct an attack like:

https://insecure-

website.com/products?category=’Gifts’--

This results in the SQL query:

SELECT * FROM products WHERE category =

'Gifts'-- AND released = 1

The key thing here is that the double-dash sequence -- is a

comment indicator in SQL and means that the rest of the

query is interpreted as a comment. This effectively removes
the remainder of the query, so it no longer includes AND

released = 1. This means that all products are displayed,

including unreleased products.

https://insecure-website.com/products?category=
https://insecure-website.com/products?category=Gifts’--

Sept. 2023 151Yangjun Chen ACS-4902

Subverting application logic

Consider an application that lets users log in with

a username and password. If a user submits the

username wiener and the password

bluecheese, the application checks the

credentials by performing the following SQL query:

SELECT * FROM users WHERE username =

'wiener' AND password = 'bluecheese'

• If the query returns the details of a user, then the

login is successful. Otherwise, it is rejected.

Sept. 2023 152Yangjun Chen ACS-4902

• Here, an attacker can log in as any user without a

password simply by using the SQL comment

sequence -- to remove the password check from

the WHERE clause of the query. For example,

submitting the username administrator’ -- and a

blank password results in the following query:

SELECT * FROM users WHERE username =

'administrator’-- AND

password='bluecheese'

This query returns the user whose username is

administrator and successfully logs the attacker in as

that user.

Sept. 2023 153Yangjun Chen ACS-4902

Protection against SQL Injection

Protection against SQL injection attacks can be

achieved by applying certain programming rules to

all Web accessible procedures and functions.

• Bind Variables (using parameterized

statements)

- The use of bind-variables (also known as

parameters) protects against injection attacks

and also improves performance.

Sept. 2023 154Yangjun Chen ACS-4902

Protection against SQL Injection

Consider the following example using Java and

JDBC:

PreparedStatement stmt =

conn.preparedStatement(“SELECT * FROM

EMPLOYEEE WHERE EMPLOYEE_ID = ? AND

PASSWARD = ?”);

stmt.setString(1, employee_id);

stmt.setString(2, passward);

ResultSet resultSet = stmt.executeQuery();

Sept. 2023 155Yangjun Chen ACS-4902

Encryption and Decryption

Symmetric encryption is a type of encryption
where only one key (a secret key) is used to
both encrypt and decrypt electronic
information.

•The entities communicating via symmetric
encryption must exchange the key so that it
can be used in the decryption process.

•This encryption method differs from
asymmetric encryption where a pair of keys,
one public and one private, is used to encrypt
and decrypt messages.

https://www.cryptomathic.com/news-events/blog/differences-between-hash-functions-symmetric-asymmetric-algorithms

Sept. 2023 Yangjun Chen ACS-4902 156

Encryption and Decryption

Asymmetric keys are the foundation of Public Key
Infrastructure (PKI) - a cryptographic scheme

•Requiring two different keys, one to lock or encrypt the
plaintext, and one to unlock or decrypt the cyphertext.
Neither key will do both functions.

•One key is published (public key) and the other is kept
private (private key).

•This system also is called asymmetric key cryptography.

•The asymmetric encryption can be used in two ways.

https://cpl.thalesgroup.com/faq/public-key-infrastructure-pki/what-public-key-infrastructure-pki

Sept. 2023 157Yangjun Chen ACS-4902

•If the lock/encryption key is the one published,
the system enables private communication from
the public to the unlocking key's owner.

Alice Bob

public key: (n, e)

encrypt a text using

the public key

encrypted text: T

decrypt T using

the private key: d

lock key

unlock key

Sept. 2023 158Yangjun Chen ACS-4902

•If the unlock/decryption key is the one published,
then the system serves as a signature verifier of
documents locked by the owner of the private key.

Alice Bob

public key: d

decrypt T using

the public key: d

encrypted text: T

encrypt a text using

the private key: (n, e)

unlock key

lock key

Sept. 2023 159Yangjun Chen ACS-4902

Encryption and Decryption

Key distribution

– Suppose that Bob wants to send information

to Alice. If they decide to use RSA (an encryption

algorithm, proposed by Rivest, Shamir, Adleman),

Bob must know Alice's public key to encrypt the

message and Alice must use her private key to

decrypt the message.

– To enable Bob to send his encrypted messages,
Alice transmits her public key (n, e) to Bob via a

reliable, but not necessarily secret, route. Alice's
private key (d) is never distributed.

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob

Sept. 2023 160Yangjun Chen ACS-4902

Encryption and Decryption

Encryption

• After Bob obtains Alice's public key (n, e), he can send

a message M to Alice.

• To do it, he first turns M (strictly speaking, the un-

padded plaintext) into an integer m (strictly speaking,

the padded plaintext), such that 0 ≤ m < n by using an

agreed-upon reversible protocol known as a padding

scheme. He then computes the ciphertext c, using

Alice's public key e, corresponding to

me  c (mod) n

This can be done reasonably quickly, even for very large

numbers, using modular exponentiation.

• Bob then transmits c to Alice.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Padding_schemes
https://en.wikipedia.org/wiki/Modular_exponentiation

Sept. 2023 161Yangjun Chen ACS-4902

Encryption and Decryption

Decryption

•Alice can recover m from c by using her private

key exponent d by computing

cd  (me)d (mod) n

Given m, she can recover the original

message M by reversing the padding scheme.

Sept. 2023 162Yangjun Chen ACS-4902

Encryption and Decryption

Example

1. Choose two distinct prime numbers, such as

p = 61, q = 53

2. Compute n = p  q giving

n = 61  53 = 3233

3. Compute the Carmichael’s totient function of the product

as (n) = lcm(p - 1, q - 1), giving

(3233) = lcm(60, 52) = 780

4. Choose any number 1 < e < 780 that is coprime to 780.

Choosing a prime number for e leaves us only to check

that e is not a divisor of 780.

lcm – least common multiple

coprime – two numbers have

no common factors other than 1

lock key: (n, e)

Sept. 2023 Yangjun Chen ACS-4902 163

Encryption and Decryption

Example

4. Choose any number 1 < e < 780 that is coprime to 780.

Choosing a prime number for e leaves us only to check

that e is not a divisor of 780.

Let e = 17.

5. Compute d, the modular multiplicative inverse of e (i.e.,

e is a number satisfying 1 = (e  d) mod 780), yielding

d = 413,

as 1 = (17  413) mod 780.

(17  413 = 7021 = 9  780 + 1)

unlock key: d

Sept. 2023 Yangjun Chen ACS-4902 164

Encryption and Decryption

Example

The public key is (n = 3233, e = 17). For a padded

plaintext message m, the ciphertext is

c = me mod n = m17 mod 3233.

The private key is d = 417. By using d, we can get

m = cd mod n = c417 mod 3233.

For instance, in order to encrypt m = 65, we calculate

c = 6517 mod 3233 = 2790

To decrypt c = 2790, we calculate

m = 2790413 mod 3233 = 65.

Sept. 2023 Yangjun Chen ACS-4902 165

(a  b) mod m

Modular exponentiation:

= (a mod m)  (b mod m) mod m

2790413 mod 3233

= (27902 mod 3233)  2790411 mod 3233

= (7784100 mod 3233)  (2790411 mod 3233)

= (249 mod 3233)  (2790411 mod 3233)

= (249  2790 mod 3233)  (2790410 mod 3233)

= … … = 65

Sept. 2023 166Yangjun Chen ACS-4902

Encryption and Decryption

Comments:

• Both of these calculations can be computed

efficiently using the square-and-multiply algorithm

for molular exponentiation.

• In real-life situations the primes selected would be

much larger; in our example it would be trivial to

factor n, 3233 (obtained from the freely available

public key) back to the primes p and q. e, also

from the public key, is then inverted to get d

(according to 1 = (e  d) mod 780), thus acquiring

the private key.

Sept. 2023 Yangjun Chen ACS-4902 167

Enhanced ER-Diagram

Specialization

Generalization

Shared subclasses

Category

Sept. 2023 Yangjun Chen ACS-4902 168

Specialization

Starting with Employee

Consider the Job Type and Method of payment attributes

We can specialize to create:

engineer

employee

technician secretary salaried-emp hourly-emp

method_of paymentjob type

Specialization is the process of defining a set of

sub-entities of some entity type.

Sept. 2023 Yangjun Chen ACS-4902 169

• reverse process of defining subclasses

• bottom up approach

• bring together common attributes from similar entity types, and

suppress the differences (to form a superclass)

• example: suppose we begin with Cars and Trucks

price

CarTruck

Generalization

maxspeed
#passengers

tonnage

#axles

plateno

id

plateno

id

price

Generalization is the opposite approach/process of

determining a supertype based on certain entities having

common characteristics.

Sept. 2023 Yangjun Chen ACS-4902 170

we generalize to get Vehicle

Vehicle

Generalization

CarTruck

maxspeed

#passengers

tonnage

#axles

plateno
id

price

Sept. 2023 171Yangjun Chen ACS-4902

d

Employee

Secretary Technician Engineer

Job Type

ssn bdate jobtype

engtypetgradetypespd

EER to relational

Employee

(SSN,Fname,Minit,Lname,Bdate,Address,JobType)

Secretary (SSN, typing Speed)

Technician (SSN, Tgrade)

Engineer (SSN, Engtype)

Option A
Works for any kind of constraint:

disjoint, overlapping, partial or

total

Sept. 2023 172Yangjun Chen ACS-4902

– Create tables for each subclass, but not for the
superclass

– Move all the attributes of the superclass and
include them as attributes of each subclass

EER to relational

Vehicle

CarTruck

maxspeed

#passengerstonnage #axles

platenoid

price

Option B

Works well only for disjoint and total

constraints

d
Car (VehicleID, LicensePlateNo, Price,

MaxSpeed, NoOfpassengers)

Truck (VehicleID, LicensePlateNo, Price,

noofaxles, tonnage)

Sept. 2023 173Yangjun Chen ACS-4902

Option C

Works well for disjoint constraints

Potential for generating large number of nulls

EER to relational

Employee

Secretary Technician Engineer

Job Type

sin bdate jobtype

tgradetypespd engtype

d

Employee (SSN, bdate, Address, JobType, Typing Speed, Tgrade,

EngType)

12345 … … 1 … …

56463 … … 2 … …

55554 … 3 … …

Sept. 2023 174Yangjun Chen ACS-4902

Option D

Works well for overlapping constraints

Option 8C and 8D are not recommended

if many specific attributes are defined for

the subclasses

EER to relational

Part (PartNo, Descr, Mflag, DrawingNo, ManDate, BatchNo, Pflag,

SupName, ListPrice)

o

Part

manu_part purchased-part

part#

supplierbatch#

description

pricemandate

1 screw 1 … … … …

2 bolt … … 1 … …

3 nail 1 … … 1

Sept. 2023 Yangjun Chen ACS-4902 175

• Shared SubClass
– a subclass with more than one superclass

– leads to the concept of multiple inheritance:

engineering manager inherits attributes of

engineer, manager, and salaried employee

engineer manager salaried-emp

engineering-manager

Shared Subclass

Rule: an engineering-
manager must be an
engineer, a manager, and a
salaried-emp.

Rule: an engineer might be
an engineering manager, etc.

Sept. 2023 Yangjun Chen ACS-4902 176

Models a single class/subclass with more than

one super class of different entity types

person bank company



owner

Categories

Rule: an owner is either a
person, a bank, or a
company.

Rule: a person might be an
owner, etc. Note: owner is a

category

Note: set union symbol

Sept. 2023 Yangjun Chen ACS-4902 177

A category can be either total or partial

company

account-holder



partial category

Categories

Rule: an account holder is either a
person or a company.

Rule: a person may, or may not,
be an account owner

Rule: a company may, or may not,
be an account holder

person

Sept. 2023 Yangjun Chen ACS-4902 178

A category can be either total or

partial

building

property



total category

Categories

Rule: a property is either a
building or a lot

Rule: a building is a
property

Rule: a lot is a property

lot

Sept. 2023 Yangjun Chen ACS-4902 179

Categories - Superclasses with different

keys

EER to relational

Person (SSN, DrLicNo, Name, Address, Ownerid)

Bank (Bname, BAddress, Ownerid)

Company (CName, CAddress, Ownerid)

Owner (Ownerid)

person bank company



owner

Sept. 2023 Yangjun Chen ACS-4902 180

Categories - Superclasses with the same keys

EER to relational

Registered Vehicle (VehicleID, LicensePlateNo,)

Car (VehicleID , Cstyle, CMake, CModel,CYear)

Truck (VehicleID , TMake, TModel,TYear, Tonnage)

car truck

registered vehicle



VehicleIdVehicleId

LicensePlateNo

Tonnage

Cstyle

...

...

Sept. 2023 Yangjun Chen ACS-4902 181

Spatial databases

Theme

Map

Geographic objects

Sept. 2023 Yangjun Chen ACS-4902 182

• Spatial data management

- A spatial database is a data management system for the

collection, storage, manipulation and output of spatially

referenced information.

- Theme: refers to data describing a particular topic (e.g., scenic

lookouts, rivers, cities) and is the spatial counterpart of an

entity type.

When a theme is presented on a screen or paper, it is commonly

seen in conjunction with a map. Colour may be used to indicate

different themes (e.g., blue for rivers and black for roads).

- Map: A map will usually have a scale, legend, and possibly

some explanatory text.

Sept. 2023 Yangjun Chen ACS-4902 183

• Spatial data management

- Geographic objects: A geographic object is an instance of a

theme (e.g., a river).

- attributes

- spatial components: geometry and topology

Geometry refers to the location-based data: shape, length

Topology refers to spatial relationships among objects:

adjacency

Sept. 2023 Yangjun Chen ACS-4902 184

A database for political units:

political-unit boundaryhas

city

contains

unitName unitCode unit-population boundId boundPath

cityName

cityLocation

Example: Canada has a boundary for the continental portion,

and each of its sovereign islands, such as Prince Edward Island.

1

1

n

m

Sept. 2023 Yangjun Chen ACS-4902 185

Map a geographic data model to tables:

Geometric type

BOX

CIRCLE

LINE

LSEG

PATH

PATH

POINT

POLYGON

Representation

((x1, y1), (x2, y2))

<(x, y), r>

((x1, y1), (x2, y2))

[(x1, y1), (x2, y2)]

((x1, y1), …)

[(x1, y1), …]

(x, y)

((x1, y1), …)

Description

Rectangular box

Circle (center and radius)

Infinite line

Finite line segment

Closed path (similar to polygon)

Open path

Point in space

Polygon (similar to closed path)

Geometric data type in PostgreSQL:

Sept. 2023 Yangjun Chen ACS-4902 186

Map a geographic data model to tables:

Table definition for Political unit data model:

CREATE TABLE political_unit (

unitname VARCHAR(30) NOT NULL,

unitcode CHAR(2),

unitpop DECIMAL(6, 2),

PRIMARY KEY (unitcode));

CREATE TABLE boundary (

boundid INTEGER,

boundpath PATH NOT NULL,

unitcode CHAR(2),

PRIMARY KEY (boundid),

CONSTRAINT fk_boundary_polunit FOREIGN KEY (unitcode) REFERENCES political_unit);

CREATE TABLE city (

cityname VARCHAR(30),

cityloc POINT NOT NULL,

unitcode CHAR(2),

PRIMARY KEY (unitcode, cityname),

CONSTRAINT fk_city_polunit FOREIGN KEY (unitcode) REFERENCES political_unit);

Sept. 2023 Yangjun Chen ACS-4902 187

Republic of

Ireland

Londonderry

Northern
Ireland Belfast

Dublin

Cork

Tipperary

Limerick

Galway

Sligo

Sept. 2023 Yangjun Chen ACS-4902 188

Insert statements for populating database

INSERT INTO political_unit VALUES (‘Republic of Ireland’, ‘ie’, 3.9);

INSERT INTO political_unit VALUES (‘Northern Ireland’, ‘ni’, 1.7);

INSERT INTO boundary VALUES

(1, ‘[(9, 8), (9, 3), (4, 1), (2, 2), (1, 3), (3, 5), (3, 6), (2, 6),

(2, 9), (5, 9), (5, 10), (6, 11), (7, 11), (7, 10), (6, 9), (7, 8),

(7, 9), (8, 9), (8, 8), (9, 8)]’, ‘ie’);

INSERT INTO boundary VALUES

(2, ‘[(7, 11), (9, 11), (10, 9), (10, 8), (8, 8), (8, 9), (7, 9),

(7, 8), (6, 9), (7, 10), (7, 11)]’, ‘ni’);

INSERT INTO city VALUES (‘Dublin’, ‘(9, 6)’, ‘ie’);

INSERT INTO city VALUES (‘Cork’, ‘(5, 2)’, ‘ie’);

INSERT INTO city VALUES (‘Limerick’, ‘(4, 4)’, ‘ie’);

INSERT INTO city VALUES (‘Galway’, ‘(4, 6)’, ‘ie’);

INSERT INTO city VALUES (‘Sligo’, ‘(9, 6)’, ‘ie’);

INSERT INTO city VALUES (‘Tipperary’, ‘(5, 3)’, ‘ie’);

INSERT INTO city VALUES (‘Belfast’, ‘(9, 9)’, ‘ni’);

INSERT INTO city VALUES (‘Londonderry’, ‘(7, 10)’, ‘ni’);

Sept. 2023 Yangjun Chen ACS-4902 189

Geometric functions and operators in PostgreSQL for

processing spatial data

Functions:

Function

LENGTH(OBJECT)

NPOINTS(PATH)

Returns

double precision

integer

Description

length of item

Number of points

Operators:

Is above?>^

Is right of?>>

Is below?<^

Is left of?<<

Distance between<->

DescriptionOperator

Sept. 2023 Yangjun Chen ACS-4902 190

Queries:

1. What is the length of the Republic of Ireland border?

SELECT SUM(LENGTH((boundpath))) * 37.5

AS “Border (kms)” FROM Political_unit, boundary

WHERE unitname = “Republic of Ireland”

AND political_unit.unitcode = boundary.unitcode;

1353.99

Border (kms)

Sept. 2023 Yangjun Chen ACS-4902 191

Queries:

2. How far, as the crow flies, is it from Sligo to Dublin?

SELECT (orig.cityloc<->dest.cityloc) * 37.5

AS “Distance (kms)”

FROM city orig, city dest

WHERE orig.cityname = ‘Sligo’

AND dest.cityname = ‘Dublin’;

167.71

Distance (kms)

Sept. 2023 Yangjun Chen ACS-4902 192

Queries:

3. What is the closest city to Limerick?

SELECT dest.cityname FROM city orig, city dest

WHERE orig.cityname = ‘Limerick’

AND orig.cityloc <-> dest.cityloc =

(SELECT MIN(orig.cityloc<->dest.cityloc)

FROM city orig, city dest

WHERE orig.cityname = ‘Limerick’ AND

dest.cityname <> ‘Limerick’);

Tipperary

cityname

Sept. 2023 Yangjun Chen ACS-4902 193

Queries:

4. What is the westernmost city?

SELECT west.cityname FROM city west

WHERE NOT EXISTS

(SELECT * FROM city other

WHERE other.cityloc << west.cityloc);

Limerick

cityname

Galway

Sept. 2023 Yangjun Chen ACS-4902 194

•Managing temporal data

- With a temporal database, stored data have an associated time

period indicating when the item was valid or stored in the

database.

- Transaction time: the timestamp applied by the system when

data are entered and cannot be changed by an application. It

can be applied to a particular item or row.

For example, the old and new price of a product would

automatically have separate timestamps when they are entered

into the database.

Sept. 2023 Yangjun Chen ACS-4902 195

- Valid time: the actual time at which an item was a valid or

true value. It can be changed by an application.

For example, consider the case where a firm plans to increase

its prices on a specific date. It might post new prices some time

before their effective date.

Difference between transaction time and valid time:

Valid time records when the change takes effect, and

transaction time records when the change was entered.

- Storing transaction time is essential for database recovery because the

DBMS can roll back the database to a previous state.

- Valid time provides a historic record of the state of the database.

Sept. 2023 Yangjun Chen ACS-4902 196

- Anchored time: a time having a defined starting point

(e,g., October 15, 2003)

temporal

time

anchored

unanchored

instance

interval

DATE

TIMESTAMP

[instance1, instance2]

[2003-01-01, 2003-01-23]Example:Example: 45 minutes

Sept. 2023 Yangjun Chen ACS-4902 197

Modeling temporal data

Consider an application for managing information on Shares:

SHARE

shrprice

shrcode

shrname shrqty shrdiv

shrearn

However, share price, quantity owned, dividend and

price-to-earning ratio are all time-varying. The above data model

is not able to capture this feature. So temporal information should

be added.

Sept. 2023 Yangjun Chen ACS-4902 198

Modeling temporal data

SHARE

Trading-TRANSACTION

S-P

PRICE
shrprice

shrpricetime

shrcode

DIVIDEND EARNINGS

S-E

S-T S-D

1 1

11

M N L J

shrname

shrqtytime

shrtansprice

shrqty

shrdivdate

shrdiv shrearndate

shrearn

Sept. 2023 Yangjun Chen ACS-4902 199

Signature files

and signature

trees

Signatures

- signature for attributes

- signature for records

Signature files

Signature trees

Not included in the final

Sept. 2023 Yangjun Chen ACS-4902 200

•Signature file

- A signature file is a set of bit strings, which are called

signatures.

- In a signature file, each signature is constructed for a

record in a table, a block of text, or an image.

- When a query arrives, a query signature will be

constructed according to the key words involved in the

query. Then, the signature file will be searched against

the query signature to discard non-qualifying signatures,

as well as the objects represented by those signatures.

Sept. 2023 Yangjun Chen ACS-4902 201

•Signature file

- Decompose an attribute value (or a key word) into a

series of triplets

- Using a hash function to map a triplet to an integer p,

indicating that the pth bit in the signature will be set to 1.

Example: Consider the word “professor”. We will decompose

it into 6 triplets:

“pro”, “rof”, “ofe”, “fes”, “ess”, “sor”.

Assume that hash(pro) = 2, hash(rof) = 4, hash(ofe) =8, and

hash(fes) = 9.

Signature: 010 100 011 000

Sept. 2023 Yangjun Chen ACS-4902 202

•Signature file

- Generate a signature for a record (or a block of text)

block: ... SGML ... databases ... information ...

word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)



superimposing

Sept. 2023 Yangjun Chen ACS-4902 203

•Signature file

- Search a signature file

block: ... SGML ... databases ... information ...

110 110 111 110object signature (OS):

queries:

SGML

XML

informatik

query signatures:

010 000 100 110

011 000 100 100

110 100 100 000

matching results:

match with OS

no match with OS

false drop

Sept. 2023 Yangjun Chen ACS-4902 204

name

•Signature file

- Generate a signature for a record (or a block of text)

1011 0110
1011 1001
1010 0111
0111 0110
0111 0101
0101 1100
1110 0100

1010 1011

s1

s2

s3

s4

s5

s6

s7

s8

relation:

John male

... ...

signature file:

sex

Sept. 2023 Yangjun Chen ACS-4902 205

•Signature file

- Search a signature file

query: John  male

query signature: 1010 0101

1011 0110
1011 1001
1010 0111
0111 0110
0111 0101
0101 1100
1110 0100
1010 1011

s1

s2

s3

s4

s5

s6

s7

s8



Sept. 2023 Yangjun Chen ACS-4902 206

• Signature tree

- Signature tree construction

Consider a signature si of length m. We denote it as si = si[1].. si[m],

where each si[j]  {0, 1} (j = 1, ..., m). We also use si(j1, ..., jh) to denote

a sequence of pairs with respect to si: (j1, si[j1])(j2, si[j2]) ... (jh, si[jh]),

where 1  jk  m for k  {1, ..., h}.

Definition (signature identifier) Let S = s1.s2sn denote a signature

file. Consider si (1  i  n). If there exists a sequence: j1, ..., jh such that

for any k  i (1  k  n) we have si(j1, ..., jh)  sk(j1, ..., jh), then we say

si(j1, ..., jh) identifies the signature si or say si(j1, ..., jh) is an identifier of

si.

Sept. 2023 Yangjun Chen ACS-4902 207

• Signature tree

- Signature tree construction

Example:

s8(5, 1, 4) = (5, 1)(1, 1)(4, 0)

For any i  8 we have si(5, 1, 4)  s8(5, 1, 4). For instance,

s5(5, 1, 4) = (5, 0)(1, 0)(4, 1)  s8(5, 1, 4), s2(5, 1, 4) = (5, 1)(1, 1)(4, 1)

 s8(5, 1, 4), and so on.

s1(5, 4, 1) = (5, 0)(4, 1)(1, 1)

For any i  1 we have si(5, 4, 1)  s1(5, 4, 1).

1011 0110
1011 1001
1010 0111
0111 0110
0111 0101
0101 1100
1110 0100
1010 1011

s1

s2

s3

s4

s5

s6

s7

s8

Sept. 2023 Yangjun Chen ACS-4902 208

• Signature tree

- Signature tree construction

Definition (signature tree) A signature tree for a signature file S = s1.s2sn,

where si  sj for i  j and |sk| = m for k = 1, ..., n, is a binary tree T such that

1. For each internal node of T, the left edge leaving it is always labeled with

0 and the right edge is always labeled with 1.

2. T has n leaves labeled 1, 2, ..., n, used as pointers to n different positions

of s1, s2, ... and sn in S. Let v be a leaf node. Denote p(v) the pointer to

the corresponding signature.

3. Each internal node v is associated with a number, denoted sk(v), to tells

which bit will be checked.

4. Let i1, ..., ih be the numbers associated with the nodes on a path from the

root to a leaf v labeled i (then, this leaf node is a pointer to the ith

signature in S, i.e., p(v) = i). Let p1, ..., ph be the sequence of labels of

edges on this path. Then, (j1, p1) ... (jh, ph) makes up a signature identifier

for si, si(j1, ..., jh).

Sept. 2023 Yangjun Chen ACS-4902 209

• Signature tree

- Signature tree construction

011 001 000 101

111 011 001 111

111 101 010 111
011 001 101 111
011 101 110 101
011 111 110 101
011 001 111 111
111 011 111 111

s1

s2

s3

s4

s5

s6

s7

s8

1

7 4

4 7

8 5

1. 3.

2. 8.

4. 7. 5. 6.

0

0

0

0 0

0

1

1 1

1

1

10

1

Sept. 2023 Yangjun Chen ACS-4902 210

• Signature tree

- Searching of a signature tree

query signature: sq = 000 100 100 000.

1

7 4

4 7

8 5

1. 3.

2. 8.

4. 7. 5. 6.

0

0

0

0 0

0

1

1 1

1

1

10

1

Sept. 2023 Yangjun Chen ACS-4902 211

• Signature tree

- About balanced signature trees

A signature tree can be quite skewed.

S1: 100 100 100 100

S2: 010 010 010 010
S3: 001 001 001 001
S4: 000 110 010 010
S5: 000 011 001 001
S6: 000 001 100 100
S7: 000 000 110 010
S8: 000 000 010 110

1

2

3

41

5

6

7

1.

2.

3.

4.

5.

6.

7.8.

Sept. 2023 Yangjun Chen ACS-4902 212

• Signature tree

- About balanced signature trees

Weight-based method:

A signature file S = s1.s2sn can be considered as a

boolean matrix. We use S[i] to represent the ith column of S.

We calculate the weight of each S[i], i.e., the number of 1s

appearing in S[i], denoted w(S[i]). Then, we choose an j such

that |w(S[i]) – n/2| is minimum. Here, the tie is resolved

arbitrarily. Using this j, we divide S into two groups g1 = { ,

..., } with each [j] = 0 (p = 1, ..., k) and g2 = { ,

..., } with each [j] = 1 (q = k + 1, ..., n).

1i
s

ki
s

pis
1+ki

s

ni
S

qi
s

Sept. 2023 Yangjun Chen ACS-4902 213

• Signature tree

- About balanced signature trees

Weight-based method (continued):

In a next step, we consider each gi (i = 1, 2) as a single

signature file and perform the same operations as above,

leading to two trees generated for g1 and g2, respectively.

Replacing g1 and g2 with the corresponding trees, we get

another tree. We repeat this process until the leaf nodes of a

generated tree cannot be divided any more.

Sept. 2023 Yangjun Chen ACS-4902 214

• Signature tree

- About balanced signature trees

Example:

S1: 100 100 100 100

S2: 010 010 010 010
S3: 001 001 001 001
S4: 000 110 010 010
S5: 000 011 001 001
S6: 000 001 100 100
S7: 000 000 110 010
S8: 000 000 010 110

8

g

1

g

2

g1 = {s1, s3, s5, s6}

g2 = {s2, s4, s7, s8}

8

2 5

g11 g12 g21 g22

g11 = {s3, s5}

g12 = {s6, s1}

g21 = {s8, s7}

g22 = {s4, s2}

Sept. 2023 Yangjun Chen ACS-4902 215

8

2 5

5 1 7 2

3 5. 6. 1. 8. 7. 4. 2.

Sept. 2023 Yangjun Chen ACS-4902 216

A B+-tree

5

3 7 8

6 7 9 125 81 3

pinternal = 3,

pleaf = 2.

1 5 6 12 9 7 3 8 data file

Sept. 2023 217Yangjun Chen ACS-4902

B+-tree Maintenance

• Inserting a key into a B+-tree

(Same as discussed on B+-tree construction)

• Deleting a key from a B+-tree

i) Find the leaf node containing the key to be removed and

delete it from the leaf node.

ii) If underflow, redistribute the leaf node and one of its

siblings (left or right) so that both are at least half full.

iii) Otherwise, the node is merged with its siblings and the

number of leaf nodes is reduced.

Sept. 2023 218Yangjun Chen ACS-4902

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7 8

6 7 9 124 81 3

Records in a file

pinternal = 3,

pleaf = 2.

Sept. 2023 219Yangjun Chen ACS-4902

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7 8

6 7 9 1241 3

Records in a file

pinternal = 3,

pleaf = 2.

Sept. 2023 Yangjun Chen ACS-4902 220

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7 9

6 7 124 91 3

Deleting 8 causes the node redistribute.

Sept. 2023 221Yangjun Chen ACS-4902

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7

6 74 91 3

12 is removed.

Sept. 2023 222Yangjun Chen ACS-4902

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 6

64 71 3

9 is removed.

Sept. 2023 223Yangjun Chen ACS-4902

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 6

641 3

Deleting 7 makes this pointer no use.

Therefore, a merge at the level above

the leaf level occurs.

Sept. 2023 Yangjun Chen ACS-4902 224

Entry deletion

- deletion sequence: 8, 12, 9, 7

For this merge, 5 will be taken as a key value in A since

any key value in B is less than or equal to 5 but any key

value in C is larger than 5.

641 3

53 5
A

B

C

5

This point becomes useless.

The corresponding node

should also be removed.

Sept. 2023 225Yangjun Chen ACS-4902

Entry deletion

- deletion sequence: 8, 12, 9, 7

641 3

53 5

Sept. 2023 Yangjun Chen ACS-4902 226

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

5

3

1 0 3

5 0

5 7 6 8 7

6 1 7 2

8 3

9 2 12 1

1 5 6 12 9 7 3 8Data file:

1 4

2 3

3

0 1 2 3

0

1

2

3

4

5

6

7

B+-tree stored in a file:

Storing a B+-tree in a file on hard disk:

Sept. 2023 Yangjun Chen ACS-4902 227

Index Structures for Multidimensional Data

• Multiple-key indexes

• kd-trees

• Quad trees

• R-trees

• Bit map

• Inverted files

Sept. 2023 Yangjun Chen ACS-4902 228

Multiple-key indexes

(Indexes over more than one attributes)

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

Sept. 2023 Yangjun Chen ACS-4902 229

Multiple-key indexes

(Indexes over more than one attributes)

Index on age
Index on salary

Sept. 2023 Yangjun Chen ACS-4902 230

Multiple-key indexes

25

30

45

50

60

70

85

60

400

60

350

260

75

100

120

275

260

110

140

Sept. 2023 Yangjun Chen ACS-4902 231

kd-Trees

(A generalization of binary trees)

A kd-tree is a binary tree in which interior nodes have an associated

attribute a and a value v that splits the data points into two parts:

those with a-value less than v and those with a-value equal or larger

than v.

Sept. 2023 Yangjun Chen ACS-4902 232

kd-Trees

salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260 25, 400

45, 350

25, 60 45, 60

50, 75

Sept. 2023 Yangjun Chen ACS-4902 233

kd-trees

0

500k

100

salary

age

Sept. 2023 Yangjun Chen ACS-4902 234

Insert a new entry into a kd-tree:

insert(35, 500):
salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260 25, 400

45, 350

25, 60 45, 60

50, 75

Sept. 2023 Yangjun Chen ACS-4902 235

Insert a new entry into a kd-tree:

salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260

35, 500

45, 350
25, 60 45, 60

50, 75

insert(35, 500):

25, 400

age 35

Sept. 2023 Yangjun Chen ACS-4902 236

Quad-trees

In a Quad-tree, each node corresponds to a square region in two

dimensions, or to a k-dimensional cube in k dimensions.

• If the number of data entries in a square is not larger than what

will fit in a block, then we can think of this square as a leaf node.

• If there are too many data entries to fit in one block, then we treat

the square as an interior node, whose children correspond to its

four quadrants.

Sept. 2023 Yangjun Chen ACS-4902 237

Quad-trees

0

400k

100

salary

age

name age salary… …

… 25 400… …

Sept. 2023 Yangjun Chen ACS-4902 238

Quad-trees

50, 200

50, 75

50, 100

25, 60

46, 60
75, 100 25, 300

50, 275

60, 260

85, 140 50, 120

70, 110

30, 260 25, 400

45, 350

SW
SE NE

NW

SW – south-west

SE – south-east

NW – north-west

NE – north-east

0 100

400k

Sept. 2023 Yangjun Chen ACS-4902 239

R-trees

An R-tree is an extension of B-trees for

multidimensional data.

• In an R-tree, any interior node corresponds to some interior

regions, or just regions, which are usually a rectangle

• An R-tree corresponds to a whole area (a rectangle for two-di-

mensional data.)

• Each region x in an interior node n is associated with a link to a

child of n, which corresponds to all the subregions within x.

Sept. 2023 Yangjun Chen ACS-4902 240

R-trees

In an R-tree, each interior node

contains several subregions.

In a B+-tree, each interior node

contains a set of keys that divides

a line into segments.

k1 k2 kj kj+1 kqkj-1

Sept. 2023 Yangjun Chen ACS-4902 241

Suppose that the local cellular phone company adds a POP (point

of presence, or base station) at the position shown below.

0 100

100

school POP

house1

house2road1
ro

ad
2

pipeline

Sept. 2023 Yangjun Chen ACS-4902 242

R-trees

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

Sept. 2023 Yangjun Chen ACS-4902 243

Insert a new region r into an R-tree.

0 100

100

school POP

house1

house2road1

ro
ad

2
pipeline

house3

((70, 5), (98, 15))

Sept. 2023 Yangjun Chen ACS-4902 244

Insert a new region r into an R-tree.

1. Search the R-tree, starting at the root.

2. If the encountered node is internal, find a subregion into which

r fits.

• If there is more than one such region, pick one and go to its

corresponding child.

• If there is no subregion that contains r, choose any subregion

such that it needs to be expanded as little as possible to contain

r.

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

((70, 5), (98, 15))

Sept. 2023 Yangjun Chen ACS-4902 245

((0, 0), (80, 50)) ((20, 20), (100, 80))

school house2 pipeline pop

Two choices:

• If we expand the lower subregion, corresponding to the first

leaf, then we add 1000 square units to the region.

• If we extend the other subregion by lowering its bottom by 5

units, then we add 1200 square units.

road1 road2 house1 house3

Sept. 2023 Yangjun Chen ACS-4902 246

Insert a new region r into an R-tree.

3. If the encountered node v is a leaf, insert r into it. If there is no

room for r, split the leaf into two and distribute all subregions in

them as evenly as possible. Calculate the ‘parent’ regions for the

new leaf nodes and insert them into v’s parent. If there is the

room at v’s parent, we are done. Otherwise, we recursively split

nodes going up the tree.

((0, 0), (100, 100))

road1 road2 house1 school house2 pipeline

Add POP (point of

presence, or base

station)

Suppose that each

leaf has room for

6 regions.

Sept. 2023 Yangjun Chen ACS-4902 247

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

• Split the leaf into two and distribute all the regions evenly.

• Calculate two new regions each covering a leaf.

Sept. 2023 Yangjun Chen ACS-4902 248

house1

((70, 5), (95, 15))
R = 

Insert the first object into an R-tree:

((70, 5), (95, 15))

house1

house2

((70, 20), (95, 50))

Sept. 2023 Yangjun Chen ACS-4902 249

Bit map

1. Image that the records of a file are numbered 1, …, n.

2. A bitmap for a data field F is a collection of bit-vector of

length n, one for each possible value that may appear in the

field F.

3. The vector for a specific value v has 1 in position i if the ith

record has v in the field F, and it has 0 there if not.

Sept. 2023 Yangjun Chen ACS-4902 250

Example

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

Brian, Robin

Brian, Mary

Widom, Jones

30

30

40

50

55

55

60

60

60

75

75

78

80

100

Bit maps for age:

30: 1100000

40: 0010000

50: 0001000

55: 0000110

60: 0000001

Bit maps for salary:

60: 1100000

75: 0011000

78: 0000100

80: 0000010

100: 0000001

Sept. 2023 Yangjun Chen ACS-4902 251

Query evaluation

0000110

0000010

Select ename

From Employee

Where age = 55 and salary = 80

In order to evaluate this query, we intersect the vectors for

age = 55 and salary = 80.

vector for age = 55

vector for salary = 80

0000010

This indicates the 6th tuple is the answer.

Sept. 2023 Yangjun Chen ACS-4902 252

Range query evaluation

Select ename

From Employee

Where 30 < age < 55 and 60 < salary < 78

We first find the bit-vectors for the age values in (30, 50); there are only two:

0010000 and 0001000 for 40 and 50, respectively.

Take their bitwise OR: 0010000  0001000 = 0011000.

Next find the bit-vectors for the salary values in (60, 78) and take their bitwise

OR: 1100000  0011000 = 1111000.

0011000

1111000

0011000

The 3rd and 4th tuples are the answer.

Sept. 2023 Yangjun Chen ACS-4902 253

Compression of bitmaps

Suppose we have a bitmap index on field F of a file with n records,

and there are m different values for field F that appear in the file.

v1

.

.

.

v2

.

.

.

vm

.

.

.… …n bits O(mn) space

Sept. 2023 Yangjun Chen ACS-4902 254

Compression of bitmaps

Run-length encoding:

Run in a bit vector: a sequence of i 0’s followed by a 1.

000000010001

Run compression: a run r is represented as another bit string r’

composed of two parts.

part 1: i expressed as a binary number, denoted as b1(i).

part 2: Assume that b1(i) is j bits long. Then, part 2 is a sequence

of (j – 1) 1’s followed by a 0, denoted as b2(i).

r’ = b2(i)b1(i).

This bit vector contains two runs.

Sept. 2023 Yangjun Chen ACS-4902 255

Compression of bitmaps

Run-length encoding:

Run in a bit vector s: a sequence of i 0’s followed by a 1.

000000010001

r’ = b2(i)b1(i).

This bit vector contains two runs.

r1 = 00000001

b11 = 7 = 111, b12 = 110

r2 = 0001

b11 = 3 = 11, b12 = 10

r1’ = 110111

r2’ = 1011

Sept. 2023 Yangjun Chen ACS-4902 256

000000010001

r1’ r2’ = 1101111011

Decoding a compressed sequence s’:

1. Scan s’ from the beginning to find the first 0.

2. Let the first 0 appears at position j. Check the next j bits. The

corresponding value is a run.

3. Remove all these bits from s’. Go to (1).

Starting at the beginning, find the first 0

at the 3rd bit, so j = 3. The next 3 bits are

111, so we determine that the first integer

is 7. In the same way, we can decode1011.

Sept. 2023 Yangjun Chen ACS-4902 257

r2’ = 1011 r1r2= 000000010001

r1= 00000001

r2= 0001



r1’ r2’ = 1101111011

Uncompression:

Sept. 2023 Yangjun Chen ACS-4902 258

Question:

We can put all the compressed bit vectors together to get a bit

sequence:

s = s1s2 … sm,

where si is the compressed bit string for the ith bit vector.

When decoding s, how to differentiate between consecutive bit

vectors?

Sept. 2023 Yangjun Chen ACS-4902 259

Inverted files

An inverted file - A list of pairs of the form: <key word, pointer>

cat

dog

… the cat is

fat

… was raining

cats and dogs …

… Fido the

Dogs …
a bucket of pointers

Sept. 2023 Yangjun Chen ACS-4902 260

Inverted files

When we use “buckets” of pointers to occurrences of each word,

we may extend the idea to include in the bucket array some

information about each occurrence.

cat

dog

… the cat is

fat

… was raining

cats and dogs …

… Fido the

Dogs …

title

header

anchor

text

5

10

3

57

type position
…

…

…

…

Sept. 2023 Yangjun Chen ACS-4902 261

Search Engine in Web Browser

• Architecture of a search engine

• PageRank for indentifying important pages

• Topic-specific PageRank

• Data streams

Not included in the final

Sept. 2023 Yangjun Chen ACS-4902 262

The Architecture of a Search Engine

Page

Repository
Indexes

Query

Engine

user

Indexer

RankerCrawler

query

Ranked

pages

Web

Sept. 2023 Yangjun Chen ACS-4902 263

The Architecture of a Search Engine

There are two main functions that a search engine must perform.

1. The Web must be crawled. That is, copies of many of the pages

on the Web must be brought to the search engine and processed.

2. Queries must be answered, based on the material gathered from

the Web. Usually, a query is in the form of a word or words that

the desired Web pages should contain, and the answer to a

query is a ranked list of the pages that contain all those words,

or at least some of them.

Sept. 2023 Yangjun Chen ACS-4902 264

The Architecture of a Search Engine

Crawler – interact with the Web and find pages, which will be

stored in Page Repository.

Indexer – inverted file: for each word, there is a list of the pages that

contain the word. Additional information in the index for

the word may include its locations within the page or its

role, e.g., whether the word is in the header.

Query engine – takes one or more words and interacts with indexes,

to determine which pages satisfy the query.

Ranker – order the pages according to some criteria.

Sept. 2023 Yangjun Chen ACS-4902 265

Web Crawler

A crawler can be a single machine that is started with a set S,

containing the URL’s of one or more Web pages to crawl. There is

a repository R of pages, with the URL’s that have already been

crawled; initially R is empty.

Algorithm: A simple Web Crawler

Input: an initial set of URL’s S.

Output: a repository R of Web pages

Sept. 2023 Yangjun Chen ACS-4902 266

Web Crawler

Method: Repeatedly, the crawler does the following steps.

1. If S is empty, end.

2. Select a URL r from the set S to “crawl” and delete r from S.

3. Obtain a page p, using its URL r. If p is already in repository

R, return to step (1) to select another URL.

4. If p is not already in R:

(a) Add p to R.

(b) Examine p for links to other pages. Insert into S the URL of

each page q that p links to, but that is not already in R or S.

5. Go to step (1).

Sept. 2023 Yangjun Chen ACS-4902 267

Web Crawler

The algorithm raises several questions.

a) How to terminate the search if we do not want to search the

entire Web?

b) How to check efficiently whether a page is already in repository

R?

c) How to select an URL r from S to search next?

d) How to speed up the search, e.g., by exploiting parallelism?

Sept. 2023 Yangjun Chen ACS-4902 268

Terminating Search

The search could go on forever due to dynamically constructed

pages.

• Set a limit on the number of pages to crawl.

Set limitation:

• Set a limit on the depth of the crawl.

Initially, the pages in set S have depth 1. If the page p selected

for crawling at step (2) of the algorithm has depth i, then any

page q we add to S at step 4-(b) is given depth i + 1. However,

if p has depth equal to the limit, then do not examine links out

of p at all. Rather we simply add p to R if it is not already there.

The limit could be either on each site or on the total number of

pages.

Sept. 2023 Yangjun Chen ACS-4902 269

Managing the Repository

• When we add a new URL for a page p to the set S, we should

check that it is not already there or among the URL’s of pages

in R.

• When we decide to add a new page p to R at step 4-(a) of the

algorithm, we should be sure the page is not already there.

• Hash each Web page to a signature of, say, 64 bits.

• The signatures themselves are stored in a hash table T, i.e., they

are further hashed into a smaller number of buckets, say one

million buckets.

Page signatures:

Sept. 2023 Yangjun Chen ACS-4902 270

• Hash each Web page to a signature of, say, 64 bits.

• The signatures themselves are stored in a hash table T, i.e., they

are further hashed into a smaller number of buckets, say one

million buckets.

• When inserting p into R, compute the 64-bit signature h(p), and

see whether h(p) is already in the hash table T. If so, do not store

p; otherwise, store p in T.

Page signatures:

Signatures:

1111 0100 1100

… …

Pages: Hash table:
hashing1 hashing2

Hashing2(111101001100) = addr.

new

page
hashing1 1111 …100 Hashing2(1111…100) = addr.

Sept. 2023 Yangjun Chen ACS-4902 271

Selecting the Next page

• Completely random choice of next page.

• Maintain S as a queue. Thus, do a breadth-first search of the Web

from the starting point or points with which we initialized S. Since

we presumably start the search from places in the Web that have

“important” pages, we are assured of visiting preferentially those

portions of the Web.

• Estimate the importance of pages in S, and to favor those pages

we estimate to be the most important.

- PageRank: number of in-links in a page

Sept. 2023 Yangjun Chen ACS-4902 272

Speeding up the Crawl

• More than one crawling machine

• More crawling processes in a machine

• Concurrent access to S

Sept. 2023 Yangjun Chen ACS-4902 273

Query Processing in Search Engine

• Search engine queries are word-oriented: a boolean combination

of words

• Answer: all pages that contain such words

• Method:

- The first step is to use the inverted index to determine those

pages that contain the words in the query.

- The second step is to evaluate the boolean expression:

The AND of bit vectors gives the pages containing both words.

The OR of bit vectors gives the pages containing one or both.

(word1  word2)  (word3  word4)

Sept. 2023 Yangjun Chen ACS-4902 274

word1: 10 … 001 … 00

word2: 10 … 101 … 10

word1 appears in document i



10 … 001 … 00 Show all the documents

which contain word1 and word2

Inverted list

word3: 10 … 001 … 01

Word4: 10 … 101 … 11 

10 … 001 … 01

(word1  word2)  (word3  word4):

10 … 001 … 00

10 … 001 … 01 

Sept. 2023 Yangjun Chen ACS-4902 275

Trie-based Method for Query Processing

• A trie is a multiway tree, in which each path corresponds to a

string, and common prefixes in strings to common prefix paths.

• Leaf nodes include either the documents themselves, or links to

the documents that contain the string that corresponds to the path.

Example:

s1: cfamp

s2: cbp

s3: cfabm

s4: fb

A trie constructed for

The following strings:

Sept. 2023 Yangjun Chen ACS-4902 276

Trie-based Method for Query Processing

• Item sequences sorted by appearance frequency (af) in documents.

DocID Items Sorted item sequence

1 f, a, c, m, p c, f, a, m, p

2 a, b, c, f c, f, a, b, m

3 b, f f, b

4 b, c, p c, b, p

5 a, f, c, m, p c, f, a, m, p

• View each sorted item sequence as a string and construct a trie

over them, in which each node is associated with a set of

document IDs each containing the substring represented by the

corresponding prefix.

af(w) =
No. of doc.

No. of doc. Containing w

Sept. 2023 Yangjun Chen ACS-4902 277

Trie-based Method for Query Processing

• View each sorted item sequence as a string and construct a trie

over them.

items links

c

f

a

b

m

p

{1, 2, 4, 5}

{1, 2, 5}

{2}

{4} {3}

Header table:

{1, 2, 5}

{1, 2, 5}

{1, 5}

{1, 2, 5}

{4}

{2}

Sept. 2023 Yangjun Chen ACS-4902 278

Trie-based Method for Query Processing

• Evaluation of queries

- Let Q = word1  word2 …  wordk be a query

- Sort the words in Q according to the appearance frequency:

word i1
 … word ik

- Find a node in the trie, which is labeled with word i1

- If the path from the root to word i1
contains all wordi (i = 1, …, k),

Return the document identifiers associated with word i1

- The check can be done by searching the path bottom-up, starting

from . In this process, we will first try to find , and

then , and so on.

word i1 word i2

word i3

Sept. 2023 Yangjun Chen ACS-4902 279

Trie-based Method for Query Processing

• Example

query: c  b  f b  f  c
sorting

items links

c

f

a

b

m

p

Header table:

{1, 2, 4, 5}

{1, 2, 5}

{2}

{4} {3}

{1, 2, 5}

{1, 2, 5}

{1, 5}

{1, 2, 5}

{4}

{2}

Sept. 2023 Yangjun Chen ACS-4902 280

Ranking Pages

Once the set of pages that match the query is determined, these

pages are ranked, and only the highest-ranked pages are shown to

the user.

• The presence of all the query words

• The presence of query words in important positions in the page

• Presence of several query words near each other would be a

more favorable indication than if the words appeared in the

page, but widely separated.

• Presence of the query words in or near the anchor text in links

leading to the page in question.

Measuring PageRank:

Sept. 2023 Yangjun Chen ACS-4902 281

PageRank for Identifying Important Pages

One of the key technological advances in search is the PageRank

algorithm for identifying the “importance” of Web pages.

The Intuition behind PageRank

When you create a page, you tend to link that page to others that you

think are important or valuable

A Web page is important if many important pages link to it.

Sept. 2023 Yangjun Chen ACS-4902 282

Recursive Formulation of PageRank

The Web navigation can be modeled as random walker move. So

we will maintain a transition matrix to represent links.

• Number the pages 1, 2, …, n.

• The transition matrix M has entries mij in row i and column j,

where:

1. mij = 1/r if page j has a link to page i, and there are a total

r  1 pages that j links to.

2. mij = 0 otherwise.

- If every page has at least one link out, then M is stochastic –

elements are nonnegative, and its columns each sum to exactly 1.

- If there are pages with no links out, then the column for that page

will be all 0’s. M is said to be substochastic if all columns sum

to at most 1.

Sept. 2023 Yangjun Chen ACS-4902 283

Solutions to the equation:

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

• If (y0, a0, m0) is a solution to the equation, then (cy0, ca0, cm0)

is also a solution for any constant c.

• y0 + a0 + m0 = 1.

Gaussian elimination method – O(n3). If n is large, the method

cannot be used. (Consider billions pages!)

Yahoo

Amazon Microsoft

1

2 3

Sept. 2023 Yangjun Chen ACS-4902 284

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

a = ½  y + 0  a + 1  m

y = ½  y + ½  a + 0  m

m = 0  y + ½  a + 0  m

Sept. 2023 Yangjun Chen ACS-4902 285

a = ½  y + 0  a + 1  m

y = ½  y + ½  a + 0  m

m = 0  y + ½  a + 0  m

P(a) = ½  P(y) + 0  a P(a) + 1  P(y)

P(y) = ½  P(y) + ½  P(a) + 0  P(m)

P(m) = 0  P(y) + ½  P(a) + 0  P(m)

P(a) = P(a | y)  P(y) + P(a | a)  P(a) + P(a | m)  P(m)

P(y) = P(y | y)  P(y) + P(y | a)  P(a) + P(y | m)  P(m)

P(m) = P(m | y)  P(y) + P(m | a)  P(a) + P(m | m)  P(m)

Conditional probability

Sept. 2023 Yangjun Chen ACS-4902 286

Approximation by the method of relaxation:

• Start with some estimate of the solution and repeatedly multiply

the estimate by M.

• As long as the columns of M each add up to 1, then the sum of

the values of the variables will not change, and eventually they

converge to the distribution of the walker’s location.

• In practice, 50 to 100 iterations of this process suffice to get very

close to the exact solution.

Suppose we start with (y, a, m) = (1/3, 1/3, 1/3). We have

½ ½ 0

½ 0 1

0 ½ 0

=

2/6

3/6

1/6

1/3

1/3

1/3

Sept. 2023 Yangjun Chen ACS-4902 287

At the next iteration, we multiply the new estimate (2/6, 3/6, 1/6)

by M, as:

½ ½ 0

½ 0 1

0 ½ 0

=

5/12

4/12

3/12

2/6

3/6

1/6

If we repeat this process, we get the following sequence of vectors:

9/24

11/24

4/24

,
20/48

17/48

11/48

, ….,

2/5

2/5

1/5

Sept. 2023 Yangjun Chen ACS-4902 288

Spider Traps and Dead Ends

• Dead ends. Some Web pages have no out-links. If the random

walker arrives at such a page, there is no place to go next, and the

walk ends.

- Any dead end is, by itself, a spider trap. Any page that links

only to itself is a spider trap.

- If a spider trap can be reached from outside, then the random

walker may wind up there eventually and never leave.

• Spider traps. There are sets of Web pages with the property that

if you enter that set of pages, you can never leave because there

are no links from any page in the set to any page outside the set.

Sept. 2023 Yangjun Chen ACS-4902 289

Spider Traps and Dead Ends

Applying relaxation to the matrix of the Web with spider traps can

result in a limiting distribution where all probabilities outside a

spider trap are 0.

Problem:

Example.

½ ½ 0

½ 0 0

0 ½ 1

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

Sept. 2023 Yangjun Chen ACS-4902 290

Solutions to the equation:

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

Initially,
y

a

m

=
1/3

1/3

1/3

1/3

1/3

1/3

2/6

1/6

3/6

3/12

2/12

7/12

5/24

3/24

16/24

8/48

5/48

35/48

0

0

1

, …,

This shows that with probability 1, the walker will eventually

wind up at the Microsoft page (page 3) and stay there.

Sept. 2023 Yangjun Chen ACS-4902 291

Problem Caused by Spider Traps

• If we interpret these PageRank probabilities as “importance” of

pages, then the Microsoft page has gathered all importance to

itself simply by choosing not to link outside.

• The situation intuitively violates the principle that other pages,

not you yourself, should determine your importance on the Web.

Sept. 2023 Yangjun Chen ACS-4902 292

Problem Caused by Dead Ends

• The dead end also cause the PageRank not to reflect importance

of pages.

Example.

½ ½ 0

½ 0 0

0 ½ 0

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

1/3

1/3

1/3

2/6

1/6

1/6

3/12

2/12

1/12

5/24

3/24

2/24

8/48

5/48

3/48

0

0

0

, …,

Sept. 2023 Yangjun Chen ACS-4902 293

PageRank Accounting for Spider Traps and Dead Ends

Limiting random walker is allowed to wander at random. We let

the walker follow a random out-link, if there is one, with probability

 (normally, 0.8    0.9). With probability 1 -  (called the

taxation rate), we remove that walker and deposit a new walker at a

randomly chosen Web page.

• If the walker gets stuck in a spider trap, it doesn’t matter because

after a few time steps, that walker will disappear and be replaced

by a new walker.

• If the walker reaches a dead end and disappears, a new walker

takes over shortly.

Sept. 2023 Yangjun Chen ACS-4902 294

Example.

½ ½ 0

½ 0 0

0 ½ 1

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

½ ½ 0

½ 0 0

0 ½ 1

Pnew = 0.8 Pold + 0.2
1/3

1/3

1/3

 1 - 

Let Pnew and Pold be the new and old distributions of the location of

the walker after one iteration, the relationship between these two

can be expressed as:

Sept. 2023 Yangjun Chen ACS-4902 295

The meaning of the above equation is:

With probability 0.8, we multiply Pold by the matrix of the Web to

get the new location of the walker, and with probability 0.2 we start

with a new walker at a random place.

If we start with Pold = (1/3, 1/3, 1/3) and repeatedly compute Pnew

and then replace Pold by Pnew, we get the following sequence of

approximation to the asymptotic distribution of the walker:

.333

.333

.333

.333

.200

.467

.280

.300

.520

.259

.179

.563

7/33

5/33

21/33
, …,

Sept. 2023 Yangjun Chen ACS-4902 296

Example.

½ ½ 0

½ 0 0

0 ½ 0

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

½ ½ 0

½ 0 0

0 ½ 0

Pnew = 0.8 Pold + 0.2
1/3

1/3

1/3

 1 - 

Sept. 2023 Yangjun Chen ACS-4902 297

If we start with Pold = (1/3, 1/3, 1/3) and repeatedly compute Pnew

and then replace Pold by Pnew, we get the following sequence of

approximation to the asymptotic distribution of the walker:

.333

.333

.333

.333

.200

.200

.280

.200

.147

.259

.179

.147

35/165

25/165

21/165
, …,

Notice that these probabilities do not sum to one, and there is slightly

more than 50% probability that the walker is “lost” at any given

time. However, the ratio of the importance of Yahoo!, and Amazon

are the same as in the above example. That makes sense because in

both the cases there are no links from the Microsoft page to

influence the importance of Yahoo! or Amazon.

Sept. 2023 Yangjun Chen ACS-4902 298

Topic-Specific PageRank

The calculation o PageRank should be biased to favor certain pages.

Teleport Sets

Choose a set of pages about a certain topic (e.g., sport) as a teleport

set.

Yahoo

Amazon Microsoft

1

2 3

Assume that we are interested only in retail sales, so we choose a

teleport set that consists of Amazon alone.

Sept. 2023 Yangjun Chen ACS-4902 299

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

½ ½ 0

½ 0 1

0 ½ 0

= 0.8

y

a

m

y

a

m

0

1

0

+ 0.2

The entry for Amazon is set to 1.

Sept. 2023 Yangjun Chen ACS-4902 300

Topic-Specific PageRank

The general rule for setting up the equations in a topic-specific

PageRank problem is as follows.

Pnew = MPold + (1 - )T

Suppose there are k pages in the teleport set. Let T be a column-

vector that has 1/k in the positions corresponding to members of the

teleport set and 0 elsewhere. Let M be the transition matrix of the

Web. Then, we must solve by relaxation the following iterative rule:

Sept. 2023 Yangjun Chen ACS-4902 301

Data Streams

A data steam is a sequence of tuples, which may be unbounded.

(Note that a relation is a set of tuples. The set is always bounded at

a time point.)

Data-Steam-Management Systems

Working

storage

Permanent

storage

Standing

queries
Stream management

system

ad-hoc

queries
results

…9, 4, 0, 6, 4, 2, 7

… w, t, d, a, u, z, r

…0, 1, 1, 0, 0, 0, 1

results of

standing

queries

Sept. 2023 Yangjun Chen ACS-4902 302

Data Streams

The system accepts data streams as input, and also accepts queries.

Two kinds of queries:

1. Conventional ad-hoc queries.

2. Standing queries that are stored by the system and run on the input

streams at all times.

Example.

Suppose we are receiving streams of radiation levels from sensors

around the world.

1. DSMS stores a sliding window of each input stream in the

“working storage”. All readings from all sensors for the past

24 hours.

2. Data from further back in time could be dropped, summarized,

or copied in its entirety to the permanent store (archive)

Sept. 2023 Yangjun Chen ACS-4902 303

Stream Applications

1. Click streams. A Web site might wish to analyze the clicks it

receives. (An increase in clicks on a link may indicate that link is

broken, or that it has become of much more interest recently.)

2. Packet streams. We may wish to analyze the sources and

destinations of IP packets that pass through a switch. An unusual

increase in packets for a destination may warn of a

denial-of-service attack.

3. Sensor data. There are many kinds of sensors whose outputs

need to be read and considered collectively, e.g., tsunami warning

sensors that record ocean levels at subsecond frequencies or the

signals that come from seismometers around the world.

Sept. 2023 Yangjun Chen ACS-4902 304

Stream Applications

4. Satellite data. Satellites send back to the earth incredible streams

of data, often petabytes per day.

5. Financial data. Trades of stocks, commodities, and other

financial instruments are reported as a stream of tuples, each

representing one financial transaction. These streams are

analyzed by software that looks for events or patterns that trigger

actions by traders.

Sept. 2023 Yangjun Chen ACS-4902 305

A Data-Stream Data Model

• Each stream consists of a sequence of tuples. The tuples have a

fixed relation schema (list of attributes), just as the tuples of a

relation do. However, unlike relations, the sequence of tuples in

a stream may be unbounded.

• Each tuple has an associated arrival time, at which time it

becomes available to DSMS for processing. The DSMS has the

option of placing it in the working storage or in the permanent

storage, or of dropping the tuple from memory altogether. The

tuple may also be processed in simple ways before storing it.

Sept. 2023 Yangjun Chen ACS-4902 306

A Data-Stream Data Model

• Time-based. It consists of the tuples whose arrival time is

between the current time t and t - , where  is a constant.

• Tuple-based. It consists of the most recent n tuples to arrive for

some fixed n.

For any stream, we can define a sliding window, which is a set

consisting of the most recent tuples to arrive.

For a certain stream S, we use the notation S[W] to represent a

window, where W is:

1. Row n, meaning the most recent n tuples of the stream; or

2. Range , meaning all tuples that arrived within the previous

amount of time .

Sept. 2023 Yangjun Chen ACS-4902 307

Example.

Let Sensors(sensID, temp, time) be stream, each of whose tuples

represent a temperature reading of temp at a certain time by the

sensor named sensID.

Sensors[Range 10 seconds]

describes a window on the Sensor stream consisting of all tuples that

arrived in the past 10 seconds.

Sensors[Row 1000]

describes a window on the Sensor stream consisting of the most

recent 1000 tuples.

Sept. 2023 Yangjun Chen ACS-4902 308

Handling Streams as Relations

Each stream window can be handled as a relation, whose content

changes rapidly.

Suppose we would like to know, for each sensor, the highest

recorded temperature to arrive at the DSMS in the past hour.

SELECT sensID, MAX(temp)

FROM Sensors[Range 1 hour]

GROUP BY sensID;

Sept. 2023 Yangjun Chen ACS-4902 309

Handling Streams as Relations

Suppose that besides the stream Sensors, we also maintain an

ordinary relation:

SELECT MAX(mult*temp + add)

FROM Sensors[Range 1 hour], Calibrate

WHERE Sensors.sensID = Calibrate.sensID

Calibrate(sensID, mult, add),

which gives a multiplicative factor and additive term that are used

to correct the reading from each sensor.

The query finds the highest, properly calibrated temperature

reported by any sensor in the past hour.

Sept. 2023 Yangjun Chen ACS-4902 310

Handling Streams as Relations

Suppose we wanted to give, for each sensor, its maximum

temperature over the past hour, but we also wanted the resulting

tuples to give the most recent time at which that maximum

temperature was recorded.

SELECT s.sensID, s.temp, s.time

FROM Sensors[Range 1 Hour] s

WHERE NOT EXISTS (

SELECT * FROM Sensors[Range 1 Hour]

WHERE sensID = s.sensID AND (

temp > s.temp OR

(temp = s.temp AND time > s.time)

));

