

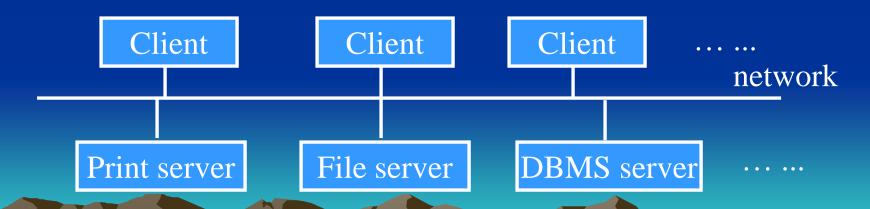
Database System Architecture and System Catalog

Outline (Ch. 17, 3rd ed. – Ch. 2, 4th ed., 5th ed., 6th ed., 7th ed.)

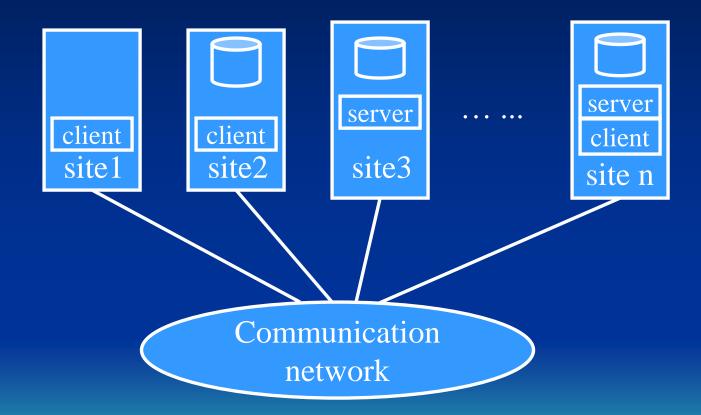
- Database System Architectures
- System Catalog
- System Catalog in Oracle

Centralized DBMS

Mainframe computer


- DBMS functionality
- Application program
- User interfaces

Computer terminals


- Input
- Output

- Client-Server Computer Architecture
 - Terminals are replaced with PCs and workstations
 - Mainframe computer is replaced with specialized servers (with specific functionalities).

File server, DBMS server, mail server, print server, ...

Sept. 2023 Dr. Yangjun Chen ACS-4902

- Client-Server Database Architecture
 - database client
 user interface, application programs
 - database server
 SQL language, transaction management
 - database connection
 ODBC open database connectivity
 API application programming interface

- Client-Server Architecture in DBMSs
 - database client
 - user interface, data dictionary functions, DBMS interaction with programming language compiler, global query optimization, structuring of complex objects from the data in the buffers, ...
 - database server
 - data storage on disk, local concurrency control and recovery, buffering and caching of disk storage, ...

Illustration for DBMS interaction with programming language compiler:

```
EXEC SQL DECLARE C1 CURSOR FOR
SELECT au_fname, au_lname FROM authors FOR BROWSE;
EXEC SQL OPEN C1;
while (SQLCODE == 0)
{
EXEC SQL FETCH C1 INTO :fname, :lname;
}
```

Catalog for Relational DBMSs

- Catalog meta data for a relational schema
 - relation names, attribute names, attribute domains (data types)
 - description of constraints
 primary keys, secondary keys, foreign keys,
 NULL/NON-NULL, cardinality constraints,
 participation constraints, ...
 - views, storage structure, indexes
 - security, authorization, owner of each relation

Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS software - SQL.)

REL_AND_ATTR_CATALOG

REL_NAME	ATTR_NAME	ATTR_TYPE	MEMBER_OF_PK	MEMBER_OF_FK	FK_RELATION
EMPLOYEE	FNAME	VSTR15	no	no	
EMPLOYEE	SUPERSSN	STR9	no	yes	EMPLOYEE
EMPLOYEE	DNO	INTEGER	no	yes	DEPARTMENT
•••					

Sept. 2023 Dr. Yangjun Chen ACS-4902

EMPLOYEE

SSN FNAME LNAME SUPERSSN DNO

DATABASE EMPLOYEE ::

System Catalog

REL_AND_ ATTR_CATALOG

Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS software - SQL.)

RELATION_KEYS

REL_NAME | KEY_NUM | MEMBER_ATTR

RELATION_INDEXES

REL_NAME INDEX_NAME MEMBER_ATTR INDEX_TYPE ATTR_NO ASC_DESC

VIEW_QUERIES

VIEW_NAME QUERY

VIEW_ATTRIBUTES

VIEW_NAME ATTR_NAME ATTR_NUM

Works_on

ssn	Pno	hours
123456789	1	30

Employee

ssn	Dno	
123456789	1	

RELATION_KEY

REL_NAME	KEY_NUM.	MEMBER_ATTR
Works_on	1	ssn
Works_on	2	Pno
Employee	1	ssn

RELATION_INDEXES

REL_NAME	INDEX_NAME	MEMBER_ATTR	INDEX_TYPE	ATTR_NO	ASC_DESC
Works_on	I1	SSN	Primary	1	ASC
Works_on	I1	Pno	Primary	2	ASC
Works_on	I2	SSN	Clustering	1	ASC

Sept. 2023 Dr. Yangjun Chen ACS-4902

Primary index:

Data file: Works_on

			SSN	<u>Pno</u>	hours
Index file: I	123456789	1			
(<k(i), p(i)=""> entries)</k(i),>			123456789	2	
	/		123456789	3	
123456789, 1			234567891	1	
234567891, 2	•				
			234567891	2	
			345678912	2	
			345678912	3	
			456789123	1	

Query:

Is there a record with key = 234567891, 1?

•••

Data file: Works_on

Clustering index:

Index file: (<k(i), p(i)<="" th=""><th></th><th>ies)</th></k(i),>		ies)
123456789		
234567891		
345678912	•	
456789123		

SSN	<u>Pno</u>	hours
123456789	1	•••
123456789	2	
123456789	3	
234567891	1	
234567891	2	
345678912	2	

3

• • • • • •

345678912

456789123

Create View Works_on1

AS Select FNAME, LNAME, PNAME, hours

From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

.

Pno. = PNUMBER

VIEW_QUERIES

 VIEW_NAME
 QUERY

 Works_on1
 Select FNAME, LNAME, PNAME, hour

VIEW_ATTRIBUTES

VIEW_NAME	ATTR_NAME	ATTR_NUM
Works_on1	FNAME	1
Works_on1	LNAME	2
Works_on1	PNAME	3
Works_on1	hours	4

Select FNAME, LNAME, PNAME
From Works_on1
Where FNAME = 'David' and LNAME = 'Shepperd'

Select FNAME, LNAME, PNAME
From Works_on1
Where FNAME = 'David' and LNAME = 'Shepperd'

Select FNAME, LNAME, PNAME
From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER and

FNAME = 'David' and LNAME = 'Shepperd'

- Meta data data dictionary:
 - Information about schema objects: tables, indexes, views, triggers, ...
- Meta data are divided into three levels:
 - information for objects owned by a user
 - information for objects owned by a user as well as the objects that the user has been granted access to
 - information about all database objects

- Meta data are divided into three levels three kinds of views:
 - view name prefixed with USER
 - view name prefixed with ALL
 - view name prefixed with DBA

DBA-views							
ALL-views							
USER-views							
Meta data							

•Example
Owner TABLE TABLE_TYPE

SELECT * SMITH ACCOUNT TABLE

FROM ALL_CATALOG SMITH CUSTOMERS TABLE

WHERE OWNER = 'SMITH' SMITH CUSTORDER VIEW

SMITH ORDERS TABLE

Example
 SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH,
 NUM_DISTINCT, LOW_VALUE, HIGH_VALUE
 FROM USER_TAB_COLUMNS
 WHERE TABLE NAME = 'ORDERS'

COLUMN_NAME	DATA_TYPE	DATA_LENGTH	NUM_DISTINCT	LOW_VALUE	HIGH_VALUE
ORDERNO CUSTNO ORDERDATE	NUMBER NUMBER DATE	22 22 7	4 3 4	C102 C102	C105 C106

Change 'database statistics':

ANALYZE TABLE ORDERS
COMPUTE STATISTICS

 Example
 SELECT PCT_FREE, INITIAL_EXTENT, NUM_ROWS, BLOCK, EMPTY_BLOCKS, AVG_ROW_LENGTH
 FROM USER_TABLES

WHERE TABLE_NAME = 'ORDERS'

PCT_FREE	INITIAL_EXTENT	NUM_ROWS	BLOCK	EMPTY_BLOCK	AVG_ROW_LENGTH
10	10240	4	1	3	17

PCT_free: percertage of a block, which is left free

Initial_extent: initial allocation of space for a new table

A block: 2560 bytes

• Example

SELECT INDEX_NAME, UNIQUENESS, BLEVEL, LEAF_BLOCKS, DISTINCT_KEYS, AVG_LEAF_BLOCKS_PER_KEY, AVG_DATA_BLOCKS_PER_KEY
FROM USER_INDEXES
WHERE TABLE_NAME = 'ORDERS'

INDEX_ NAME	UNIQUENESS	BLEVEL	LEAF_ BLOCK	DISTINCT_ KEYS	AVG_LEAF_ BLOCKS_ PER_KEY	AVG_DATA_ BLOCK_ PER_KEY
ORD_ CUSTNO	NONUNIQUE	0	1	3	1	1

Index: ORD-CUSTNO

CustNo	Record-pointer
1	1, 3
2	4
3	2

ORDERS

<u>OrderNo</u>	<u>CustNo</u>	OrderDate
1	1	
2	3	
3	1	
4	2	

Multi-level index:

Sept. 2023

ORDERS

OrderNo	CustNo	OrderDate
1	1	
2	3	
3	1	
4	2	

AVG_LEAF_BLOCKS_PER_KEY: Average number of leaf blocks in which each distinct value in the index appears, rounded up to the nearest integer.

- AVG_DATA_BLOCKS_PER_KEY: Average number of data blocks (in the data file), in which each distinct value (in the index) appears, rounded up to the nearest integer.
 - Let say that the value of AVG_DATA_BLOCKS_PER_KEY
 is 3. So we have to visit 3 different data blocks in order to get
 all data which belong to a desirable index value on average.

Example
 SELECT *
 FROM USER_VIEWS
 WHERE OWNER = 'SMITH

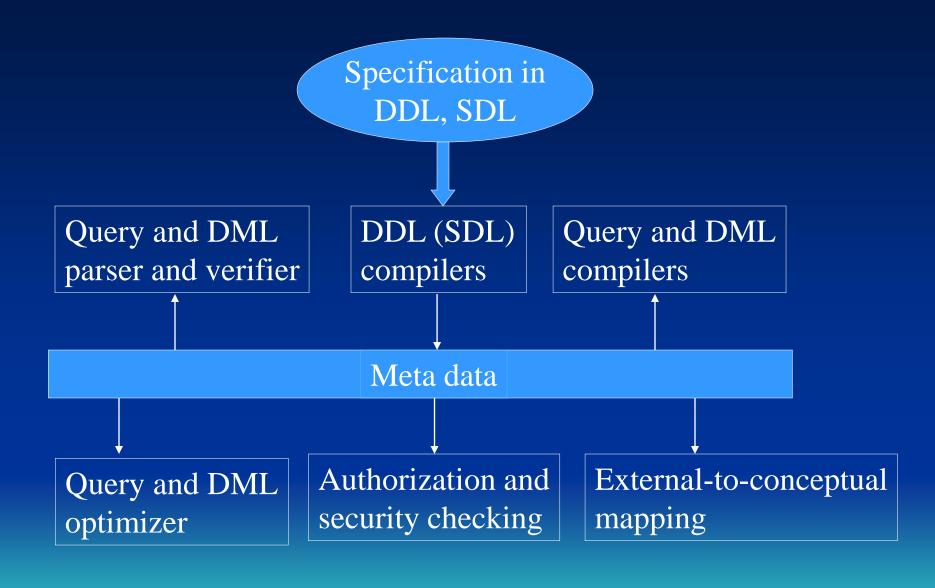
VIEW_NAME	TEXT_LENGTH	TEXT
CUSTORDER	101	select custname, city, orderno, orderdate from customers, orders where customers.custno = orders.custno

Example
 SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH
 FROM USER_TAB_COLUMN
 WHERE TABLE NAME = 'CUSTORDER'

COLUMN_NAME	DATA_TYPE	DATA_LENGTH
CITY	CHAR	20
ORDERNO ORDERDATE	NUMBER DATE	22 7
CUSTNAME	CHAR	20

- DBMS software modules accessing the meta data 1.DDL (SDL) compilers
 - These DBMS modules process and check the specification of a database schema in the data definition language (DDL) and the specification in the storage definition language (SDL), and store these descriptions in the catalog.
 - 2.Query and DML parser and verifier
 These modules parse queries, DML retrieval statements, and database update statements; they also check the catalog to verify whether all the schema names referenced in these statements are valid.

- DBMS software modules accessing the meta data
 - 3. Query and DML compilers


These compilers convert high-level queries and DML commands into low-level file access commands. The mapping between the conceptual schema and the internal schema file structures is accessed from the catalog during this process.

4. Query and DML optimizer

The query optimizer accesses the catalog for access path, implementation information, and data statistics to determine the best way to execute a query or a DML command.

- DBMS software modules accessing the meta data
 - 5. Authorization and security checking
 The DBA has privileged commands to update the authorization and security portion of the catalog. All access by a user to a relation is checked by the DBMS for proper authorization by accessing the catalog.
 - 6.External-to-conceptual mapping of queries and DML commands

Queries and DML commands specified with reference to an external view or schema must be transformed to refer to the conceptual schema before they can be accessed by the DBMS. It needs to access the catalog description of the view.

Create View Works_on1

AS Select FNAME, LNAME, PNAME, hours

From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER

Select FNAME, LNAME, PNAME
From Works_on1
Where FNAME = 'David' and LNAME = 'Shepperd'

Select FNAME, LNAME, PNAME From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER and

FNAME = 'David' and LNAME = 'Shepperd'