
Jan. 2021 ACS-4902 1

Concurrency control techniques
(Ch. 20, 3rd ed. – Ch. 18, 4th ed., Ch. 18, 5th ed. – Ch. 22, 6th ed.

- Ch. 21, 7th ed.)

Jan. 2021 ACS-4902 2

protocols

locking

what is a lock

binary locks

Shared & exclusive

2PL
basic

conservative

strict

deadlock
prevention

timestamp
based

wait-die

wound-wait

waiting
based

cautious

waiting

no
waiting

detection
wait-for

graph

livelock

starvation

timestamps

transactions

database items read timestamp

write timestamp
algorithm

multiversion
timestamp based

2PL based
optimistic

introduction

other
topics

granularity

phantoms

interactive
transactions

SQL Isolation levels

Concurrency
Control

Multi-granularity

Jan. 2021 ACS-4902 3

Locking

• field value in a row

• row

• block

• table

• database

What is a lock?

A lock is a variable associated with a database item that describes

the status of the database item with respect to database operations

that can be applied to the database item.

Locks are managed by the Lock Manager within the DBMS

Database items that could be locked vary from a field value up to

a whole database:

Jan. 2021 ACS-4902 4

Binary Locks

• a binary lock is in one of two states 0 or 1

(lock(X) is either 0 or 1)

values of locks can be held in a lock table

• two lock operations: unlock_item(X) and lock_item(X)

(these must be implemented as indivisible operations)

• used to enforce mutual exclusion on data items

• between lock_item(X) and unlock_item(X), it is said that the

transaction holds a lock on item X

Jan. 2021 ACS-4902 5

Binary Locks: data structures

• lock(X) can have one of two values:

0 or 1

unlocked or locked

etc

• We require a Wait Queue where we keep track of suspended

transactions

transactionlock

Lock Table Wait Queue

trx_iditem

X 1 1 2

3

item

X

YY 1 2

Jan. 2021 ACS-4902 6

Binary Locks: operations

lock_item(X)

• used to gain exclusive access to item X

• if a transaction executes lock_item(X) then

if lock(X)=0 then

the lock is granted {lock(X) is set to 1} and

the transaction can carry on

{the transaction is said to hold a lock on X}

otherwise

the transaction is placed in a wait queue until

lock_item(X) can be granted

{i.e. until some other transaction unlocks X}

Jan. 2021 ACS-4902 7

Binary Locks: operations

unlock_item(X)

• used to relinquish exclusive access to item X

• if a transaction executes unlock_item(X) then

lock(X) is set to 0

{note that this may enable some other blocked transaction

to resume execution}

Jan. 2021 ACS-4902 8

Binary Locks

Binary locking protocol (rules)

• a lock_item(X) must be issued before any read_item(X) or

write_item(X)

• an unlock_item(X) must be issued after all read_item(X) and

write_item(X) operations are completed

• a transaction will not issue a lock_item(X) if it already holds a

lock on item X

• a transaction will not issue an unlock_item(X) unless it already

holds the lock on item X

Jan. 2021
ACS-4902 9

Example: Binary Locks

time Transaction1 Transaction2

1 lock_item(X)

2 read_item(X)

3 lock_item(X)

4 write_item(X)

5 unlock_item(X)

6 commit

7 read_item(X)

8 unlock_item(X)

9 commit

Item

x

lock

1

Trx_id

1

Lock table:

Item

x

rx_id

2

Waiting queue:

Jan. 2021

Item

x

lock

1

Trx_id

2

Lock table:

Item rx_id

Waiting queue:

Jan. 2021 ACS-4902 10

Shared and Exclusive Locks

Three operations:

read_lock(X)

write_lock(X)

unlock(X)

Use a multiple-mode lock with three possible states

read-locked

write-locked

unlocked

Jan. 2021 ACS-4902 11

Shared and Exclusive Locks: data structures

• For any data item X, lock(X) can have one of three values:

read-locked, write-locked, unlocked

• For any data item X, we need a counter (no_of_readers) to know

when all “readers” have relinquished access to X

• We require a Wait Queue where we keep track of suspended

transactions

transaction

Lock Table Wait Queue

no_of_readersitem lock trx_ids item

X 1 2 {1, 2} X 3

Y 2 1 2

Jan. 2021 ACS-4902 12

Shared and Exclusive Locks: operations

read_lock(X)

• used to gain shared access to item X

• if a transaction executes read_lock(X) then

if lock(X) is not “write_locked” then

the lock is granted

{lock(X) is set to “read_locked”,

the “no_of_readers” is incremented by 1},

and the transaction can carry on

{the transaction is said to hold a shared lock on X}

otherwise

the transaction is placed in a wait queue until

read_lock(X) can be granted

{i.e. until some transaction relinquishes exclusive

access to X}

Jan. 2021 ACS-4902 13

write_lock(X)

• used to gain exclusive access to item X

• if a transaction executes write_lock(X) then

if lock(X) is “unlocked” then

the lock is granted {lock(X) is set to “write_locked”},

and the transaction can carry on

{the transaction is said to hold an exclusive lock on X}

otherwise

the transaction is placed in a wait queue until

write_lock(X) can be granted

{i.e. until all other transactions have relinquished their

access rights to X - that could be a single “writer” or

several “readers”}

Shared and Exclusive Locks: operations

Jan. 2021 ACS-4902 14

unlock(X)

• used to relinquish access to item X

• if a transaction executes unlock(X) then

if lock(X) is “read_locked” then

decrement no_of_readers by 1

if no_of_readers=0 then set lock(X) to “unlocked”

otherwise

set lock(X) to “unlocked”

{note that setting lock(X) to “unlocked” may enable a

blocked transaction to resume execution}

Shared and Exclusive Locks: operations

Jan. 2021 ACS-4902 15

Example: Shared and Exclusive Locks

Time Transaction1 Transaction2
1 read_lock(X)

2 read_item(X)

3 read_lock(X)

4 read_item(X)

5 read_lock(Y)

6 read_item(Y)

write_lock(Y)

7 write_lock(Z)

8 read_item(Z)

9 Z := X + Y + Z

10 write_item(Z)

12 unlock(X)

13 unlock(Y)

14 unlock(Z)

15 read_item(Y)

16 Y := X + Y

17 write_item(Y)
Item

X

lock

1

no-of-readers

1

Lock table:

Trx_ids

{1}

Item rx_id

Waiting queue:

Jan. 2021 16ACS-4902

Item rx_id

Waiting queue:

Item

X

lock

1

no-of-readers

1

Trx_ids

{1}

Lock table:

Item rx_id

Waiting queue:

Item

X

lock

1

no-of-readers

2

Trx_ids

{1, 2}

Lock table:

Item

Y

rx_id

1

Waiting queue:

Item

X

Y

Z

lock

1

1

2

no-of-readers

2

1

1

Trx_ids

{1, 2}

{2}

{2}

Lock table:

Jan. 2021 ACS-4902 17

Shared and Exclusive Locks

locking protocol (rules); a transaction T

• must issue read_lock(X) or write_lock(X) before read-item(X)

• must issue write_lock(X) before write-item(X)

• must issue unlock(X) after all read_item(X) and write_item(X)

operations are completed

• will not issue a read_lock(X) if it already holds a read or write

lock on X (can be relaxed, to be discussed)

• will not issue a write_lock(X) if it already holds a read or write

lock on X (can be relaxed, to be discussed)

• will not issue an unlock unless it already holds a read lock or

write lock on X

Jan. 2021 ACS-4902 18

Shared and Exclusive Locks

T1
read_lock(Y)

read_item(Y)

unlock(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

Figure 18.3 (a)

T2
read_lock(X)

read_item(X)

unlock(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

If initial values of X and Y are 20 and 30 respectively,

then correct values of X and Y after T1 and T2 execute

will be either 50 and 80, or 70 and 50 respectively

Jan. 2021 19ACS-4902

T1 T2→

T1: X = 20

Y = 30

X := 20 + 30

X = 50

T2: X = 50

Y = 30

Y := 50 + 30

Y = 80

T2 T1→

T2: X = 20

Y = 30

Y := 20 + 30

Y = 50

T1: X = 20

Y = 50

X := 20 + 50

X = 70

Jan. 2021 ACS-4902 20

Shared and Exclusive Locks

T1
read_lock(Y)

read_item(Y)

unlock(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

T2

read_lock(X)

read_item(X)

unlock(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

Result is X=50 and

Y=50, which is incorrect

T1 T2

p1_Y = 30

p2_X = 20

p2_Y = 30

p2_Y = 50

d_Y = 50

p1_X = 20

p1_X = 50

d_X = 50

Jan. 2021 ACS-4902 21

Shared and Exclusive Locks (2PL)

Conversion of Locks

Recall a transaction T

• will not issue a read_lock(X) if it already holds a read or write

lock on X

Can permit a transaction to downgrade a lock from a write to

a read lock

• will not issue a write lock(X) if it already holds a read or write

lock on X

Can permit a transaction to upgrade a lock on X from a read

to a write lock if no other transactions hold a read lock on X

Jan. 2021 ACS-4902 22

Shared and Exclusive Locks (2PL)

Two-phase locking: A transaction is said to follow the two-phase

locking protocol if all locking operations (read-lock, write-lock)

precede the first unlock operations in the transaction.

• previous protocols do not guarantee serializability

• Serializability is guaranteed if we enforce the two-phase

locking protocol:

all locks must be acquired before any locks are relinquished

• transactions will have a growing and a shrinking phase

• any downgrading of locks must occur in the shrinking phase

• any upgrading of locks must occur in the growing phase

Jan. 2021 ACS-4902 23

Shared and Exclusive Locks (2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

unlock(Y)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

Figure 18.4

T2’

read_lock(X)

read_item(X)

write_lock(Y)

unlock(X)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

These transactions obey the 2PL protocol

Jan. 2021 ACS-4902 24

Shared and Exclusive Locks (2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

unlock(Y)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

T2’

read_lock(X)

read_item(X)

write_lock(Y)

unlock(X)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

Jan. 2021 ACS-4902 25

Shared and Exclusive Locks (2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

unlock(Y)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

T2’

read_lock(Z)

read_item(Z)

write_lock(Y)

unlock(Z)

read_item(Y)

Y:=Z+Y

write_item(Y)

unlock(Y)

These transactions obey the 2PL protocol

T2’

read_lock(X)

read_item(X)

write_lock(Y)

unlock(X)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

Jan. 2021 ACS-4902 26

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

unlock(Y)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

T2’

read_lock(Z)

read_item(Z)

write_lock(Y)

unlock(Z)

read_item(Y)

Y:=Z+Y

write_item(Y)

unlock(Y)

Jan. 2021 ACS-4902 27

T2’

read_lock(X)

read_item(X)

write_lock(Y)

unlock(X)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

unlock(Y)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

• The 2PL can produce a deadlock.

wait

wait

Jan. 2021 ACS-4902 28

Variations on 2PL

Basic 2PL

• previous protocol

Conservative 2PL

• transactions must lock all items prior to the transaction

executing

• if any lock is not available then none are acquired - all must be

available before execution can start

• free of deadlocks

Strict 2PL

• a transaction does not release any write-locks until after it

commits or aborts

• most popular of these schemes

• recall strict schedule avoids cascading rollback

• undoing a transaction can be efficiently conducted.

Jan. 2021 ACS-4902 29

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y)

unlock(X)

Figure 18.4

T2’

read_lock(X)

read_item(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

commit

unlock(X)

unlock(Y)

These transactions obey the Strict 2PL protocol

Jan. 2021 30ACS-4902

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y)

unlock(X)

Figure 18.4

T2’

read_lock(X)

read_item(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

commit

unlock(X)

unlock(Y)

These transactions obey the Strict 2PL protocol

T2’

read_lock(X)

read_item(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(X)

commit

unlock(Y)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

unlock(Y)

commit

unlock(X)

Jan. 2021 ACS-4902 31

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y), unlock(X)

T2’

read_lock(X)

read_item(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

commit

unlock(X), unlock(Y)

Jan. 2021 ACS-4902 32

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y)

unlock(X)

T2’

read_lock(Z)

read_item(Z)

write_lock(Y)

read_item(Y)

Y:=Z+Y

write_item(Y)

commit

unlock(Y)

unlock(Z)

These transactions obey the Strict 2PL protocol

Jan. 2021 ACS-4902 33

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y)

unlock(X)

T2’

read_lock(Z)

read_item(Z)

write_lock(Y)

read_item(Y)

Y:=Z+Y

write_item(Y)

commit

unlock(Y)

unlock(Z)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

unlock(Y)

commit

unlock(X)

T2’

read_lock(X)

read_item(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(X)

commit

unlock(Y)

Jan. 2021 ACS-4902 34

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y), unlock(X)

T2’

read_lock(Z)

read_item(Z)

write_item(Y)

read_item(Y)

Y:=Z+Y

write_item(Z)

commit

unlock(Y), unlock(Z)

Jan. 2021 ACS-4902 35

Shared and Exclusive Locks (Strict 2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

read_item(X)

X:=X+Y

write_item(X)

commit

unlock(Y), unlock(X)

T2’

read_lock(X)

read_item(X)

write_lock(Y)

read_item(Y)

Y:=X+Y

write_item(Y)

commit

unlock(X), unlock(Y)

deadlock

Jan. 2021 ACS-4902 36

Deadlock

Deadlock occurs when two or more transactions are in a

simultaneous wait state, each one waiting for one of the others to

release a lock.

T1
read_lock(Y)

read_item(Y)

write_lock(X)

waiting

T2

read_lock(X)

read_item(X)

write_lock(Y)

waiting

Jan. 2021 ACS-4902 37

Deadlock Prevention

1. Conservative 2PL

2. Always locking in a predefined sequence

3. Timestamp based

4. Waiting based

5. Timeout based

Jan. 2021 ACS-4902 38

Deadlock Prevention - Timestamp based

• Each transaction is assigned a timestamp (TS).

If a transaction T1 starts before transaction T2,

then TS(T1) < TS(T2); T1 is older than T2.

• Two schemes:

Wait-die

Wound-wait

• Both schemes will cause aborts even though deadlock would

not have occurred.

Jan. 2021 ACS-4902 39

Deadlock Prevention: Wait-die

Suppose Ti tries to lock an item locked by Tj.

If Ti is the older transaction then Ti will wait.

Otherwise, Ti is aborted and restarts later with the same timestamp.

Tj

Ti

x
wait

Tj

Ti

x
abort

Jan. 2021 ACS-4902 40

Example: Wait-die

T1
read_lock(Y)

read_item(Y)

write_lock(X)

T1 is older and so it is

allowed to wait.

can resume

T2

read_lock(X)

read_item(X)

write_lock(Y)

T2 is younger and so it is

aborted, which results in its locks

being released, and that allows

T1 to carry on:

abort

Jan. 2021 ACS-4902 41

Deadlock Prevention: Wound-wait

Suppose Ti tries to lock an item locked by Tj.

If Ti is the older transaction

then Tj is aborted and restarts later with the same timestamp;

otherwise Ti is allowed to wait.

Tj

Ti

x

die

Tj

Ti

x
wait

Jan. 2021 ACS-4902 42

Example: Wound-wait

T1
read_lock(Y)

read_item(Y)

write_lock(X)

T1 is older, so T2 is aborted and

that allows T1 to carry on.

T2

read_lock(X)

read_item(X)

aborted

Jan. 2021 43ACS-4902

Example: Wound-wait

T1

read_lock(Y)

read_item(Y)

write_lock(X)

T1 is younger, so wait.

Aborted since T2 is older.

T2

read_lock(X)

read_item(X)

write_lock(Y)

Jan. 2021 ACS-4902 44

Deadlock Prevention - Waiting based

• No timestamps

• Two schemes:

no waiting

cautious waiting

• Both schemes will cause aborts even though deadlock would

not have occurred.

Jan. 2021 ACS-4902 45

Deadlock Prevention: No waiting

Suppose Ti tries to lock an item locked by Tj.

If Ti is unable to get the lock

then Ti is aborted and restarted after some time delay.

Transactions may be aborted and restarted needlessly.

Jan. 2021 ACS-4902 46

Example: No waiting

T1
read_lock(Y)

read_item(Y)

write_lock(X)

T1 is blocked and aborted:

abort

T2

read_lock(X)

read_item(X)

write_lock(Y)

since T1 was aborted, T2 gets the

lock and is able to carry on.

Jan. 2021 ACS-4902 47

Deadlock Prevention: Cautious waiting

Suppose Ti tries to lock an item locked by Tj.

If Tj is not waiting on another transaction,

then Ti is allowed to wait;

otherwise Ti is aborted.

Tj

Ti

x

Ti waits or aborts depending on

whether Tj is waiting for some other

transaction or not.

Jan. 2021 ACS-4902 48

Example: Cautious waiting

T1
read_lock(Y)

read_item(Y)

write_lock(X)

T1 is allowed to wait since T2 is

not blocked.

carries on

T2

read_lock(X)

read_item(X)

write_lock(Y)

T2 is aborted since it is blocked by

a transaction that is also blocked.

abort

Now, T1 can resume.

Jan. 2021 ACS-4902 49

Deadlock Detection

Periodically check for deadlock in the system.

Detection algorithm uses a wait-for graph:

• one node for each transaction

• an edge (Ti Tj) is created if Ti is waiting for Tj to release a

lock (the edge is removed when Tj releases the lock and Ti is

then unblocked).

• if the graph has a cycle then there is deadlock.

• if there is deadlock then a victim is chosen and it is aborted.

Jan. 2021 ACS-4902 50

Example: Deadlock Detection

T1
read_lock(Y)

read_item(Y)

write_lock(X)

waiting

T2

read_lock(X)

read_item(X)

write_lock(Y)

waiting

Wait-for graph:

has a cycle!
T1 T2

Figure 18.5

Jan. 2021 ACS-4902 51

Livelock (by the lock detection)

If a transaction is continually waiting for a lock, it is in a state of

Livelock.

Starvation (by the lock prevention)

If a transaction is continually restarted and then aborted, it is in a

state of starvation.

Jan. 2021 ACS-4902 52

Concurrency Control - Timestamps

• Each transaction is assigned a timestamp (TS)

If a transaction T1 starts before transaction T2,

then TS(T1) < TS(T2); T1 is older than T2.

• Whereas locking synchronizes transaction execution so that the

interleaved execution is equivalent to some serial schedule,

timestamping synchronizes transaction execution so that the

interleaved execution is equivalent to a specific serial

execution - namely, that defined by the chronological order of

the transaction timestamps.

Jan. 2021 53ACS-4902

Consider four transactions: T1, T2, T3, T4.

Assume that TS(T1) < TS(T2) < TS(T3) < TS(T4).

We may have 4! = 24 different serial execution of these transactions. Each of

them is considered correct:

T1 T2 T3 T4

T2 T1 T3 T4

… …

T4 T3 T2 T1

But the method based on ‘timestamps’ synchronizes the interleaved execution

of transactions so that it is equivalent to a specific serial execution:

T1 T2 T3 T4

Jan. 2021 ACS-4902 54

• Deadlock will not occur.

• Cascading rollback can occur.

• Cyclic restart of a transaction can occur.

Jan. 2021 ACS-4902 55

Database Item Timestamps

• Each database item X has 2 timestamps:

• the read timestamp of X, read_TS(X), is the largest

timestamp among all transaction timestamps that have

successfully read X.

• the write timestamp of X, write_TS(X), is the largest

timestamp among all transaction timestamps that have

successfully written X.

T1

T3

x

T2

T4

read_TS(X) = timestamp of T4

Jan. 2021 ACS-4902 56

Timestamp Ordering (TO) Algorithm

• When a transaction T tries to read or write an item X, the

timestamp of T is compared to the read and write timestamps

of X to ensure the timestamp order of execution is not violated.

• If the timestamp order of execution is violated, then T is

aborted and resubmitted later with a new timestamp.

• Deadlock will not occur.

• Cascading rollback can occur.

• Cyclic restart of a transaction can occur.

Tj

Ti

x

abort

read_TS(X) = timestamp of Ti

r w

Jan. 2021 ACS-4902 57

Timestamp Ordering (TO) Algorithm - in detail

• If T issues write_item(X) then

if {read_TS(X) > TS(T) or write_TS(X) > TS(T)} then abort T

otherwise (*TS(T) read_TS(X) and TS(T) write_TS(X)*)

execute write_item(X)

set write_TS(X) to TS(T)

• if T issues read_item(X) then

if write_TS(X) > TS(T) then abort T

• otherwise (*TS(T) write_TS(X)*)

execute read_item(X)

set read_TS(X) to max{TS(T), read_TS(X)}

T

T

x

read_TS(x) = TS(T) abort

Jan. 2021 ACS-4902 58

Example: TO

Time T1 T2

1 read_item(Y)

2 read_item(X)

3 write_item(X)

aborted

4 write_item(Y)

5 commit

6 could be restarted

T1 T2

TS 5 10

What is the schedule for T1 and T2? Assuming all initial data item

timestamps are 0, what are the various read and write timestamps?

Initially, the timestamps for all the data

items are set to 0.

Jan. 2021 59ACS-4902

Example: TO

Time T1 T2

1 read_item(Y)

2 read_item(X)

3 write_item(X)

aborted

4 write_item(Y)

5 commit

6 could be restarted

T1 T2

TS 5 10

What is the schedule for T1 and T2? Assuming all initial data item

timestamps are 0, what are the various read and write timestamps?

Initially, the timestamps for all the data

items are set to 0.

read_TS(x) = 10 > TS(T1) = 5

→ read_TS(Y) = 5 → read_TS(X) = 10

→ read_TS(Y) = 10

Jan. 2021 60ACS-4902

Why does the cascading rollback can occur?

Tj

Ti

x

abort

y

Tk

abort

w
r

r

w

The abortion of Tj leads to the abortion of Tk.

not compatible

Jan. 2021 ACS-4902 61

Concurrency Control - Multiversion 2PL

• Basic idea is to keep older version of data items around.

• When a transaction requires access to an item, an appropriate

version is chosen to maintain serializability, if possible.

• Some read operations that would be rejected by other techniques

can still be accepted by reading an older version of an item.

• No cascading rollback.

• Deadlock can occur.

• In general, requires more storage.

• Particularly adaptable to temporal databases.

Jan. 2021 ACS-4902 62

Concurrency Control - Multiversion 2PL

• Two versions of data items

• Three locking modes: read, write, certify

• Certify lock is issued before a transaction’s commit on all those data

items which are currently write-locked by itself.

• Avoids cascading rollback

Jan. 2021 ACS-4902 63

Concurrency Control - Multiversion 2PL

• lock compatibility table:

read write certify

read yes yes no

write yes no no

certify no no no

Jan. 2021 ACS-4902 64

Concurrency Control - Multiversion 2PL

read write certify

read yes yes no

write yes no no

certify no no no

held by another

transaction

T

x

certify

y z

w w w

x y z

T

x

x

w

T
r

T
r

x

T
w

x is changed

to x
certify

T
w

x

T
r

x

Wrong if no certify

Jan. 2021 ACS-4902 65

Concurrency Control - Multiversion 2PL

Protocol (two-version 2PL):

• Write_item(X)

• creates a new version of X, X’, for the updating transaction

• committed version of X is still around for other transactions

to read

• Commit

• Before it can commit, T must obtain certify locks on all items

that it currently holds write locks on.

• If the transaction can commit, the committed value of any

updated record, X, is set to the value of X’, and X’ is

discarded.

• Certify_item(X)

• set certify lock on X

• may be delayed while other transactions hold read locks on X

Jan. 2021 ACS-4902 66

• Read_item(X)

• a read obtains the committed value of X.

• Abort

Concurrency Control - Multiversion 2PL

By the multiversion 2PL, we will definitely have no

cascading rollback.

Jan. 2021 ACS-4902 67

Example: Multiversion 2PL

Time T1 T2
0 sum:=0

1 read_lock(X)

2 read_item(X)

3 X:=X-N

4 write_lock(X)

5 write_item(X)

6 read_lock(X)

7 read_item(X)

8 sum:=sum+X

9 read_lock(Y)

10 read_item(Y)

11 sum:=sum+Y

12 read_lock(Y)

13 read_item(Y)

14 Y=Y+N +1

15 write_lock(Y)

16 write_item(Y)

What are the values of

X, X’,Y,Y’ at times

0,1,2,...?

Time 0: d_X = 20, d_Y = 30

X = 20, Y = 30, N = 10

Time 5: d_X = 20, d_Y = 30

d_X = d_X – N

= 20 – 10

= 10

Time 11: d_X = 20, d_Y = 30

d_X = 10

sum = d_X + d_Y

= 20 + 30 = 50

Time 16: d_X = 20, d_Y = 30

d_X = 10, d_Y = 30 + 10 + 1= 41

d_X = 10, d_Y = 41

T2 → T1

after commit of T1

Jan. 2021 ACS-4902 68

Example: Multiversion 2PL

Time T1 T2

17 certify(X, Y)

18 unlock(X)

19 unlock(Y)

20 commit

21 unlock(X)

22 unlock(Y)

23 commit

T2
r

x

r

y

T1
r

x

r

y

w

x

w

y
d_X = 10, d_Y = 41

T2 → T1

after commit of T1

Jan. 2021 ACS-4902 69

Concurrency Control - Optimistic

• No checking for interference is done while a transaction is

executing

• transactions operate on their own local copies of data items

• when a transaction executes commit, i.e. it is ending, the

transaction enters a validation phase where serializability is

checked

• Reduces overhead

• Useful if there is little interference between transactions

Jan. 2021 ACS-4902 70

Concurrency Control - Optimistic

• a transaction has three phases

• read - reads operate on database; writes operate on local copies

• validation - check for serializability

• write - if serializability test is satisfied, the database is updated

otherwise the transaction is aborted

• read set

• write set

Jan. 2021 ACS-4902 71

Concurrency Control - Optimistic

• Validation phase:

suppose Ti is in its validation phase, and Tj is any transaction that has

committed or is also in its validation phase, then one of 3 conditions

must be true for serializability to hold:

1. Tj completes its write phase before Ti starts its read phase

2. Ti starts its write phase after Tj completes its write phase, and

the read set of Ti has no items in common with the write set of

Tj

3. both the read set and write set of Ti have no items in common

with the write set of Tj, and Tj completes its read phase before

Ti completes its read phase

If none of these conditions hold, Ti is aborted

Jan. 2021 ACS-4902 72

Concurrency Control - Optimistic

• Condition 1:

Tj completes its write phase before Ti starts its read phase

Tj

Ti

Read Validation Write

Read Validation

Jan. 2021 ACS-4902 73

Concurrency Control - Optimistic

• Condition 2:

Ti starts its write phase after Tj completes its write phase, and the

read set of Ti has no items in common with the write set of Tj

Tj

Ti

Read Validation Write

Read Validation Write

Ti does not read anything

that Tj writes

Jan. 2021 ACS-4902 74

Concurrency Control - Optimistic

• Condition 3:

both the read set and write set of Ti have no items in common

with the write set of Tj, and Tj completes its read phase before Ti

completes its read phase

Tj

Ti

Read Validation

Read Validation

Ti does not read or write

anything that Tj writes

Validation

Jan. 2021 ACS-4902 75

Granularity of Data Items and Multiple Granularity Locking

• Database is formed of a number of named data items.

• Data item:

a database record

a field value of a database record

a disk block

a whole table

a whole file

a whole database

• The size of data item is often called the data item granularity.

fine granularity - small data size

coarse granularity - large data size

Jan. 2021 ACS-4902 76

Granularity of Data Items and Multiple Granularity Locking

• The larger the data item size is, the lower the degree of concurrency.

• The smaller the data size is, the more the number of items in the

database.

- A larger number of active locks will be handled by the lock

manager, and more lock and unlock operations will be

performed, causing a higher system overhead.

- More storage space will be required for storing the lock table.

What is the best item size?

Answer: it depends on the types of transactions involved.

Jan. 2021 ACS-4902 77

Granularity of Data Items and Multiple Granularity Locking

• Multiple granularity level locking

Since the best granularity size depends on the given transaction, it

seems appropriate that a database system supports multiple levels

of granularity, where the granularity level can be different for

various mixes of transactions.

db
Granularity hierarchy:

f1 f2

p11 p12 p1n p21 p22 p2m

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk

... ...

...

Jan. 2021 ACS-4902 78

Granularity of Data Items and Multiple Granularity Locking

• Problem with only shared and exclusive locks

T1: updates all the records in file f1.

T2: read record r1nj.

Assume that T1 comes before T2:

- T1 locks f1.

- Before T2 is executed, the compatibility of the lock

on r1nj with the lock on f1 should be checked.

- This can be done by traversing the granularity hierarchy

bottom-up (from leaf r1nj to p1n to db).

Assume that T2 comes before T1:

- T2 locks r1nj.

- Before T1 is executed, the compatibility of the lock

on f1 with the lock on r1nj should be checked.

- It is quite difficult for the lock manager to check all nodes below f1.

Jan. 2021 79ACS-4902

db

f1 f2

p11 p12 p1n p21 p22 p2m

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk

... ...

...

Jan. 2021 ACS-4902 80

Granularity of Data Items and Multiple Granularity Locking

• Solution: intention locks.

Three types of intention locks:

1. Intention-shared (IS) indicates that a shared lock(s) will be

requested on some descendant node(s).

2. Intention-exclusive (IX) indicates that an exclusive lock(s)

will be requested on some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current

node is locked in shared mode but an exclusive lock(s) will

be requested on some descendant node(s).

If a transaction needs to lock some data item x, it will lock all

those nodes on the path from the root of the granularity tree

to the node x.

Jan. 2021 ACS-4902 81

db

f1 f2

p11 p12 p1n p21 p22 p2m

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk

... ...

...

IS

indicate that a shared lock(s) will be requested on some descendant node(s).

shared lock

Jan. 2021 82ACS-4902

db

f1 f2

p11 p12 p1n p21 p22 p2m

r111 r11j r121 r12j r1n1 r1nj r211 r21k r221 r22k r2m1 r2mk

... ...

...

IX

indicate that an exclusive lock(s) will be requested on some descendant node(s).

exclusive lock

SIX

indicate that the current node is locked in shared mode but an exclusive lock(s)

will be requested on some descendant node(s).

exclusive lock

shared lock

Jan. 2021 ACS-4902 83

Granularity of Data Items and Multiple Granularity Locking

• Lock compatibility matrix for multiple granularity locking

IS yes yes yes yes no

IX yes yes no no no

S yes no yes no no

SIX yes no no no no

X no no no no no

IS IX S SIX X

If a transaction needs to lock some data item x, it will lock all

those nodes on the path from the root of the granularity tree

to the node x.

Jan. 2021 ACS-4902 84

Granularity of Data Items and Multiple Granularity Locking

• Multiple granularity locking (MGL) protocol:

1. The lock compatibility must be adhere to.

2. The root of the granularity hierarchy must be locked first, in any

mode.

3. A node N can be locked by a transaction T in S or IS mode only

if the parent of node N is already locked by transaction T in either

IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode

only if the parent of node N is already locked by transaction T in

either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any

node (to enforce the 2PL protocol).

6. A transaction T can unlock a node N only if none of the children of node

N are currently locked by T.

Jan. 2021 ACS-4902 85

Granularity of Data Items and Multiple Granularity Locking

• Example:

T1: updates all the records in file f1.

T2: read record r1nj.

T1:

IX(db)

X(f1)

write-item(f1)

unlock(f1)

unlock(db)

T2:

IS(db)

IS(f1)

IS(p1n)

S(r1nj)

read-item(r1nj)

unlock(r1nj)

unlock(p1n)

unlock(f1)

unlock(db)

Jan. 2021 ACS-4902 86

Granularity of Data Items and Multiple Granularity Locking

T1:

IX(db)

X(f1)

write-item(f1)

unlock(f1)

unlock(db)

T2:

IS(db)

IS(f1)

IS(p1n)

S(r1nj)

read-item(r1nj)

unlock(r1nj)

unlock(p1n)

unlock(f1)

unlock(db)

Jan. 2021 ACS-4902 87

Concurrency - other topics

• Phantoms

a phantom with respect to transaction T1 is a new record

that comes into existence, created by a concurrent

transaction T2, that satisfies a search condition used by T1.

• consider transactions that include the following operations:

T1
SELECT * FROM a

WHERE id BETWEEN 5 AND 10

T2
INSERT INTO a

VALUES (id, name) (7, ‘joe’)

Id name

1 … …

2 … …

3 …

5 …

6 …

10 … …

a

insert (7, ‘joe’)

Jan. 2021 ACS-4902 88

Concurrency - other topics

• Interactive transactions

values written to a user terminal prior to the commit

point of a transaction T could be used as input to other

transactions

this inter-transaction dependency is outside the scope of

any DBMS concurrency controls

Jan. 2021 ACS-4902 89

Concurrency - in SQL databases

• SQL isolation levels

SET TRANSACTION

< SERIALIZABLE |

REPEATABLE READ |

READ COMMITTED |

READ UNCOMMITTED >

Reference: Data and databases: concepts in practice; Joe Celko; 1999;

Morgan Kaufmann Publishers; ISBN 1-55860-432-4

If write lock is kept till T is

committed, but read lock

can be released earlier.

If write lock is kept till T is
committed, and a read lock on
X cannot be released until all
read operations on X have been
conducted.

Jan. 2021 ACS-4902 90

Why is the “repeatable read” higher than the “read committed”?

T1

x

r

T2
T3

r

w w

Read committed data, but

not repeatable read.

Jan. 2021 ACS-4902 91

Concurrency - SQL

Phenomena description

P1 dirty read

(transaction can read data that is not committed)

P2 nonrepeatable read

(transaction can read the same row twice,

and it could be different)

P3 phantom

Jan. 2021 ACS-4902 92

Concurrency - SQL

Phenomena occurs?

P1 P2 P3

serializable no no no

repeatable read no no yes

read committed no yes yes

read uncommitted yes yes yes

Jan. 2021 ACS-4902 93

• A Sample SQL Transaction

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

EXEC SQL SET TRANSACTION

READ WRITE

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)

VALUE (‘Robert’, ‘Smith’, ‘991004321’, 2, 35000);

EXEC SQL UPDATE EMPLOYEE

SET SALARY = SALARY * 1.1 WHERE DNO = 2;

Jan. 2021 ACS-4902 94

• A Sample SQL Transaction

EXEC SQL COMMIT;

GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;

THE_END: ...;

