
Sept. 2024 Yangjun Chen ACS-4902 1

Database System

T
ran

sactio
n
 M

an
ag

em
en

t

D
atab

ase S
y
stem

 A
rch

itectu
re

C
o
n
cu

rren
cy

 C
o
n
tro

l

Not covered

Sept. 2024 Yangjun Chen ACS-4902 2

Main frame computer and main frame

database architecture

Client-server computer architecture

Client-server database architecture

Sept. 2024 Yangjun Chen ACS-4902 3

Client-Server Computer Architecture

- Terminals are replaced with PCs and workstations

- Mainframe computer is replaced with specialized

servers (with specific functionalities).

File server, DBMS server, mail server, print server, …

Client Client Client

Print server File server DBMS server

… ...

… ...

network

Sept. 2024 Yangjun Chen ACS-4902 4

Database System Architectures

client

site1
client

site2

server

site3
client

site n

server

Communication

network

… ...

Sept. 2024 Yangjun Chen ACS-4902 5

Client-Server Architecture in DBMSs

- database client

user interface, data dictionary functions, DBMS

interaction with programming language compiler, global

query optimization, structuring of complex objects from

the data in the buffers, ...

- database server

data storage on disk, local concurrency control and

recovery, buffering and caching of disk storage, ...

- database connection

ODBC - open database connectivity

API - application programming interface

Sept. 2024 Yangjun Chen ACS-4902 6

mata data for a relational schema

relation names, attribute names,

attribute domains (data types)

description of constraints

views, storage structure, indexes

security, authorization, owner of each
relation

Sept. 2024 Yangjun Chen ACS-4902 7

Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS

software - SQL.)

REL_NAME ATTR_NAME ATTR_TYPE MEMBER_OF_PK MEMBER_OF_FK FK_RELATION

EMPLOYEE FNAME VSTR15 no no

EMPLOYEE SUPERSSN STR9 no yes EMPLOYEE

EMPLOYEE DNO INTEGER no yes DEPARTMENT

... ...

... ...

REL_AND_ATTR_CATALOG

Sept. 2024 Yangjun Chen ACS-4902 8

Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS

software - SQL.)

REL_NAME KEY_NUM MEMBER_ATTR

REL_NAME INDEX_NAME MEMBER_ATTR INDEX_TYPE ATTR_NO ASC_DESC

RELATION_KEYS

VIEW_NAME QUERY

VIEW_QUERIES

RELATION_INDEXES

VIEW_NAME ATTR_NAME ATTR_NUM

VIEW_ATTRIBUTES

Sept. 2024 Yangjun Chen ACS-4902 9

REL_NAME INDEX_NAME MEMBER_ATTR INDEX_TYPE ATTR_NO ASC_DESC

RELATION_INDEXES

Works_on I1 SSN Primary 1 ASC

Works_on I1 Pno Primary 2 ASC

Works_on I2 SSN Clustering 1 ASC

Sept. 2024 Yangjun Chen ACS-4902 10

Index file: I1

(<k(i), p(i)> entries)

Data file: Works_on

123456789 1

123456789 2

123456789 3

234567891 1

SSN Pno hours

234567891 2

345678912 2

345678912 3

456789123 1

... ...

Primary index:

...

123456789, 1

234567891, 2

… …

Sept. 2024 Yangjun Chen ACS-4902 11

Index file: I2

(<k(i), p(i)> entries)

Data file: Works_on

123456789 1

123456789 2

123456789 3

234567891 1

SSN Pno hours

234567891 2

345678912 2

345678912 3

456789123 1

... ...

Clustering index:

...

123456789

234567891

345678912

456789123

Sept. 2024 Yangjun Chen ACS-4902 12

Create View Works_on1

AS Select FNAME, LNAME, PNAME, hours

From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER

VIEW_NAME QUERY

VIEW_QUERIES

Works_on1 Select FNAME, LNAME, PNAME, hour

… ...

Sept. 2024 Yangjun Chen ACS-4902 13

VIEW_NAME ATTR_NAME ATTR_NUM

VIEW_ATTRIBUTES

Works_on1 FNAME 1

Works_on1 LNAME 2

Works_on1 PNAME 3

Works_on1 hours 4

Sept. 2024 Yangjun Chen ACS-4902 14

Select FNAME, LNAME, PNAME

From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER and

FNAME = ‘David’ and LNAME = ‘Shepperd’

Select FNAME, LNAME, PNAME

From Works_on1

Where FNAME = ‘David’ and LNAME = ‘Shepperd’

Sept. 2024 Yangjun Chen ACS-4902 15

Meta data

DDL (SDL)

compilers

Query and DML

parser and verifier

Query and DML

compilers

Query and DML

optimizer

Authorization and

security checking

External-to-conceptual

mapping

Specification in

DDL, SDL

Sept. 2024 Yangjun Chen ACS-4902 16

Processing a high-level query

Translating SQL queries into relational

algebra

Basic algorithms

-Sorting: internal sorting and external

sorting

-Implementing the SELECT operation

-Implementing the JOIN operation

-Implementing the PROJECT operation

-Other operations

Heuristics for query optimization

Sept. 2024 Yangjun Chen ACS-4902 17

•Steps of processing a high-level query

Scanning, Parsing, Validating

Query in a high-level language

Intermediate form of query

Query optimization

Execution plan

Query code generation

Code to execute the query

Runtime database processor

Result of query

Sept. 2024 Yangjun Chen ACS-4902 18

• Translating SQL queries into relational algebra

- decompose an SQL query into query blocks

query block - SELECT-FROM-WHERE clause

Example: SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX(SALARY)

FROM EMPLOEE

WHERE DNO = 5);

SELECT MAX(SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > c

Sept. 2024 Yangjun Chen ACS-4902 19

SELECT MAX(SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > c

F MAX SALARY(DNO=5(EMPLOYEE))

LNAME FNAME(SALARY>C(EMPLOYEE))

• Translating SQL queries into relational algebra

- translate query blocks into relational algebra expressions

Sept. 2024 Yangjun Chen ACS-4902 20

• Basic algorithms

- sorting: internal sorting and external sorting

- algorithm for SELECT operation

- algorithm for JOIN operation

- algorithm for PROJECT operation

- algorithm for SET operations

- implementing AGGREGATE operation

- implementing OUTER JOIN

Sept. 2024 Yangjun Chen ACS-4902 21

• Sorting algorithms

- internal sorting - sorting in main memory:

sort a series of integers,

sort a series of keys

sort a series of records

- different sorting methods:

simple sorting

merge sorting

quick sorting

heap sorting

- external sorting – sorting a file which cannot

be accommodated completely in main memory

Sept. 2024 Yangjun Chen ACS-4902 22

Heapsort

• Combines the better attributes of merge sort and

insertion sort.

– Like merge sort, but unlike insertion sort, running time

is O(n lg n).

– Like insertion sort, but unlike merge sort, sorts in

place.

• Introduces an algorithm design technique

– Create data structure (heap) to manage information

during the execution of an algorithm.

• The heap has other applications beside sorting.

– Priority Queues

Sept. 2024 Yangjun Chen ACS-4902 23

Data Structure Binary Heap

• Array viewed as a nearly complete binary tree.
– Physically – linear array.

– Logically – binary tree, filled on all levels (except
lowest.)

• Map from array elements to tree nodes and vice
versa
– Root – A[1], Left[Root] – A[2], Right[Root] – A[3]

– Left[i] – A[2i]

– Right[i] – A[2i+1]

– Parent[i] – A[i/2]
A[i]

A[2i] A[2i + 1]

A[2] A[3]

Sept. 2024 Yangjun Chen ACS-4902 24

Data Structure Binary Heap
• length[A] – number of elements in array A.

• heap-size[A] – number of elements in heap stored in A.

– heap-size[A]  length[A]

24 21 23 22 36 29 30 34 28 27 24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

Searching the tree in breadth-first

fashion, we will get the array.

Sept. 2024 Yangjun Chen ACS-4902 25

Heap Property (Max and Min)

• Max-Heap

– For every node excluding the root, the value stored in

that node is at most that of its parent: A[parent[i]]  A[i]

• Largest element is stored at the root.

• In any subtree, no values are larger than the value

stored at the subtree’s root.

• Min-Heap

– For every node excluding the root, the value stored in

that node is at least that of its parent: A[parent[i]]  A[i]

• Smallest element is stored at the root.

• In any subtree, no values are smaller than the value

stored at the subtree’s root

Sept. 2024 Yangjun Chen ACS-4902 26

Heaps – Example

26 24 20 18 17 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

24 20

18 17 19 13

12 14 11

Max-heap as an

array.

Max-heap as a binary

tree.

Last row filled from left to right.

1

2 3

4 5 6 7

8 9 10

Sept. 2024 Yangjun Chen ACS-4902 27

Heap Property (Max and Min)

• Max-Heap

– For every node excluding the root, the value stored in

that node is at most that of its parent: A[parent[i]]  A[i]

• Largest element is stored at the root.

• In any subtree, no values are larger than the value

stored at the subtree’s root.

• Min-Heap

– For every node excluding the root, the value stored in

that node is at least that of its parent: A[parent[i]]  A[i]

• Smallest element is stored at the root.

• In any subtree, no values are smaller than the value

stored at the subtree’s root

Sept. 2024 Yangjun Chen ACS-4902 28

Heaps in Sorting
• Use max-heaps for sorting.

• The array representation of a max-heap is not sorted.

• Steps in sorting

(i) Convert the given array of size n to a max-heap (BuildMaxHeap)

(ii) Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it

belongs.

• That leaves n – 1 elements to be placed in their appropriate

locations.

• However, the array of first n – 1 elements is no longer a max-

heap.

• Float the element at the root down one of its subtrees so that

the array remains a max-heap (MaxHeapify)

• Repeat step (ii) until the array is sorted.

Sept. 2024 Yangjun Chen ACS-4902 29

Maintaining the heap property

• Suppose two subtrees are max-heaps,

but the root violates the max-heap

property.

• Fix the offending node by exchanging the value at the node

with the larger of the values at its children.

– May lead to the subtree at the child not being a max

heap.

• Recursively fix the children until all of them satisfy the max-

heap property.

Sept. 2024 Yangjun Chen ACS-4902 30

MaxHeapify – Example

26

14 20

24 17 19 13

12 18 11

14

14

2424

14

14

1818

14

MaxHeapify(A, 2)

26

14 20

24 17 19 13

12 18 11

14

14

2418

14

14

1824

14

1

2 3

4 5 6 7

8
9 10

Sept. 2024 Yangjun Chen ACS-4902 31

Procedure MaxHeapify

MaxHeapify(A, i)

1. l  left(i) (* A[l] is the left child of A[i] .*)

2. r  right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest  l

5. else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest  r

8. if largest i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i)

are max-heaps.

A[largest] must be

the largest among

A[i], A[l] and A[r].

i

Sept. 2024 Yangjun Chen ACS-4902 32

Building a heap

• Use MaxHeapify to convert an array A into

a max-heap.

• How?

• Call MaxHeapify on each element in a

bottom-up manner.

BuildMaxHeap(A)

1. heap-size[A]  length[A]

2. for i  length[A]/2 downto 1 (*A[length[A]/2 +1],

3. do MaxHeapify(A, i) A[length[A]/2 +2],

… are leaf nodes.*)

Sept. 2024 33Yangjun Chen ACS-4902

BuildMaxHeap – Example

24 21 23 22 36 29 30 34 28 27

Input Array:

Initial Heap:

(not max-heap)
24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10 MaxHeapify(10/2 = 5):

Sept. 2024 34Yangjun Chen ACS-4902

BuildMaxHeap – Example

MaxHeapify(10/2 = 5), MaxHeapify(4)

24

21 23

22 36 29 30

34 28 27

36362234

22

2323

30

2136

21

2424

2421

2434

28

36

27

1

2 3

4 5 6 7

8 9 10

24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

buildaxHeap

Sept. 2024 Yangjun Chen ACS-4902 35

Heapsort(A)

HeapSort(A)

1. BuildMaxHeap(A)

2. for i  length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A]  heap-size[A] – 1

5. MaxHeapify(A, 1)

Time complexity: O(n·logn)

Sept. 2024 36Yangjun Chen ACS-4902

Heapsort – Example
26 17 20 18 24 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

17 20

18 24 19 13

12 14 11

26

24 20

18 17 19 13

12 14 11

Build-Max-heap

Sept. 2024 37Yangjun Chen ACS-4902

24

18 20

14 17 19 13

12 11

11

18 20

14 17 19 13

12 24

24, 26

26

24 20

18 17 19 13

12 14 11

11

24 20

18 17 19 13

12 14 26

Maxheapify

Maxheapify

26

Sept. 2024 38Yangjun Chen ACS-4902

• Basic algorithms

- External sorting method:

Several parameters:

b - number of file blocks

nR - number of initial runs

nB - available buffer space

nR = b/ nB

Example: nB = 5 blocks, b = 80 blocks,

nR = 16 initial runs (the size of each run is the same as the

buffer.)

dM - number of runs that can be merged together in each pass
…

 …

…

a run

file:

…

a block
… …

Sept. 2024 Yangjun Chen ACS-4902 39

• Basic algorithms

- External sorting method:

set i  1;

j  b; /*size of the file in blocks*/

k  nB; /*size of buffer in blocks*/

m  j/k; /*number of runs*/

/*sort phase*/

while (i  m)

do {read next k blocks of the file into the buffer or if there are less than k

blocks remaining then read in the remaining blocks;

sort the records in the buffer and write as a temporary subfile;

i  i +1;

}

Sept. 2024 Yangjun Chen ACS-4902 40

• Basic algorithms

- External sorting method:

/*merge phase: merge subfiles until only 1 remains*/

set i  1;

p  logk-1 m; /*p is the number of passes for the merging phase*/

j  m; /*number of runs*/

while (i  p)

do {n  1;

q  j /k-1; /*q is the number of subfiles to write in this pass*/

while (n  q) do

{read next k-1 subfiles or remaining subfiles (from previous

pass) one block at a time;

merge and write as new subfile;

n  n+1;}

j  q; i  i + 1;}

Sept. 2024 Yangjun Chen ACS-4902 41

• Example 4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

File contains 4 runs.

sorting phase

5 7

4 20

18 21

10 19

30 40

51 8

6 9

17 13

12 15

11 16

Sept. 2024 Yangjun Chen ACS-4902 42

• Example

4 5

7 18

21 20

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

4 5

8 10 8 10

4 5

4 5

…

temporary-file1:

merging phase

If the size of Buffer is k blocks, then we can merge k – 1

runs each time.

Sept. 2024 Yangjun Chen ACS-4902 43

• Example

4 5

7 18

21 20

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

6 9

11 16 11 16

106 9

6 9

…

temporary-file2:

merging phase

Sept. 2024 Yangjun Chen ACS-4902 44

• Example

Buffer:

4 5

6 9 6 9

4 5

4 5

…

final file:

6 9

11 12

13 15

16 17

4 5

7 8

10 18

19 20

21 30

40 51

merging phase

Sept. 2024 45Yangjun Chen ACS-4902

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

4 5

8 10

6 9

11 16

4 5

4 5

…

temporary-file1:

If the size of Buffer is k blocks, then we can

merge k – 1 runs each time.

8 10

6 9

11 16

Sept. 2024 Yangjun Chen ACS-4902 46

4 5

7 18

20 21

8 10

19 30

40 51

Buffer:

4 5

8 10

4 5

4 5

…

temporary-file1:

If the size of Buffer is k blocks, then we can

merge k – 1 runs each time.

8 10

Sept. 2024 Yangjun Chen ACS-4902 47

4 5

7 18

20 21

8 10

19 30

40 51

Buffer:

4 5

7 18

8 10

19 30

4 5

4 5

…

temporary-file1:

If the size of Buffer is k blocks, then we can

merge k – 1 runs each time.

7 18

8 10

19 30

Sept. 2024 Yangjun Chen ACS-4902 48

• Basic algorithms

- SELECT operation

Example:

(op1): ssn=‘123456789’(EMPLOYEE)

(op2): DNUMBER>5(DEPARTMENT)

(op3): DNO=5(EMPLOYEE)

(op4): DNO=5  SALARY>30000  SEX=‘F’(EMPLOYEE)

(op5): ESSN=‘123456789’  PNO=10(WORKS_ON)

Sept. 2024 Yangjun Chen ACS-4902 49

• Basic algorithms

- Search method for simple selection

- file scan

linear search (brute force)

binary search

- index scan

using a primary index (or hash key)

using a primary index to retrieve multiple records

using a clustering index to retrieve multiple records

using a multiple level index to retrieve multiple records

Sept. 2024 50Yangjun Chen ACS-4902

• Basic algorithms

- Using a primary index to retrieve multiple records

If the selection condition is >, >=, <, <= on a key field with a

primary index, use the index to find the record satisfying the

corresponding equality condition (DNUMBER = 5, in

DNUMBER>5(DEPARTMENT)), then retrieve all subsequent

records in the ordered file.

Sept. 2024 51Yangjun Chen ACS-4902

Basic algorithms

- Using a clustering index to retrieve multiple records

If the selection condition involves an equality comparison on

a non-key attribute with a clustering index (for example,

DNO = 2 in DNO=2 (EMPLOYEE)), use the index to retrieve

all the records satisfying the condition.

Sept. 2024 52Yangjun Chen ACS-4902

• Basic algorithms

- Searching methods for complex selection

Conjunctive selection using an individual index

If an attribute involved in any single simple condition in the

conjunctive has an access path that permits one of the

methods discussed above, use that condition to retrieve the

records and then check whether each retrieved record

satisfies the remaining simple conditions in the conjunctive

condition.

DNO=1  salary > 50000(EMPLOYEE)

Sept. 2024 53Yangjun Chen ACS-4902

• Basic algorithms

- Searching methods for complex selection

Conjunctive selection using a composite index

If two or more attributes are involved in equality conditions

in the conjunctive condition and a composite index (or hash

structure) exists on the combined fields - for example, if an

index has been created on the composite key (SSN value

and PNO value) of the WORKS_ON file - we can use the

index directly.

SSN=123456789  PNO = 3(WORKS_ON)

Sept. 2024 54Yangjun Chen ACS-4902

• Basic algorithms

- Searching methods for complex selection

Conjunctive selection by intersection of record pointers

- Secondary indexes (indexes on any nonordering field of a

file, which is not a key) are available on more than one of

the fields

- The indexes include record pointers (rather than block

pointers)

- Each index can be used to retrieve the set of record pointers

that satisfy the individual condition.

- The intersection of these sets of records pointers gives the

record pointers that satisfy the conjunctive condition.

Sept. 2024 55Yangjun Chen ACS-4902

ssn Dno

1

1

… …

2

…

…

…

…

Employee

… …

1

2

3

4

…

Multi-level index

on Dno:

1234…

Index with record

pointer on

superssnssn:

1234…

superssn=’123456789’ and Dno = 1 (Employee)

Result = {s1, s2, …, si}  {t1, t2, …, tj}

superssn

All employees in Dno =1. All employees supervised by 1234….

Sept. 2024 Yangjun Chen ACS-4902 56

• Basic algorithms

- JOIN operation (two-way join)

R
A=B

S

Example:

(OP6): EMPLOYEE
DNO=DNUMBER

DEPARTMENT

(OP7): DEPARTMENT
MGRSSN=SSN

EMPLOYEE

Sept. 2024 Yangjun Chen ACS-4902 57

• Basic algorithms

- Methods for implementing JOINs

Nested-loop join:

R

... ...

S

... ...

Sept. 2024 Yangjun Chen ACS-4902 58

• Basic algorithms

- Methods for implementing JOINs

Single-loop join:

R

... ...

S
... ...

... ...

B+-tree

Sept. 2024 Yangjun Chen ACS-4902 59

• Basic algorithms

- Methods for implementing JOINs

Sort-merge join:

R

... ...

S
... ...

... ...

sorted sorted

Sept. 2024 Yangjun Chen ACS-4902 60

set i  1; j  1;

while (i  n) and (j  m)

do {if R(i)[A] > S(j)[B] then set j  j +1

else R(i)[A] < S(j)[B] then set i  i +1

else {/* R(i)[A] = S(j)[B], so we output a matched tuple*/

set k  i;

while (k  n) and (R(k)[A] = S(j)[B])

do {set l  j;

while (l  m) and (R(i)[A] = S(l)[B])

do {output; l  l + 1;}

set k  k +1;}

set i  k, j  l;}}

R(i)[A] S(j)[B]

Sept. 2024 Yangjun Chen ACS-4902 61

• Basic algorithms

- PROJECT operation

<Attribute list>(R)

Example:

FNAME, LNAME, SEX(EMPLOYEE)

Algorithm:

1. Construct a table according to <Attribute list> of R.

2. Do the duplication elimination.

Sept. 2024 Yangjun Chen ACS-4902 62

• Basic algorithms

- PROJECT operation

For each tuple t in R, create a tuple t[<Attribute list>] in T′

/*T′ contains the projection result before duplication

elimination*/

if <Attribute list> includes a key of R then T  T′

else { sort the tuples in T′;

set i  1, j 2;

while i  n

do { output the tuple T′[i] to T;

while T′[i] = T′[j] and j  n do j j + 1;

i  j; j  j +1;

}

}

Sept. 2024 Yangjun Chen ACS-4902 63

A … …

1

2

1

2

1

… …

R

sort

A … …

1

1

1

2

2

… …

T

i →

j →

A … …

… …1

2

i →

j →

T

A(R):

Sept. 2024 Yangjun Chen ACS-4902 64

• Heuristics for query optimization

- Query trees and query graph

- Heuristic optimization of query trees

- General transformation rules for relational algebra

operations

- Outline of a heuristic algebraic optimization algorithm

Sept. 2024 Yangjun Chen ACS-4902 65

- Heuristic optimization of query trees

- Generate an initial query tree for a query

- Using the rules for equivalence to transform the query tree

in such a way that a transformed tree is more efficient than

the previous one.

Example:

Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‘Aquarius’ and PNUMBER=PNO

and ESSN = SSN

and BDATE >‘1957-12-31’

Sept. 2024 Yangjun Chen ACS-4902 66

Initial query tree:

EMPLOYEE WORKS_ON

PROJECT




LNAME

PNAME=‘Aquarius’ and PNUMBER=PNO and ESSN=SSN and BDATE>’1957-12-31’

Sept. 2024 Yangjun Chen ACS-4902 67

First transformation:

EMPLOYEE WORKS_ON

PROJECT



LNAME

PNAME=‘Aquarius’ (PNUMBER=PNO (PNUMBER=PNO ESSN=SSN

(PNUMBER=PNO (PNUMBER=PNO BDATE>’1970-12-31’

Sept. 2024 Yangjun Chen ACS-4902 68

First transformation:

EMPLOYEE

WORKS_ON

PROJECT



LNAME

PNUMBER =

PNO

BDATE >’1957-12-31’

ESSN = SSN
PNAME = ‘Aquarius’

Sept. 2024 Yangjun Chen ACS-4902 69

Second transformation:

PROJECT

WORKS_ON

EMPLOYEE



LNAME

ESSN = SSN

PNAME = ‘Aquarius’

PNUMBER = PNO BDATE >’1957-12-31’

Sept. 2024 Yangjun Chen ACS-4902 70

Third transformation:

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME = ‘Aquarius’

BDATE >’1957-12-31’

PNUMBER = PNO

ESSN = SSN

Sept. 2024 Yangjun Chen ACS-4902 71

Fourth transformation:

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME = ‘Aquarius’

BDATE >’1957-12-31’PNUMBER = PNO

ESSN=SSN

PNUMBER ESSN, PNO

ESSN SSN, LNAME

Sept. 2024 Yangjun Chen ACS-4902 72

- General transformation rules for relational algebra operations

(altogether 12 rules)

1. Cascade of : A conjunctive selection condition can be

broken into a cascade (i.e., a sequence) of individual 

operations:

c1 and c2 and …. And cn(R)  c1(c2 (... (cn(R))…))

2. Commutativity of : The  operation is commutative:

c1(c2 (R))  c2(c1 (R))

3. Cascade of : In a cascade (sequence) of  operations, all but

the last one can be ignored:

 list1( list2 (... ( listn(R))…))   list1(R)

if list1  list2  …  listn.

Sept. 2024 Yangjun Chen ACS-4902 73

- General transformation rules for relational algebra operations

(altogether 12 rules)

4. Commuting  with : If the selection condition c involves

only those attributes A1, …, An in the projection list, the two

operations can be commuted:

A1, …, An(c(R)  c(A1, …, An(R))

5. Commutativity of (and ): The operation is

commutative, as is the  operation:

R c S  S c R

R  S  S  R

Sept. 2024 Yangjun Chen ACS-4902 74

- General transformation rules for relational algebra operations

(altogether 12 rules)

6. Commuting  with (or ): If all the attributes in the

selection condition c involves only the attributes of one of the

relations being joined - say, R - the two operations can be

commuted as follows:

c(R S)  (c(R)) S

If c is of the form: c1 and c2, and c1 involves only the

attributes of R and c2 involves only the attributes of S,

then:

c(R S)  (c1(R)) (c2(S))

Sept. 2024 Yangjun Chen ACS-4902 75

- General transformation rules for relational algebra operations

(altogether 12 rules)

7. Commuting  with (or ): Suppose that the projection list

is L = {A1, …, An, B1, …, Bm}, where A1, …, An in R and

B1, …, Bm in S. If the join condition c involves L, we have

8. Commutativity of set operations: The set operation “” and

“” are commutative, but “-” is not.

9. Associativity of , ,  and : These four operations are

individually associative; i.e., if  stands for any one of these

four operations, we have:

(R  S)  T  R  (S  T)

 L(R C S) ( A1, …, An (R)) ( B1, …, Bm (S))c

Sept. 2024 Yangjun Chen ACS-4902 76

- General transformation rules for relational algebra operations

(altogether 12 rules)

10. Commuting  with set operations: The  operation commutes

with “”, “” and “-”. If  stands for any one of these

three operations, we have:

c(R  S)  c(R)  c(S)

Sept. 2024 Yangjun Chen ACS-4902 77

11. The  operation commutes with :

 L(R  S)  ( L(R))  ( L(S))

 L(R  S)  ( L(R))  ( L(S))?

A B

2 3

1 3

R A B

1 3

2 1

S

 A(R  S) = A

1
 A(R)   A(S) =

A

1

2

 L(R - S)   L(R) -  L(S)?

Sept. 2024 Yangjun Chen ACS-4902 78

12. Converting a (, ) sequence into : If the condition c of a

 that follows a  corresponds to a join condition, convert

then (, ) sequence into as follows:

c(R  S)  R c S

- General transformation rules for relational algebra operations

(other rules for transformation)

DeMorgan’s rule:

NOT (c1 AND c2)  (NOT c1) OR (NOT c2)

NOT (c1 OR c2)  (NOT c1) AND (NOT c2)

Sept. 2024 Yangjun Chen ACS-4902 79

C1

0

0

1

1

C2

0

1

0

1

Not (C1 and C2)

1

1

1

0

C1

0

0

1

1

C2

0

1

0

1

(Not C1) or (notC2)

1

1

1

0



Sept. 2024 Yangjun Chen ACS-4902 80

unit of

work ACID

example essential operations

environment
assumptions

blocks
read

write

execution

model

users

cpu

interleaved

model

control

classic problems

example trxs

lost update

temporary update

incorrect summary

statesfinite state diagram

schedule

conflict

complete

recoverable,

cascadeless, strict

serial

serializability

equivalence

conflict
serializability

testing

recovery

failures

catastrophic

non-catastrophic

log

record types

location
protocol

other uses

commit point

checkpoint

5 types of trxs and recovery

cascading rollback
Transactions

Sept. 2024 Yangjun Chen ACS-4902 81

ACID principles:

To generate faith in the computing system, a transaction will have

the ACID properties:

• Atomic – a transaction is done in its entirety, or not at all

• Consistent – a transaction leaves the database in a correct state.

This is generally up to the programmer to guarantee.

• Isolation – a transaction is isolated from other transactions so that

there is not adverse inter-transaction interference

• Durable – once completed (committed) the result of the transaction

is not lost.

Sept. 2024 Yangjun Chen ACS-4902 82

Environment

Interleaved model of transaction execution

Several transactions, initiated by any number of users, are

concurrently executing. Over a long enough time interval, several

transactions may have executed without any of them completing.

T1

T2

T3

t1 t2 t3 t4 t5

Time

Transaction

Sept. 2024 Yangjun Chen ACS-4902 83

Lost Update Problem

We have Transactions 1 and 2 concurrently executing in the system. They

happen to interleave in the following way, which results in an incorrect value

stored for flight X (try this for X=10, Y=12, N=5 and M=8).

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 READ(X)

4 X:=X+M

5 WRITE(X)

6 READ(Y)

7 WRITE(X)

8 Y:=Y+N

9 WRITE(Y)

Sept. 2024 Yangjun Chen ACS-4902 84

Temporary Update Problem
We have transactions 1 and 2 running again. This time Transaction 1 terminates

before it completes – it just stops, perhaps it tried to execute an illegal instruction

or accessed memory outside its allocation. The important point is that it doesn’t

complete its unit of work; Transaction 2 reads ‘dirty data’ using a value derived

from an inconsistent database state.

Time Transaction1 Transaction2

1 READ(X)

2 X:=X-N

3 WRITE(X)

4 READ(X)

5 X:=X+M

6 WRITE(X)

7 READ(Y)

8 terminates!

Sept. 2024 Yangjun Chen ACS-4902 85

Incorrect Summary Problem

Transactions 1 and 3 are executing and interleaved in such a way that

the total number of seats calculated by transaction 3 is incorrect.
Time Transaction1 Transaction3

1 SUM:=0

2 READ(X)

3 X:=X-N

4 WRITE(X)

5 READ(X)

6 SUM:=SUM+X

7 READ(Y)

8 SUM:=SUM+Y

9 READ(Y)

10 Y:=Y+N

11 WRITE(Y)

12 READ(Z)

13 SUM:=SUM+Z

Sept. 2024 Yangjun Chen ACS-4902 86

To allow for recovery we use a Log

•The log contains several records for each transaction

1.[start_transaction, T] Indicates that transaction T has started execution.

2.[write_item, T, X, old_value, new_value] Indicates that transaction T has

changed the value of database item X from old_value to new_value.

3.[Read_item, T, X] Indicates that transaction T has read the value of database

item X.

4.[commit, T] Indicates that transaction T has completed successfully, and

affirms that its effect can be committed (recorded permanently) to the database.

5.[abort, T] Indicates that transaction T has been aborted.

6.[Checkpoint]: A checkpoint record is written into the log periodically at that

point when the system writes out to the database on disk all DBMS buffers that

have been modified.

Commit Point

A transaction has committed when it reaches its Commit Point (when the commit

command is explicitly performed).

At this point:

• The DBMS force-writes all changes/updates made by a transaction to

the log

• Then the DBMS force-writes a commit record for the transaction

T

R(y) W(x)

buffer

DB

At the commit point of

of a transaction

At a check point

(periodically)

At a check point

(periodically)

Sept. 2024 Yangjun Chen ACS-4902 87

log

Sept. 2024 88Yangjun Chen ACS-4902

Checkpoint

A DBMS will execute a checkpoint in order to simplify the recovery process. The

checkpoints occur periodically, arranged by a DBA (DB Administrator).

At a checkpoint any committed transactions will have their database writes

(updates/changes) physically written to the database.

(The changes made by unaccomplished transactions may also be written to the

database.)

This is a four-step process

• Suspend transaction execution temporarily

• The DBMS force-writes all database changes to the database

• The DBMS writes a checkpoint record to the log and force-writes the log to

disk

• Transaction execution is resumed

Sept. 2024 Yangjun Chen ACS-4902 89

Transaction types at recovery time

After a system crash some transactions will need to redone or

undone.

Consider the five types below. Which need to be redone/undone after

the crash?

Time

T1

T2

T3

T4

T5

Time of

checkpoint

Time of

failure

Sept. 2024 Yangjun Chen ACS-4902 90

Recoverable

A schedule S is recoverable if no transaction T in S commits

until all transactions T’ that have written an item that T

reads have committed.

Cascadeless

Every transaction in the schedule reads only items that were

written by committed transaction.

Strict

a transaction can neither read nor write an item X until the

last transaction that wrote X has committed or aborted.

Comparison of the three schedules

Sept. 2024 Yangjun Chen ACS-4902 91

Schedules

Example:

S1: R1(X); W1(X); R2(X); R1(Y); W2(X); W1(Y); C1; C2;

S2: R1(X); W1(X); R2(X); R1(Y); W2(X); C2; A1;

S3: R1(X); R2(X); W1(X); W2(X); A1; C2;

S4: R1(X); W1(X); R2(X); R1(Y); W2(X);W1(Y); A1; A2;

S5: R1(X); W1(X); R2(Y); W2(Y); C1; R2(X); W2(X); C2;

Sept. 2024 92Yangjun Chen ACS-4902

Schedules

Example:

S1: R1(X); W1(X); R2(X); R1(Y); W2(X); W1(Y); C1; C2;

(recoverable)

S2: R1(X); W1(X); R2(X); R1(Y); W2(X); C2; A1;

(non-recoverable)

S3: R1(X); R2(X); W1(X); W2(X); A1; C2;

(cascadeless)

S4: R1(X); W1(X); R2(X); R1(Y); W2(X);W1(Y); A1; A2;

(recoverable)

S5: R1(X); W1(X); R2(Y); W2(Y); C1; R2(X); W2(X); C2;

(strict)

Sept. 2024 Yangjun Chen ACS-4902 93

Serializability

•A schedule is said to be serializable if it is equivalent to a serial

schedule

•What do we mean by equivalent?

Text mentions result equivalence and conflict equivalence

Sept. 2024 Yangjun Chen ACS-4902 94

Conflict equivalence

Two schedules are said to be conflict equivalent if

-they have the same operations (coming from the same set of

transactions)

-the ordering of any two conflicting operations is the same in

both schedules

•Recall

Two operations conflict if they belong to two different

transactions, are accessing the same data item X and one of the

operations is a WRITE

Conflict Serializability

A schedule S is conflict serializable if it is conflict equivalent to some

serial schedule S’

Sept. 2024 Yangjun Chen ACS-4902 95

T1

READ(X)

X:=X-N

WRITE(X)

READ(Y)

Y:=Y+N

WRITE(Y)

T2

READ(X)

X:=X+M

WRITE(X)

Time

1

2

3

4

5

6

7

8

9

10

11

T1 T2

Sept. 2024 Yangjun Chen ACS-4902 96

protocols

locking

what is a lock

binary locks

Shared & exclusive

2PL

basic

conservative

strict

deadlock
prevention

timestamp
based

wait-die

wound-wait

waiting
based

cautious

waiting

no
waiting

detection
wait-for

graph

livelock

starvation

timestamps

transactions

database items read timestamp

write timestampalgorithm

multiversion
timestamp based

2PL based
optimistic

introduction

other
topics

granularity

phantoms

interactive
transactions

SQL
Isolation levels

Concurrency
Control

Multi-granularity

Sept. 2024 Yangjun Chen ACS-4902 97

Binary Locks: data structures

• lock(X) can have one of two values:

0 or 1

unlocked or locked

etc

• We require a Wait Queue where we keep track of suspended

transactions

transactionlock

Lock Table Wait Queue

trx_iditem

X 1 1 2

3

item

X

YY 1 2

Sept. 2024 Yangjun Chen ACS-4902 98

Binary Locks: operations

lock_item(X)

• used to gain exclusive access to item X

• if a transaction executes lock_item(X) then

if lock(X)=0 then

the lock is granted {lock(X) is set to 1} and the

transaction can carry on

{the transaction is said to hold a lock on X}

otherwise

the transaction is placed in a wait queue until

lock_item(X) can be granted

{i.e. until some other transaction unlocks X}

Sept. 2024 Yangjun Chen ACS-4902 99

Binary Locks: operations

unlock_item(X)

• used to relinquish exclusive access to item X

• if a transaction executes unlock_item(X) then

lock(X) is set to 0

{note that this may enable some other blocked transaction

to resume execution}

Sept. 2024 Yangjun Chen ACS-4902 100

Shared and Exclusive Locks: data structures

• For any data item X, lock(X) can have one of three values:

read-locked, write-locked, unlocked

• For any data item X, we need a counter (no_of_readers) to know

when all “readers” have relinquished access to X

• We require a Wait Queue where we keep track of suspended

transactions

transaction

Lock Table Wait Queue

no_of_readersitem lock trx_ids item

X 1 2 {1, 2} X 3

Sept. 2024 Yangjun Chen ACS-4902 101

Shared and Exclusive Locks: operations

read_lock(X)

• used to gain shared access to item X

• if a transaction executes read_lock(X) then

if lock(X) is not “write_locked” then

the lock is granted

{lock(X) is set to “read_locked”,

the “no_of_readers” is incremented by 1},

and the transaction can carry on

{the transaction is said to hold a share lock on X}

otherwise

the transaction is placed in a wait queue until

read_lock(X) can be granted

{i.e. until some transaction relinquishes exclusive

access to X}

Sept. 2024 Yangjun Chen ACS-4902 102

write_lock(X)

• used to gain exclusive access to item X

• if a transaction executes write_lock(X) then

if lock(X) is “unlocked” then

the lock is granted {lock(X) is set to “write_locked”},

and the transaction can carry on

{the transaction is said to hold an exclusive lock on X}

otherwise

the transaction is placed in a wait queue until

write_lock(X) can be granted

{i.e. until all other transactions have relinquished their

access rights to X - that could be a single “writer” or

several “readers”}

Shared and Exclusive Locks: operations

Sept. 2024 Yangjun Chen ACS-4902 103

unlock(X)

• used to relinquish access to item X

• if a transaction executes unlock(X) then

if lock(X) is “read_locked” then

decrement no_of_readers by 1

if no_of_readers=0 then set lock(X) to “unlocked”

otherwise

set lock(X) to “unlocked”

{note that setting lock(X) to “unlocked” may enable a

blocked transaction to resume execution}

Shared and Exclusive Locks: operations

Sept. 2024 Yangjun Chen ACS-4902 104

Shared and Exclusive Locks

locking protocol (rules); a transaction T

• must issue read_lock(X) or write_lock(X) before read-item(X)

• must issue write_lock(X) before write-item(X)

• must issue unlock(X) after all read_item(X) and write_item(X)

operations are completed

• will not issue a read_lock(X) if it already holds a read or write

lock on X (can be relaxed, to be discussed)

• will not issue a write_lock(X) if it already holds a read or write

lock on X (can be relaxed, to be discussed)

• will not issue an unlock unless it already holds a read lock or

write lock on X

Sept. 2024 Yangjun Chen ACS-4902 105

Shared and Exclusive Locks (2PL)

Conversion of Locks

Recall a transaction T

• will not issue a read_lock(X) if it already holds a read or write

lock on X

Can permit a transaction to downgrade a lock from a write to

a read lock

• will not issue a write lock(X) if it already holds a read or write

lock on X

Can permit a transaction to upgrade a lock on X from a read

to a write lock if no other transaction holds a read lock on X

Sept. 2024 Yangjun Chen ACS-4902 106

Shared and Exclusive Locks (2PL)

Two-phase locking: A transaction is said to follow the two-phase

locking protocol if all locking operations (read-lock, write-lock)

precede the first unlock operations in the transaction.

• previous protocols do not guarantee serializability

• Serializability is guaranteed if we enforce the two-phase

locking protocol:

all locks must be acquired before any locks are relinquished

• transactions will have a growing and a shrinking phase

• any downgrading of locks must occur in the shrinking phase

• any upgrading of locks must occur in the growing phase

Sept. 2024 Yangjun Chen ACS-4902 107

Shared and Exclusive Locks (2PL)

T1’

read_lock(Y)

read_item(Y)

write_lock(X)

unlock(Y)

read_item(X)

X:=X+Y

write_item(X)

unlock(X)

Figure 18.4

T2’

read_lock(X)

read_item(X)

write_lock(Y)

unlock(X)

read_item(Y)

Y:=X+Y

write_item(Y)

unlock(Y)

These transactions obey the 2PL protocol

Sept. 2024 Yangjun Chen ACS-4902 108

Variations on 2PL

Basic 2PL

• previous protocol

Conservative 2PL

• transactions must lock all items prior to the transaction

executing

• if any lock is not available then none are acquired - all must be

available before execution can start

• free of deadlocks
Strict 2PL

• a transaction does not release any write-locks until after it

commits or aborts

• most popular of these schemes

• recall strict schedule avoids cascading rollback

• undoing a transaction can be efficiently conducted.

Sept. 2024 Yangjun Chen ACS-4902 109

Deadlock

Deadlock occurs when two or more transactions are in a

simultaneous wait state, each one waiting for one of the others to

release a lock.

T1
read_lock(Y)

read_item(Y)

write_lock(X)

waiting

T2

read_lock(X)

read_item(X)

write_lock(Y)

waiting

Sept. 2024 Yangjun Chen ACS-4902 110

Deadlock Prevention

1. Conservative 2PL

2. Always locking in a predefined sequence

3. Timestamp based

4. Waiting based

5. Timeout based

Sept. 2024 Yangjun Chen ACS-4902 111

Deadlock Prevention - Timestamp based

• Each transaction is assigned a timestamp (TS).

If a transaction T1 starts before transaction T2,

then TS(T1) < TS(T2); T1 is older than T2.

• Two schemes:

Wait-die

Wound-wait

• Both schemes will cause aborts even though deadlock would

not have occurred.

Sept. 2024 Yangjun Chen ACS-4902 112

Deadlock Prevention: Wait-die

Suppose Ti tries to lock an item locked by Tj.

If Ti is the older transaction then Ti will wait

otherwise Ti is aborted and restarts later with the same timestamp.

Sept. 2024 Yangjun Chen ACS-4902 113

Deadlock Prevention: Wound-wait

Suppose Ti tries to lock an item locked by Tj.

If Ti is the older transaction

then Tj is aborted and restarts later with the same timestamp;

otherwise Ti is allowed to wait.

