Reachability Queries

Outline: Reachability Query Evaluation

- What is reachability query?
- Reachability query evaluation based on matrix multiplication
- Warren's algorithm (for generating transitive closures)
- Strassen's algorithm (for matrix multiplication)
- Reachability based on tree encoding

Reachability Queries

Motivation

- Efficient method to evaluate graph reachability queries

Given a directed graph G, check whether a node v is reachable from another node u through a path in G.

- Application
- XML data processing
- Type checking in object-oriented languages and databases
- Geographical navigation
- Internet routing
- CAD/CAM, CASE, office systems, software management

Reachability Queries

Motivation

- A simple method
- store a transitive closure as a matrix

G:

$$
M=\begin{aligned}
& a \\
& b \\
& c \\
& d \\
& e
\end{aligned}\left(\begin{array}{lllll}
a & b & c & d & e \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

G*:

The transitive closure G^{*} of a graph G is a graph such that there is an edge (u, v) in G^{*} iff there is path from u to v in G.

$$
M^{*}=\begin{aligned}
& a \\
& b \\
& c \\
& d \\
& e
\end{aligned}\left(\begin{array}{lllll}
a & b & c & d & e \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Reachability Queries

Matrix Multiplication

- Definition
- Two matrices A and B are compatible if the number of columns of A equals the number of B.
- If $A=\left(a_{i j}\right)$ is an $m \times n$ matrix and $B=\left(b_{i j}\right)$ is an $n \times p$ matrix, then their matrix product $C=A \times B$ is an $m \times p$ matrix $C=\left(c_{i k}\right)$ such that

$$
c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}
$$

for $i=1,2, \ldots, m$ and $k=1,2, \ldots, p$.

$$
M \times M=\begin{aligned}
& \\
& a \\
& b \\
& c \\
& d \\
& e
\end{aligned}\left(\begin{array}{lllll}
a & b & c & d & e \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Each entry (i, j) in $M \times M$ represents a path of length 2 from i to j.
$G:$

Reachability Queries

Each entry (i, j) in $M \times M$ represents a path of length 2 from i to j.
Each entry (i, j) in $M \times M \times M$ represents a path of length 3 from i to j.

Each entry (i, j) in $M \times M \times M \ldots \times M$ represents a path of length k from i to j.

Define:

$$
M^{*}=M^{(1)} \vee M^{(2)} \vee M^{(3)} \ldots \vee M^{(n)}
$$

Each entry (i, j) in M^{*} represents a path from i to j.
Time overhead: $\mathrm{O}\left(n^{4}\right)$.
Space overhead: O(n^{2}). Query time: O(1).

Reachability Queries

Example

G :

G*:

Each entry (i, j) in P represents a path from i to j.

Reachability Queries

Warren's Algorithm

Warren's algorithm is a quite simple way to generate a boolean matrix to represent the transitive closure of a graph G. Assume that G is represented by a boolean matrix M in which $M(i, j)=1$ if edge (i, j) is in G, and $M(i, j)=0$ if (i, j) is not in G. Then, the matrix M ' for the transitive closure of G can be computed from M, in which $M^{\prime}(i, j)=1$ if there exits a path from i to j in G, and $M^{\prime}(i, j)=0$ if there is no path from i to j in G. Warren's algorithm is given below:

Algorithm Warren

for $i=2$ to n do
for $j=1$ to $i-1$ do
$\{$ if $M(i, j)=1$ then $\operatorname{set} M(i, *)=M(i, *) \vee M(j, *) ;\}$
for $i=1$ to $n-1$ do
for $j=i+1$ to n do
$\{$ if $M(i, j)=1$ then set $M(i, *)=M(i, *) \vee M(j, *) ;\}$

In the algorithm, $M(i, *)$ denotes row i of M.
The theoretic time complexity of Warren's algorithm is $\mathrm{O}\left(n^{3}\right)$.

Reachability Queries

$$
\text { if } M(i, j)=1 \text { then set } M(i, *)=M(i, *) \vee M(j, *)
$$

if $M(i, k)=1$ then set $M\left(i,{ }^{*}\right)=M\left(i,{ }^{*}\right) \vee M\left(k,{ }^{*}\right)$

S. Warshall, "A Theorem on Boolean Matrices," JACM, 9. 1(Jan. 1962), 11-12. H.S. Warren, "A Modification of Warshall's Algorithm for the Transitive Closure of Binary Relations," Commun. ACM 18, 4 (April 1975), 218-220.

Reachability Queries

Strassen's Algorithm

Strassen's algorithm runs in $\mathrm{O}\left(n^{\lg 7}\right)=\mathrm{O}\left(n^{2.81}\right)$ time. For sufficiently large values of n, it outperforms Warren's algorithm.

- An overview of the algorithm

Strassen's algorithm can be viewed as an application of a familiar design technique: divide and conquer. Consider the computation $C=A \times B$, where A, B, and C are $n \times n$ matrices. Assuming that n is an exact power of 2 , we divide each of A, B, and C into four $n / 2 \times n / 2$ matrices, rewriting the equation $C=A \times B$ as follows:

$$
\begin{aligned}
& \left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right] \\
& r=a e+b g \\
& s=a f+b h \\
& t=c e+d g \\
& u=a f+d h
\end{aligned}
$$

Reachability Queries

Each of these four equations specifies two multiplications of $n / 2 \times n / 2$ matrices and the addition of their $n / 2 \times n / 2$ products. So the time complexity of the algorithm satisfies the following recursive equation:

$$
T(n)=8 T(n / 2)+\mathrm{O}\left(n^{2}\right)
$$

The solution of this equation is $T(n)=\mathrm{O}\left(n^{3}\right)$.
Strassen discovered a different approach that requires only 7 recursive multiplications of $n / 2 \times n / 2$ matrices and $\mathrm{O}\left(n^{2}\right)$ scalar additions and subtractions, yielding the recurrence:

$$
\begin{aligned}
T(n) & =7 T(n / 2)+\mathrm{O}\left(n^{2}\right) \\
& =\mathrm{O}\left(n^{1 \mathrm{~g} 7}\right) \\
& =\mathrm{O}\left(n^{2.81}\right) .
\end{aligned}
$$

Reachability Queries

Strassen's algorithm works in four steps:

1. Divide the input matrices A and B into $n / 2 \times n / 2$ matrices.
2. Using $\mathrm{O}\left(n^{2}\right)$ scalar additions and subtractions, computer 14 matrices $A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{7}, B_{7}$, each of which is $n / 2 \times n / 2$.
3. Recursively compute the seven matrix products $P_{i}=A_{i} \times B_{i}$ for $i=1,2, \ldots, 7$.
4. Computer the desire submatrices r, s, t, u of the result matrix C by adding and/or subtracting various combinations of the P_{i} matrices, using only $\mathrm{O}\left(n^{2}\right)$ scalar additions and subtraction.
$A_{1}=a, A_{2}=(a+b), A_{3}=(c+d), A_{4}=d, A_{5}=(a+d), A_{6}=(b-d), A_{7}=(c-a)$
$B_{1}=(f-h), B_{2}=h, B_{3}=e, B_{4}=(g-d), B_{5}=(e+h), B_{6}=(g+h), B_{7}=(e+f)$
$r=a e+b g=P_{5}+P_{4}-P_{2}+P_{6}, s=a f+b h=P_{1}+P_{2}$,
$t=c e+d g=P_{3}+P_{4}, u=a f+d h=P_{5}+P_{1}-P_{3}+P_{7}$.
7 matrix multiplication, 18 matrix additions and subtractions.

Reachability Queries

Assume that $n=2^{m}$. We have

$$
\begin{aligned}
& T\left(2^{m}\right)=7 T\left(2^{m-1}\right)+18\left(2^{m-1}\right)^{2} . \\
& \left.\begin{array}{c}
A_{m}=7 A_{m-1}+18(2 m-1)^{2}, \quad A_{1}=18 \\
G(x)= \\
=A_{1}+A_{2} x+A_{3} x^{2}+\ldots \\
\\
\quad+\left(7 A_{1}+18 \cdot 2^{2}\right) x \\
\quad\left(7 A_{2}+18 \cdot 2^{3}\right) x^{2} \\
\quad \cdots \cdots \\
=18
\end{array}\right) 7 x G(x)+18 \cdot 4 x /(1-4 x) \\
& (1-7 x) G(x)=18(4 x /(1-4 x)+1)=18 /(1-4 x)
\end{aligned}
$$

Reachability Queries

$$
\begin{aligned}
& (1-7 x) G(x)=18(4 x /(1-4 x)+1)=18 /(1-4 x) \\
& G(x)=18 /(1-4 x)(1-7 x)=18\left(\frac{-4 / 3}{1-4 x}+\frac{7 / 3}{1-7 x}\right) \\
& G(x)=6 \sum_{k=0}^{\infty}\left(7^{k+1}-4^{k+1}\right) x^{k} \\
& \begin{aligned}
A_{m} & =6\left(7^{m}-4^{m}\right), \quad m=\log _{2} n \\
& =\mathrm{O}\left(6 \cdot 7^{\log _{2} n}\right) \\
& =\mathrm{O}\left(6 \cdot n^{\log _{2} 7}\right) \\
& =\mathrm{O}\left(n^{2.81}\right)
\end{aligned}
\end{aligned}
$$

Reachability Queries

- Determining the submatrix products

It is not clear exactly how Strassen discovered the submatrix products that are the key to making his algorithm work. Here, we reconstruct one plausible discovery method.
Write $P_{i}=A_{i} \times B_{i}$

$$
=\left(\alpha_{i 1} a+\alpha_{i 2} b+\alpha_{i 3} c+\alpha_{i 4} d\right)\left(\beta_{i 2} e+\beta_{i 1} f+\beta_{i 3} g+\beta_{i 4} h\right),
$$

where the coefficients $\alpha_{i j}, \beta_{i j}$ are all drawn from the set $\{-1,0,1\}$. We guess that each product is computed by adding or subtracting some of the submatrices of A, adding or subtracting some of submatrices of B, and then multiplying the two results together.

Reachability Queries

$$
\begin{aligned}
P_{i} & =A_{i} \times B_{i}= \\
& =\left(\begin{array}{lll}
a & b & c \\
\alpha_{i 1} & d
\end{array}\right)\left(\begin{array}{l}
\alpha_{i 1} \\
\alpha_{i 2} \\
\alpha_{i 3} \\
\alpha_{i 4}
\end{array}\right)\left(\beta_{i 1} \beta_{i 2} \beta_{i 3} \beta_{i 4}\right)\left(\begin{array}{l}
e \\
f \\
f \\
g \\
h
\end{array}\right) \\
& =\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left(\begin{array}{lll}
\alpha_{i 1} \beta_{i 1} & \alpha_{i 1} \beta_{i 2} & \alpha_{i 1} \beta_{i 3} \\
\alpha_{i 1} \beta_{i 4} \\
\alpha_{i 2} \beta_{i 1} & \alpha_{i 2} \beta_{i 2} & \alpha_{i 2} \beta_{i 3} \\
\alpha_{i 2} \beta_{i 4} \\
\alpha_{i 3} \beta_{i 1} & \alpha_{i 3} \beta_{i 2} & \alpha_{i 3} \beta_{i 3} \\
\alpha_{i 3} \beta_{i 4} \\
\alpha_{i 4} \beta_{i 1} & \alpha_{i 4} \beta_{i 2} & \alpha_{i 4} \beta_{i 3} \\
\alpha_{i 4} \beta_{i 4}
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
\end{aligned}
$$

Reachability Queries

$$
\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \times\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right) \quad \begin{aligned}
& r=a e+b g \\
& s=a f+b h \\
& t=c e+d g \\
& u=a f+d h
\end{aligned}
$$

$$
r=a e+b g
$$

So r is represented by a matrix:

$$
=(a b c d)\left(\begin{array}{llll}
+1 & 0 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
f \\
g \\
h
\end{array}\right)
$$

‘\quad - represents 0 .
‘+' - represents +1 .
'-' - represents -1 .

Reachability Queries

$$
s=a f+b h \quad t=c e+d g \quad s=c f+d h
$$

We will create 7 matrices in such a way that the above 4 matrices can be generated by addition and subtraction operations over these 7 matrices. Furthermore, the 7 matrices themselves can be produced by 7 multiplications and some additions and subtractions.

Reachability Queries

$$
P_{1}=A_{1} \cdot B_{1}=a \cdot(f-h)=a f-a h \quad P_{2}=A_{2} \cdot B_{2}=(a+b) \cdot h=a h+b h
$$

$=\left(\begin{array}{cccc}\cdot & + & \cdot & - \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}\right)$

$$
s=a f+b h
$$

$$
=\left(\begin{array}{cccc}
\cdot & + & \cdot & \cdot \\
\cdot & \cdot & \cdot & + \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)=P_{1}+P_{2}
$$

Reachability Queries

$$
P_{3}=A_{3} \cdot B_{3}=(c+d) \cdot e=c e+d e \quad P_{4}=A_{4} \cdot B_{4}=d \cdot(g-e)=d g-d e
$$

$t=c e+d g$

Reachability Queries

$$
\begin{aligned}
& P_{5}=A_{5} \cdot B_{5}=(a+d) \cdot(e+h) \quad P_{6}=A_{6} \cdot B_{6}=(b-d) \cdot(g+h) \\
& =a e+a h+d e+d h \quad=b g+b h-d g-d h \\
& =\left(\begin{array}{llll}
+ & \cdot & \cdot & + \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
+ & \cdot & \cdot & +
\end{array}\right) \quad=\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & + & + \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & - & -
\end{array}\right) \\
& r=a e+b g \\
& =\left(\begin{array}{llll}
+ & \cdot & \cdot & \cdot \\
\cdot & \cdot & + & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)=P_{5}+P_{4}-P_{2}+P_{6}
\end{aligned}
$$

Reachability Queries

$$
\begin{aligned}
& P_{7}=A_{7} \cdot B_{7}=(a-c) \cdot(e+f) \\
& =a e+a f-c e-c f
\end{aligned}
$$

$$
u=c f+d h
$$

$$
=\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & + & \cdot & \cdot \\
\cdot & \cdot & \cdot & +
\end{array}\right)=P_{5}+P_{1}-P_{3}-P_{7}
$$

Reachability Queries

First kind of tree encoding

- Definition
- We can assign each node v in a tree T an interval $\left[\alpha_{v}, \beta_{v}\right)$, where α_{v} is v 's preorder number (denoted $\operatorname{pre}(v)$) and $\beta_{v}-1$ is equal to the largest preorder number among all the nodes in $T[v]$ (subtree rooted at v).
- So another node u labeled $\left[\alpha_{u}, \beta_{u}\right.$) is a descendant of v (with respect to T) iff $\alpha_{u} \in\left[\alpha_{v}, \beta_{v}\right)$.
- If $\alpha_{u} \in\left[\alpha_{v}, \beta_{v}\right)$, we say, $\left[\alpha_{u}, \beta_{u}\right.$) is subsumed by $\left[\alpha_{v}, \beta_{v}\right)$. This method is called the tree labeling.

Reachability Queries

Example:

For a directed graph, the intervals cannot be used to check reachability. The containment is just a sufficient condition, not a necessary condition.

Reachability Queries

Reachability checking based on tree encoding

Directed acyclic graphs (DAGs)

- Find a spanning tree T of G, and assign each node v an interval.
- Examine all the nodes in G in reverse topological order and do the following:

For every edge (p, q), add all the intervals associated with the node q to the intervals associated with the node p.
When adding an interval $[i, j)$ to the interval sequence associated with a node, if an interval $\left[i^{\prime}, j^{\prime}\right)$ is subsumed by $[i, j)$, it will be discarded from the sequence. In other words: if $i^{\prime} \in[i, j)$, then discard $\left[i^{\prime}, j^{\prime}\right]$. On the other hand, if an interval $\left[i^{\prime}, j^{\prime}\right)$ is equal to $[i, j)$ or subsumes $[i, j)$. $[i, j)$ will not be added to the sequence. Otherwise, $[i, j)$ will be inserted.

Reachability Queries

Topological order of a directed acyclic graph:
Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Example:

Topological order: $a, b, r, h, e, f, g, d, c, p, k, i, j$

Reachability Queries

Reverse topological order:

A sequence of the nodes of G such that for any edge (u, v) v appears before u in the sequence.

$$
k, p, c, d, f, g, i, j, e, r, b, h, a
$$

$$
\begin{align*}
& L(k)=[4,5) \\
& L(p)=[3,5) \\
& L(c)=[2,5) \\
& L(d)=[4,5)[5,6) \\
& L(f)=[4,5)[5,6)[8,9) \tag{2,5}\\
& L(g)=[2,5)[5,6)[9,10) \\
& L(i)=[11,12) \\
& L(j)=[12,13) \\
& L(e)=[2,5)[5,6)[7,10)
\end{align*}
$$

$$
\begin{aligned}
& L(r)=[2,5)[5,6)[6,10) \\
& L(b)=[1,6) \\
& L(h)=[2,5)[5,6)[7,10)[10,13) \\
& L(a)=[10,13)
\end{aligned}
$$

Reachability Queries

Generation of interval sequences

- Create interval sequences for all the nodes along the reverse topological order
-First of all, we notice that each leaf node is exactly associated with one interval, which is trivially sorted.
\cdot Let v_{1}, \ldots, v_{l} be the child nodes of v, associated with the interval sequences L_{1}, \ldots, L_{l}, respectively.
- Assume that the intervals in each L_{i} are sorted according to the first element in each interval. We will merge all L_{i} 's into the interval sequence associated L with v as follows.
- Let $\left[a_{1}, b_{1}\right)$ (from L) and $\left[a_{2}, b_{2}\right.$) (from L_{i}) be the interval encountered. We will perform the following checkings:

Reachability Queries

$L=\ldots\left[a_{1}, b_{1}\right) \ldots$
$L_{i}=\ldots\left[a_{2}, b_{2}\right) \ldots$
-If $a_{2}>=a_{1}$ then
$\left\{\right.$ if $a_{2} \in\left[a_{1}, b_{1}\right)$ then go to the interval next to $\left[a_{2}, b_{2}\right)$ and compare it with $\left[a_{1}, b_{1}\right)$ in a next step
else go to the interval next to $\left[a_{1}, b_{1}\right)$ and compare it with $\left[a_{2}, b_{2}\right.$) in a next step. $\}$
-If $a_{1}>a_{2}$ then
$\left\{\right.$ if $a_{1} \in\left[a_{2}, b_{2}\right)$ then remove $\left[a_{1}, b_{1}\right)$ from L and compare the interval
next to $\left[a_{1}, b_{1}\right)$ with $\left[a_{2}, b_{2}\right)$ in a next step
else insert $\left[a_{2}, b_{2}\right)$ into L before $\left[a_{1}, b_{1}\right)$.\}
Obviously, $|L| \leq b$ (the number of the leaf nodes in the spanning tree T) and the intervals in L are sorted. The time spent on this process is $\mathrm{O}\left(d_{v} b\right)$, where d_{v} represents the outdegree of v. So the whole cost is bounded by

$$
\mathrm{O}\left(\sum_{v} d_{v} b\right)=\mathrm{O}(b e)
$$

Reachability Queries

Reachability checking for DAGs

- Let u and v be two nodes of G.
- u is a descendant of v iff there exists an interval $[\alpha, \beta)$ in $L(v)$ such that $\alpha_{u} \in[\alpha, \beta)$.

Example:

$$
\begin{align*}
& {\left[\alpha_{k}, \beta_{k}\right)=[4,5)} \\
& L(r)=[2,5)[5,6)[6,10)
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \text { Node } k \text { is a descendant } \\
& \text { of node } r .
\end{align*}
$$

Reachability Queries

Reachability checking for cyclic graphs

- Using the Tarjan's algorithm to recognize all the strongly connected components (SCCs). In each SCC, any two nodes are reachable from each other.
- Collapse each SCC to a single node. In this way, any cyclic graph G is transformed to a DAG G^{\prime}.
- Let u and v be to two nodes in G. Check their reachability according to two cases:
- u and v are in two different SCC.
- u and v are in the same SCC.

Reachability Queries

Second kind of tree encoding: Using tree encoding as a filter

- Each node v in a tree T is labeled with a with a range

$$
I_{v}=\left[r_{x}, r_{v}\right],
$$

where r_{v} is the postorder number of v (the postorder numbers are assumed to begin at 1) and r_{x} is the lowest postorder number of any node x in the subtree rooted at v (i.e., including $v)$.

- This approach guarantees that the containment between intervals is equivalent to the reachability relationship between the nodes, since the postorder traversal enters a node before all of its descendants have been visited.
- In other words, $u \imath v \Leftrightarrow I_{v} \subseteq I_{u}$.

Reachability Queries

Example:

The above figure shows the interval labeling on a tree, assuming that the children are ordered from left to right. It is easy to see that reachability can be answered by interval containment. For example, $1 \leadsto 9$, since $I_{9}=[2,2] \subset[1,6]=I_{1}$, but $2 \leadsto 7$, since $I_{7}=[1,3]$ $\not \subset[7,9]=I_{2}$.

Reachability Queries

Using tree encoding as a filter

To generalize the interval labeling to a DAG G, we have to ensure that a node is not visited more than once, and a node will keep the postorder number r_{v} of its first visit. Its r_{x} is now the lowest postorder number in the sub-graph rooted at v.

Reachability Queries

The above shows an interval labeling on a DAG, assuming a left to right ordering of the children. As one can see, interval containment of nodes in a DAG is not exactly equivalent to reachability.
For example, $5 \backsim 4$, but $I_{4}=[1,5] \subseteq[1,8]=I_{5}$. In other words, $I_{v} \subseteq I_{u}$ does not imply that $u \sim v$. On the other hand, one can show that $I_{v} \not \subset I_{u} \Rightarrow u \leadsto v$. (So the containment is a necessary condition, not a sufficient condition.)

Reachability Queries

- Instead of using a single interval, one can employs multiple intervals that are obtained via random graph traversals.
- We use the symbol d to denote the number of intervals to keep per node, which also corresponds to the number of graph traversals used to obtain the label.
- The following figure shows a DAG labeling using 2 intervals (the first interval assumes a left-to-right ordering of the children, whereas the second interval assumes a right-to-left ordering).

Reachability Queries

Index construction

An interval $I_{u}{ }^{i}$ is denoted as

$$
I_{u}{ }^{i}=\left[I_{u}{ }^{i}[1], I_{u}{ }^{i}[2]\right]=\left[r_{x}, r_{u}\right]
$$

Algorithm 1: Randomized Intervals
RandomizedLabeling (G, d) :
$1 \quad$ foreach $i \leftarrow 1$ to d do $/ / d$ - number of intervals for each node

```
    RandomizedVisit(x, i, G) :
    if }x\mathrm{ visited before then return
    foreach }y\in\mathrm{ Children(x) in random order do
        Call RandomizedVisit(y,i,G)
    rc}\mp@subsup{}{c}{*}\leftarrow\operatorname{min}{\mp@subsup{I}{c}{i}[1]:c\in\operatorname{Children}(x)
    I
    r\leftarrowr+1
```


Reachability Queries

Reachability queries

- Assume that each node is associated with an single interval.
- To answer reachability queries between two nodes, u and v, we will first check whether $I_{v} \not \subset I_{u}$. If so, we can immediately conclude that $u \leadsto v$.
- On the other hand, if $I_{v} \subseteq I_{u}$, nothing can be concluded immediately since we know that the index can have false positives, i.e., exceptions. In this case, a DFS (depth-first search) is conducted, with recursive containment check based pruning, to answer queries. In the worst case, it needs $\mathrm{O}(n)$ time. Another way is to check the exception lists associated with the nodes:

$$
E_{x}=\left\{y:(x, y) \text { is an exception, i.e., } I_{y} \subseteq I_{x} \text { and } x \leadsto y\right\} .
$$

Reachability Queries

DFS with prunning

Algorithm 2: Reachability Testing (*for the case of only one interval*) Reachable (u, v, G) :
if $I_{v} \not \subset I_{u}$ then
return False // u vv
else if use exception lists then if $v \in E_{u}$ then return False // $u \leadsto v$ else return True // $u \sim$ v
else // DFS with pruning
foreach $c \in$ Children(u) such that $I_{v} \subseteq I_{c}$ do if Reachable (c, v, G) then
return True // u ~v
return False // u vv

Reachability Queries

Exception lists:

$$
\begin{aligned}
& E_{2}=\{1,4\} \\
& E_{4}=\{3,7,9\} \\
& E_{5}=\{1,3,4,7,9\} \\
& E_{6}=\{1,3,4,7,9\}
\end{aligned}
$$

