- Motivation
- What is a \mathbf{B}^{+}-tree?
- Construction of a B+-tree
- Search with a B+-tree
- B+-tree Maintenance

B^{+}-Trees and Trees for Multidimensional Data

Motivation

- Scanning a file is time consuming.
- B^{+}-tree provides a short access path.
file of records

B^{+}-Trees and Trees for Multidimensional Data

file of records

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Motivation

- A^{+}-tree is a tree, in which each node is a page.
- The B^{+}-tree for a file is stored in a separate file.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B $^{+}$-tree Structure

non-leaf node (internal node or a root)

- $\left\langle\mathrm{P}_{1}, \mathrm{~K}_{1}, \mathrm{P}_{2}, \mathrm{~K}_{2}, \ldots, \mathrm{P}_{\mathrm{q}-1}, \mathrm{~K}_{\mathrm{q}-1}, \mathrm{P}_{\mathrm{q}}>\quad\left(\mathrm{q} \leq \mathrm{p}_{\text {internal }}\right)\right.$
- $\mathrm{K}_{1}<\mathrm{K}_{2}<\ldots<\mathrm{K}_{\mathrm{q}-1} \quad$ (i.e. it's an ordered set)
- For any key value, X, in the subtree pointed to by P_{i}

$$
\begin{array}{ll}
\cdot \mathrm{K}_{\mathrm{i}-1}<\mathrm{X} \leq \mathrm{K}_{\mathrm{i}} & \text { for } 1<\mathrm{i}<\mathrm{q} \\
\cdot \mathrm{X} \leq \mathrm{K}_{1} & \text { for } \mathrm{i}=1 \\
\cdot \mathrm{~K}_{\mathrm{q}-1}<\mathrm{X} & \text { for } \mathrm{i}=\mathrm{q}
\end{array}
$$

- Each internal node has at most $\mathrm{p}_{\text {internal }}$ pointers.
- Each node except root must have at least $\left\lceil\mathrm{p}_{\text {internal }} / 2\right\rceil$ pointers.
- The root, if it has some children, must have at least 2 pointers.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

A B ${ }^{+}$-tree

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B $^{+}$-tree Structure

leaf node (terminal node)

- $\left\langle\left(\mathrm{K}_{1}, \operatorname{Pr}_{1}\right),\left(\mathrm{K}_{2}, \operatorname{Pr}_{2}\right), \ldots,\left(\mathrm{K}_{\mathrm{q}-1}, \operatorname{Pr}_{\mathrm{q}-1}\right), \mathrm{P}_{\mathrm{next}}>\right.$
- $\mathrm{K}_{1}<\mathrm{K}_{2}<\ldots<\mathrm{K}_{\mathrm{q}-1}$
- $\operatorname{Pr}_{\mathrm{i}}$ points to a record with key value K_{i}, or $\operatorname{Pr}_{\mathrm{i}}$ points to a page containing a record with key value K_{i}.
- Maximum of $\mathrm{p}_{\text {leaf }} \mathrm{key} /$ pointer pairs.
- Each leaf has at least $\left\lceil\mathrm{p}_{\text {leaf }} / 2\right\rceil$ keys.
- All leaves are at the same level (balanced).
- $\mathrm{P}_{\text {next }}$ points to the next leaf node for key sequencing.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B $^{+}$-tree Construction

- Inserting key values into nodes
- Node splitting
- Leaf node splitting
- Internal node splitting
- Node generation

B^{+}-Trees and Trees for Multidimensional Data

B $^{+}$-tree Construction

- Inserting key values into nodes

Example:

Diane, Cory, Ramon, Amy, Miranda, Ahmed,
Marshall, Zena, Rhonda, Vincent, Mary
B^{+}-tree with $\mathrm{p}_{\text {internal }}=\mathrm{p}_{\text {leaf }}=3$.
Internal node will have minimum 2 pointers and maximum 3 pointers - inserting a fourth will cause a split.

Leaf can have at least $2 \mathrm{key} /$ pointer pairs and a maximum of 3 key/pointer pairs - inserting a fourth will cause a split.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

insert Diane

insert Cory

CoryO, Diane O

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

insert Ramon

Cory O, Diane O, Ramon O

inserting Amy will cause the node to overflow:

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Continuing with insertion of Amy - split the node and promote a key value upwards (this must be Cory because it's the highest key value in the left subtree)

AmyO, CoryO, DianeO, RamonO

B^{+}-Trees and Trees for Multidimensional Data

-Splitting Nodes

There are three situations to be concerned with:

- a leaf node splits,
- an internal node splits, and
- a new root is generated.

When splitting, any value being promoted upwards will come from the node that is splitting.

- When a leaf node splits, a 'copy' of a key value is promoted.
- When an internal node splits, the middle key value 'moves' from a child to its parent node.

B^{+}-Trees and Trees for Multidimensional Data

-Leaf Node Splitting

When a leaf node splits, a new leaf is allocated:

- the original leaf is the left sibling, the new one is the right sibling,
- key and pointer pairs are redistributed: the left sibling will have smaller keys than the right sibling,
- a 'copy' of the key value which is the largest of the keys in the left sibling is promoted to the parent.

Two situations arise: the parent exists or not.

- If the parent exists, then a copy of the key value (just mentioned) and the pointer to the right sibling are promoted upwards.
- Otherwise, the B^{+}-tree is just beginning to grow.

B^{+}-Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Internal Node splitting

If an internal node splits and it is not the root,

- insert the key and pointer and then determine the middle key,
- a new 'right' sibling is allocated,
- everything to its left stays in the left sibling,
- everything to its right goes into the right sibling,
- the middle key value along with the pointer to the new right sibling is promoted to the parent (the middle key value 'moves' to the parent to become the discriminator between the left and right sibling)

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Note that '26' does not remain in B. This is different from the leaf node splitting.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Internal node splitting

When a new root is formed, a key value and two pointers must be placed into it.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B^{+}-trees:

1. Data structure of an internal node is different from that of a leaf.
2. The meaning of $\mathrm{p}_{\text {internal }}$ is different from $\mathrm{p}_{\text {leaf }}$.
3. Splitting an internal node is different from splitting a leaf.
4. A new key value to be inserted into a leaf comes from the data file.
5. A key value to be inserted into an internal node comes from a node at a lower lever.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

A sample trace

Diane, Cory, Ramon, Amy, Miranda,
Marshall, Zena, Rhonda, Vincent, Simon, mary into a^{+}-tree with $\mathrm{p}_{\text {internal }}=\mathrm{p}_{\text {leaf }}=3$.

B^{+}-Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B^{+}-Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Searching a \mathbf{B}^{+}-tree

- searching a record with key $=8$:

B^{+}-Trees and Trees for Multidimensional Data

B $^{+}$-tree Maintenance

- Inserting a key into a B^{+}-tree
(Same as discussed on B^{+}-tree construction)
- Deleting a key from a B^{+}-tree
i) Find the leaf node containing the key to be removed and delete it from the leaf node.
ii) If underflow, redistribute the leaf node and one of its siblings (left or right) so that both are at least half full.
iii) Otherwise, the node is merged with its siblings and the number of leaf nodes is reduced.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

Records in a file

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

Records in a file

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

Deleting 8 causes the node redistribute.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

B^{+}-Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

For this merge, 5 will be taken as a key value in A since any key value in B is less than or equal to 5 but any key value in C is larger than 5 .

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Entry deletion

- deletion sequence: $8,12,9,7$

B^{+}-Trees and Trees for Multidimensional Data

A B+-tree stored in main memory as a link list:

Creating link lists in C:

1. Create data types using "struct":

2. Allocate place for nodes:

- Using "allocating commands" to get memory place for nodes
$x=($ struct node $*)$ calloc(1 , sizeof(struct node) $)$;
- Using fields to establish values for the nodes
x.name = "company";
$y=($ struct edge *) calloc(1, sizeof(struct edge));
x. link = y;

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Store a B+-tree on hard disk

Depth-first-search:

DFS(v) (*recursive strategy*)
Begin
print(v); (*or store vin a file.*) let $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ be the children of v ; for ($\mathrm{i}=1$ to k) $\left\{D F S\left(\mathrm{v}_{\mathrm{i}}\right) ;\right\}$ end

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Store a B+-tree on hard disk

Depth-first-search:

(*non-recursive strategy*) push(root); (*push the root into stack.*) while (stack is not empty) do
\{ v:= pop();
print(v); (*or store vin a file.*) let $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ be the children of v ; for ($\mathrm{i}=\mathrm{k}$ to 1) $\left\{p u s h\left(v_{\mathrm{i}}\right)\right\}$;

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

$$
\text { Data file: }
$$

B^{+}-Trees and Trees for Multidimensional Data

Store a B+-tree on hard disk

Algorithm:

push(root, -1, -1);
while (S is not empty) do
\{ \quad : : pop();
store x.data in file F;
assume that the address of x in F is ad;
if x.address-of-parent $\neq-1$ then \{
y := x.address-of-parent;
z := x.position;
write ad in page y at position z in F;
\}
let x_{1}, \ldots, x_{k} be the children of x; for ($\mathrm{i}=\mathrm{k}$ to 1) $\left\{p u s h\left(\mathrm{x}_{\mathrm{i}}\right.\right.$, ad, i$\left.)\right\}$;

data	address-of- parent	position

stack: S
data: all the key values in a node address-of-parent: a page number in the file F, where the parent of the node is stored.
position: a number indicating what is the ranking of a child. That is, whether it is the first, second, ..., child of its parent.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

\[

\]

Stack:

5	-1	-1

3	0	1
7,8	0	2

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

1	5	6	12	9	7	3	8	
0	1						2	3

3	0	1
7,8	0	2

Jan. 2024

1,3	1	1
5	1	2
7,8	0	2

Yangjun Chen ACS-4902

B^{+}-Trees and Trees for Multidimensional Data

$B+$-tree stored in a file:

Data file:

12	9	7	3

$3 \mid 8$
2
3

Jan. 2024
Yangjun Chen ACS-4902

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

$$
\begin{array}{|l|l|l:l|l|l|l|l|l|}
\hline 1 & 5 & 6 & 12 & 9 & 7 & 3 & 8 & \\
\hline 0 & 0 & 1 & 2 & 3
\end{array}
$$

5	1	2
7,8	0	2

7,8	0	2	

B^{+}-Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

$$
\begin{gathered}
\begin{array}{|l|l|l|l|}
\hline 1 & 5 & 6 & 12 \\
\hline & 0 & 1
\end{array} \\
\hline
\end{gathered}
$$

$$
\begin{array}{|l|l|l:l|}
\hline 9 & 7 & 3 & 8 \\
\hline
\end{array}
$$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

\[

\]

0		
6,7	4	1
8	4	2
9,12	4	3

$\Rightarrow \quad |$| | | |
| :---: | :---: | :---: |
| 8 | 4 | 2 |
| 9,12 | 4 | 3 |

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

1	5	6	12	9	7	3	8	
1								

8	4	2
9,12	4	3

9,12	4	3

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B+-tree stored in a file:

Data file:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 5 & 6 & 12 & 9 & 7 & 3 & 8 & \\
\hline
\end{array}
$$

9,12	4	3

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Summary

- \mathbf{B}^{+}-tree structure
- \mathbf{B}^{+}-tree construction

A process of key insertion into a \mathbf{B}^{+}-tree data structure

- B^{+}-tree maintenance

Deletion of keys from a \mathbf{B}^{+}-tree:
Redistribution of nodes
Merging of nodes

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

B $^{+}$-tree operations

-search - always the same search length - tree height
-retrieval - sequential access is facilitated - how?
-insert - may cause overflow - tree may grow
-delete - may cause underflow - tree may shrink

What do you expect for storage utilization?

Index Structures for Multidimensional Data

- Multiple-key indexes
- $k d$-trees
- Quad trees
- R-trees
- Bit map

Indexes over texts

- Inverted files

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Multiple-key indexes

(Indexes over more than one attributes)

Employee

ename	$\underline{\text { ssn }}$	age	salary	dnumber

Aaron, Ed				
Abbott, Diane				
Adams, John				
Adams, Robin				

Multiple-key indexes

(Indexes over more than one attributes)

Index on salary

B^{+}-Trees and Trees for Multidimensional Data

Multiple-key indexes

pointer to an index over a set of salaries of all those employees of age between 50 and 60

B^{+}-Trees and Trees for Multidimensional Data

$k d$-Trees

(A generalization of binary search trees)

A $k d$-tree is a binary tree in which interior nodes have an associated attribute a and a value v that splits the data points into two parts: those with a-value less than v and those with a-value equal to or larger than v.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

$k d$-Trees

B^{+}-Trees and Trees for Multidimensional Data

$k d$-trees

Insert a new entry into a $k d$-tree:

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Insert a new entry into a $k d$-tree:

B^{+}-Trees and Trees for Multidimensional Data

Quad-trees

In a Quad-tree, each node corresponds to a square region in two dimensions, or to a k-dimensional cube in k dimensions.

- If the number of data entries in a square is not larger than what will fit in a block, then we can think of this square as a leaf node.
- If there are too many data entries to fit in one block, then we treat the square as an interior node, whose children correspond to its four quadrants.

B^{+}-Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Quad-trees

$\begin{array}{ll}\text { NW - north-west } & S W-\text { south-west } \\ N E \text { - north-east } & S E-\text { south-east }\end{array}$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

R-trees

An R-tree is an extension of B-trees for multidimensional data.

- An R-tree corresponds to a whole area (a rectangle for two-dimensional data.)
- In an R-tree, any interior node corresponds to some interior regions, or just regions, which are usually a rectangle
- Each region x in an interior node n is associated with a link to a child of n, which corresponds to all the subregions within x.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

R-trees

In an R-tree, each interior node contains several subregions.

In a B+-tree, each interior node contains a set of keys that divides a line into segments.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Suppose that the local cellular phone company adds a POP (point of presence, or base station) at the position shown below.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Insert a new region r into an R-tree.

B^{+}-Trees and Trees for Multidimensional Data

Insert a new region r into an R-tree.

1. Search the R-tree, starting at the root.
2. If the encountered node is internal, find a subregion into which r fits.

- If there is more than one such region, pick one and go to its corresponding child.
- If there is no subregion that contains r, choose any subregion such that it needs to be expanded as little as possible to contain r.
((70, 5), (95, 15))

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Two choices:

- If we expand the lower subregion, corresponding to the first leaf, then we add 1050 square units to the region.
- If we extend the other subregion by lowering its bottom by 15 units, then we add 1200 square units.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Insert a new region r into an R-tree.

B^{+}-Trees and Trees for Multidimensional Data

Insert a new region r into an R-tree.
3. If the encountered node v is a leaf, insert r into it. If there is no room for r, split the leaf into two and distribute all subregions in them as evenly as possible. Calculate the 'parent' regions for the new leaf nodes and insert them into v 's parent. If there is the room at v 's parent, we are done. Otherwise, we recursively split nodes going up the tree.

Suppose that each leaf has room for 6 regions.

road1	road2	house1	school	house2	pipeline

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

- Split the leaf into two and distribute all the regions evenly.
- Calculate two new regions each covering a leaf.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Insert the first object into an R-tree:

$((70,5),(95,15))$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Bit map

1. Imagine that the records of a file are numbered $1, \ldots, n$.
2. A bitmap for a data field F is a collection of bit-vectors of length n, one for each possible value that may appear in the field F.
3. The vector for a specific value v has 1 in position i if the i th record has v in the field F, and it has 0 there if not.

B^{+}-Trees and Trees for Multidimensional Data

Example

Employee

ename	ssn	age	salary	dnumber
\begin{tabular}{\|l	l	c	c	}
\hline				
\end{tabular}				
Aaron, Ed		30	60	
Abbott, Diane		30	60	
Adams, John		40	75	
Adams, Robin		50	75	
Brian, Robin		55	78	
Brian, Mary		55	80	
Widom, Jones		60	100	

Bit maps for age:

30: 1100000	$55: 0000110$
40:0010000	60:0000001
50: 0001000	

Bit maps for salary:
60: 1100000
75: 0011000
78: 0000100

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Query evaluation

Select ename
From Employee
Where age $=55$ and salary $=80$
In order to evaluate this query, we intersect the vectors for age $=55$ and salary $=80$.

0000110	$-\cdots-\cdots-\cdots-\cdots$	vector for age $=55$	
\wedge	0000010		
0000010			

This indicates the $6^{\text {th }}$ tuple is the answer.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Range query evaluation

Select ename
From Employee
Where $40 \leq$ age ≤ 50 and $50 \leq$ salary ≤ 78
We first find the bit-vectors for the age values in $(30,50)$; there are only two: 0010000 and 0001000 for 40 and 50 , respectively.
Take their bitwise OR: $0010000 \vee 0001000=0011000$.
Next find the bit-vectors for the salary values in $(50,78)$ and take their bitwise OR: $1100000 \vee 0011000 \vee 0000100=1111100$.

0011000
$\wedge 1111100$
0011000
The $3^{\text {rd }}$ and $4^{\text {th }}$ tuples are the answer.

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Compression of bitmaps

Suppose we have a bitmap index on field F of a file with n records, and there are m different values for field F that appear in the file.

$$
\mathrm{O}(m n) \text { space }
$$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Compression of bitmaps

Run-length encoding:

Run in a bit vector: a sequence of $i 0$'s followed by a 1 .

Run compression: a run r is represented as another bit string r, composed of two parts.
part 1: i expressed as a binary number, denoted as $b_{1}(i)$. part 2: Assume that $b_{1}(i)$ is j bits long. Then, part 2 is a sequence of $(j-1) 1$'s followed by a 0 , denoted as $b_{2}(i)$.

$$
r^{\prime}=b_{2}(i) b_{1}(i) .
$$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Compression of bitmaps

Run-length encoding:

Run in a bit vector s : a sequence of $i 0$'s followed by a 1 .

000000010001
 , $\underbrace{\circ}$

$$
\begin{aligned}
& r_{1}=00000001 \\
& \quad b_{11}=7=111, b_{12}=110
\end{aligned}
$$

$$
r_{2}=0001
$$

$$
b_{11}=3=11, b_{12}=10
$$

$$
r_{2}^{\prime}=1011
$$

B^{+}-Trees and Trees for Multidimensional Data

000000010001

$\sqrt{\square}$

$$
r_{1}^{\prime} r_{2}^{\prime}=1101111011
$$

Decoding a compressed sequence s :

1. Scan s from the beginning to find the first 0 .
2. Let the first 0 appears at position j. Check the next j bits. The corresponding value is a run.
3. Remove all these bits from s. Go to (1).

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Uncompression:

$$
\begin{aligned}
& r_{1}{ }^{\prime} r_{2}^{\prime}=1101111011 \\
& r_{2}^{\prime}=1011 \\
& r_{1}=00000001 \\
& r_{2}=0001
\end{aligned}
$$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Question:

We can put all the compressed bit vectors together to get a bit sequence:

$$
s=s_{1} s_{2} \ldots S_{m}
$$

where s_{i} is the compressed bit string for the i th bit vector.
When decoding a certain s_{j}, how to differentiate between consecutive bit vectors?

B^{+}-Trees and Trees for Multidimensional Data

Inverted files

An inverted file - A list of pairs of the form: <key word, pointer>

$$
\begin{aligned}
& L(\text { cat })=\{1,3,5\} L(\operatorname{dog})=\{3,5,8,9\} \\
& L(\text { cat } \wedge \operatorname{dog})=\{1,3,5\} \cap\{3,5,8,9\}=\{3,5\}
\end{aligned}
$$

$\mathrm{B}^{+}-$Trees and Trees for Multidimensional Data

Inverted files

When we use "buckets" of pointers to occurrences of each word, we may extend the idea to include in the bucket array some information about each occurrence.

