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On the Data Mining

➢ Data mining refers to the mining or discovery of 

new information in terms of patterns or rules from 

vast amounts of data.

➢ Data mining as part of the knowledge discovery 

process

- Association rules

- Sequential patterns

- Classification
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Data mining as part of the knowledge 
discovery process

- Association rules

For example, whenever a customer buys video 

equipment, he or she also bus another electronic 

gadgets.

- Classification

For example, customers may be classified by frequency 

of visits, types of financing used, amounts of purchases, 

or affinity for types of items, some revealing statistics may 

be generated for such classes.
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Data mining as part of the knowledge 
discovery process

- Sequential patterns

for example, suppose a customer buys a camera, and 

within three months he or she buys photographic 

supplies, then within six months he is likely to buy an 

accessory item. This define a sequential pattern of 

transactions. A customer who buys more than twice in 

lean periods may be likely to buy at least once during 

the Christmas period.
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Goals of Data Mining and Knowledge 
Discovery

- Identifying patterns and trends:

Data mining enables businesses to identify patterns and trends in large datasets, 

helping them understand customer behavior, preferences, and market trends.

- Customer segmentation:

By segmenting customers based on their attributes and behaviors, businesses can 

tailor their marketing strategies, personalize customer experiences, and improve 

customer satisfaction.

- Forecasting and prediction:

Data mining techniques enable accurate forecasting and prediction, helping 

businesses make informed decisions, plan for the future, and identify potential risks 

and opportunities.
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Types of Knowledge Discovered

- Classification of knowledge
Deductive knowledge and inductive knowledge.

- Deductive knowledge:
Deduces new information based on applying pre-specified logic rules of deduction on 

the given data.

- Inductive knowledge:
discovers new rules and patterns from the supplied data.

Classification of knowledge
- Knowledge can be represented in many forms.

- In an unstructured sense, it can be represented as rules or propositional logic.

- In a structured form, it may be represented in decision trees, neural networks, 

semantic networks, hierarchies of classes.
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Types of Knowledge Discovered

- Association rules

- Classification hierarchies

- Inductive knowledge

- Sequential patterns

- Pattern within time series

- Clustering
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Association Rules

Market-Basket model, support, and confidence

- Here, the market-basket corresponds to the sets of items a customer buys in a 

supermarket during one visit.

Transaction_id Time Items_bought

101 6:35 milk, bread, cookies, juice

792 7:38 milk, juice

1130 8:05 milk, eggs

1735 8:40 bread, cookies, coffee
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Association Rules

Market-Basket model, support, and confidence

- An association rule is of the form X  Y , where X = {x1, x2, …, xn}, and Y 

= {y1, y2, …, ym} are sets of items, with xi and yj being distinct items for all 

i and j. This rule states that if a customer buys X, he or she is also likely 

to buy y.

X – LHS

Y – RHS

LHS  RHS – itemset
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Association Rules

The support for a rule LHS  RHS refers to how frequently a 

itemset occurs in the database. That is, the support is the 

percentage of transactions that contain all of the items in the 

itemset.

Example. Rule milk  juice

Support(milk  juice) = 0.50

Example. Rule bread  juice

Support(bread  juice) = 0.25

prevalence of the rule 
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Association Rules

The confidence for a rule LHS  RHS is with respect to the 

implication shown in the rule, computed as 

Example. Rule milk  juice

confidence(milk  juice) = 0.667

Example. Rule bread  juice

confidence(bread  juice) = 0.50

confidence(LHS  RHS) = support(LHS  RHS)/ support(LHS) 

strength of the rule 
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Association Rules

The goal of mining association rules is to generate all possible 

rules that exceed some minimum user-specified support and 

confidence threshold.

The problem is decomposed into two subproblems.
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Association Rules

Two subproblems:

1. Generate all itemsets that have a support that exceeds the 

threshold. These sets of items are called large (or frequent) itemset. 

Here, ‘large’ means large support.

2. For each large itemset, all the rules that have a minimum confidence 

are generated as follows. For a large itemset Z and Y  Z, let X = Z –

Y; then if support(Z)/support(X) > minimum confidence, the rule

X  Y

is a valid rule
X Y

Z
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Association Rules

Major problem:

Discovering all large itemsets together with the value for their supports is 

time-consuming If the cardinality of the set of items is very high.

Assume that the number of items is m. Then, the number of distinct 

itemsets is 2m. (In a typical supermarket, we may have thousands of items.)

To reduce the combinatorial search space, two properties are 

used to reduce the number of sets to be checked:

 Downward closure

 Antimonotonicity
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Association Rules

 Downward closure

A subset of a large itemset (items in it with large support) must be large

(that is, each subset of a large itemset exceeds the minimum support.)

 Antimonotonicity

Conversely, a superset of a small itemset (items in it with low support) is 

also small (implying that it does not have enough support)
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Apriori Algorithm

Input: Database of m transactions, D, and a minimum support, mins, represented as a fraction of m.

Output: Frequent itemsets: L1, L2, …, Lk

Beging

1. Compute support(ij) = count(ij)/m for each individual item i1, i2, …, in by scanning the database

once and counting the number of transactions that ij appears in (that is, count(ij));

2. The candidate frequent 1-itemset, C1, will be the set of items i1, i2, …, in;

3. The subset of items containing ij from C1 where support(ij)  mins becomes the frequent

1-itemset, L1;

4. K = 1;

termination = false;

repeat
1. Lk+1 = Ø;

2. Create the candidate frequent (k + 1)-itemset, Ck+1, by combining members of Lk that have k – 1

elements in common; (this forms candidate frequent (k+1)-itemsets by selectively extending

frequent k-itemset by one item);
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Apriori Algorithm

3. In addition, only consider as elements of Ck+1 those k + 1 items such that every subset

of size k appears in Lk.

4. Scan the database once and compute the support for each member of Ck+1;

if the support for a member of Ck+1  mins then add that member of Lk+1;

5. If Lk+1 is empty then termination = true

else k := k + 1;

until termination;

End 
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Sample Trace of the Apriori Algorithm

minsupport = 0.5, m = 4, n = 6

C1 = {milk (0.75), bread (0.5), juice (0.5), cookies (0.5), eggs (0.25), coffee 

(0.25)}

L1 = {milk (0.75), bread (0.5), juice (0.5), cookies (0.5)}

C2 = {(m, b) (0.25), (m, j) (0.5), (b, j) (0.25), (m, c) (0.25), (b, c) (0.5), (j, c) 

(0.25)}

L2 = {(m, j)(0.5), (b, c) (0.5)}

Note that any pair (x, e), (x, co)  C2 because both e and co are small.

In terms of antimonotonicity, such pairs needn’t be chacked.
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Sample Trace of the Apriori Algorithm
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Frequency-Pattern Tree Algorithm

Trie

• A trie is a multiway tree, in which each path corresponds to a string, 

and common prefixes in strings to common prefix paths.

• Leaf nodes include either the documents themselves, or links to the 

documents containing the string that corresponds to the path.

Example:

s1: cfamp

s2: cbp

s3: cfabm

s4: fb

A trie constructed for

The following strings:
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Frequency-Pattern Tree Algorithm

Represent a transaction DB as a trie

• Sort each sequence of items (in a transaction) (decreasingly) by 

their supports.

Transac

tion_id

Items_bought Sorted sequence

101 milk, bread, cookies, juice milk, bread, cookies, juice

792 juice, milk milk, juice

1130 milk, eggs milk, eggs

1735 bread, coffee, cookies bread, cookies, coffee

• View each sorted item sequence as a string

• Construct a trie over them. 
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Frequency-Pattern Tree Algorithm

items support link

milk 3

bread 2

cookies 2

juice 2

null

milk:3 bread:1

bread:1 juice:1 cookies:1

cookies:1

juice:1
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Frequency-Pattern Tree Construction

• Each sorted sequence of items is represented as a pair: (head, tail), where 

head stands for the first item, and tail for the remaining items.

• Example: {milk, bread, cookies, juice} is represented as {milk, {bread, cookies, 

juice}}

• A FP-tree can be constructed by inserting transaction sequences one by one.

1. Initially, FP-tree T contains only the root null.

2. Search T. If the current node, N, of T has a child with an item name = head, 

then increment the count(N) by 1, else create a new node, N’, with count(N) 

= 1, link N’ to its parent and also with the item header table (used for efficient 

tree traversal).

3. If tail is nonempty, then repeat step (2) using tail as the sorted list, that is, the 

old head is removed and the new heaf is the first item from tail and the 

remaining items become the new tail.
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Mining FP-trees for Frequent Patterns

• Finding all frequent patterns that contain a given frequent item

Input: FP-tree and a minimum support – mins

Output: frequent patterns – itemsets

Procedure FP-growth(tree, ) (initially,  = Ø)

Begin

if tree is a single path p then

for each combination  of the nodes in p do

generate pattern {  }

with support = minimum support of nodes in 

else for each item, i, in the order of increasing supports do

generate pattern  = {i  }

construct ’s conditional pattern base

construct ’s conditional FP-tree, _tree

if _tree is not empty then FP-growth(_tree, )

End
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Mining FP-trees for Frequent Patterns

• ’s conditional pattern base

• ’s conditional FP-tree

Mining process

juice cookies bread milk

1={juice}

FP-growth(T, 1)

FP-growth(T11, 1’)

… …

2={cookies}

FP-growth(T, 2)

FP-growth(T21, 2’)

… …

3={bread}

FP-growth(T, 3)

FP-growth(T31, 3’)

… …

4={milk}

FP-growth(T, 4)

FP-growth(T41, 4’)

… …
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Sample Trace of FP-growth Algorithm

• FP-growth(T, null)

Since the original FP-tree T has more than a single path, we execute the 

else part of outer if statement. We will examine the frequent items in 

order of increasing supports (that is, from the last entry in the table to the 

first). 1 = {juice:2} with support equal to 2.

Following the node link in the term header table, we construct 

conditional pattern base = {(milk, bread, cookies: 2), (milk: 1)}

conditional FP-tree: 

items support link

milk 2

bread 1

cookies 1

null

milk:2

bread:1

cookies:1

Find itemsets with mins = 2:

null

milk:2

T11:
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Sample Trace of FP-growth Algorithm

• FP-growth(T11 , {juice:2}) (*recursive call*)

Since T’ has only one path, all combination  of nodes in the path are 
generated (that is, {milk, juice:2}) with support equal to 2.

Find itemsets with mins = 2:
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Sample Trace of FP-growth Algorithm

Find itemsets with mins = 2:

• Next, the frequent item, cookies is checked.
FP-growth(T, {cookies:2})

2 = {cookies:2}

Following the node link in the term header table, we construct 

conditional pattern base = {(milk, bread: 1), (bread: 1)}

conditional FP-tree: 

items support link

bread 2

milk 1

null

bread:2

T21:
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Sample Trace of FP-growth Algorithm

• FP-growth(T21, {cookies:2}) (*recursive call*)

Since T21 has only one path, all combination  of nodes in the path are 

generated (that is, {bread, cookies:2}) with support equal to 2.

Find itemsets with mins = 2:
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Sample Trace of FP-growth Algorithm

Find itemsets with mins = 2:

• Next, the frequent item, bread is checked.
FP-growth(T, {bread:2})

3 = {bread:2}

Following the node link in the term header table, we construct 

conditional pattern base = {(milk: 1)}

conditional FP-tree is empty. 

No frequent patterns will be generated.
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Sample Trace of FP-growth Algorithm

Find itemsets with mins = 2:

• Last, the frequent item, milk is checked.
FP-growth(T, {milk:3})

4 = {milk:3}

Following the node link in the term header table, we construct 

conditional pattern base is empty

conditional FP-tree is empty. 

No frequent patterns will be generated.
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Sample Trace of FP-growth Algorithm

The found frequent patterns:

{milk:3}

{bread:2}

{cookies:2}

{juice:2}

{milk, juice:2}

{bread, cookies:2}
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➢ Motivation

- Data mining

- Most popular packages

➢ Basic algorithm

➢ Algorithm based on priority queue searching

- Priority queue

- Heuristic for choosing next attribute

➢ Graph-search based method

➢ - p-graphs and p*-graphs

➢ - Trie-like graphs
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Motivation

➢ Given a query log concerning the customers’ preference on

items or activities, design a package which satisfies as

many customers as possible.

QueryId Hot Spring Ride Glacier Hiking Airline Boating

Q1 1 ? 0 ? 1 ?

Q2 1 0 1 ? ? ?

Q3 ? 0 0 1 1 ?

Q4 0 ? 1 ? 1 ?

Q5 ? 0 0 ? ? 0

Q6 ? 1 ? 0 ? 1

A query log by an travel agency: Most popular packge:

Hot spring

Hiking

airlines

It satisfies three 

queries: Q1, Q3, Q5



Basic algorithm based on modified 

signature tree search
Construction of a modified signature tree:

➢ Let Q = {q1, …, qm} be a query log. We use qi[j] to represent

the value of the jth attribute in qi (i = 1, …, m).

➢ Starting from the first attribute value, we divide all queries in

Q into two branches.

➢ For query qi (1 ≤ j ≤ M), if qi[1] = ‘0’, we put qi into the left

branch. If qi[1] = ‘1’, it is put into the right branch. However, if

qi[1] = ‘?’, we will put it in both left and right branches,
showing a quite different behavior from a traditional

signature tree construction.
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Single Package Design Tree (SPD)

36

0

0 0 0 0 01 1 1 1 1

10 1 0

1

000 0 0

000

0

S61 S62 S63 S64 S65
S66 S67 S68 S69

S50 S52 S53 S54 S55 S56 S57 S58 S59

S40 S41 S42 S43 S44 S45 S46 S47

S30 S31 S32 S34 S35 S36 S37

S20 S21 S22 S23

S0

S10 S11

S33

S60

S51

0 0 0 01 1 1 1

1 1 1 1

1 1 1 1 1

S0 = {q1, q2, q3, q4, q5, q6} S10 = {q3, q4, q5, q6} S11 = {q1, q2, q3, q5, q6}

S20 = {q3, q4, q5} S21 = {q4, q5} S22 = {q1, q2, q3, q5} S23 = {q1, q5}

S30 = {q3, q5} S31 = {q4} S32 = {q6} S33 = {q4, q6} S34 = {q1, q3, q5}

S35 = {q2} S36 = {q1, q6} S37 = {q6}

S40 = {q3} S41 = {q4, q5} S42 = {q4, q6} S43 = {q4} S44 = {q1, q5}

S45 = {q1, q3, q5} S46 = {q1, q6} S47 = {q1}

S50 = {q3} S51 = {q3, q5} S52 = {q6} S53 = {q4, q6} S54 = {q5}

S55 = {q1, q5} S56 = {q5} S57 = {q1, q3, q5}

S58 = {q1} S59 = {q1, q6}

S68 = {q1} S69 = {q1, q6}

S60 = {q3, q5} S61 = {q3} S62 = {q4} S63 = {q4, q6} S64 = {q1, q5}

S65 = {q1} S67 = {q1, q3}S66 = {q1, q3, q5}

Hot spring

Ride

Glacier

Hiking

Airline

Boating
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Computational complexity of basic 

algorithm

37

➢ Computational complexities of basic algorithm:

time complexity: O(mn2m)

space complexity: O(m2n2)

where m = number of attributes in Q,

n = number of queries in Q.

In the worst case, for each level two nodes are kept in the 

stack. So the space overhead is bounded by 2mn since 

the size of a node is bounded by O(mn).
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Priority-first searching algorithm

➢ A priority queue S is used to control the tree search
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Priority-first searching algorithm

➢ A priority queue S is used to control the tree search.

➢ The key of a node v in S is a pair (|s(v)|, L), where

s(v) is the subset of queries represented by v, and L is

the level of v.

➢ a pair (|s(v)|, L) is larger than another pair (|s(v)|,

L) iff

|s(v)| > |s(v)|, or

|s(v)| = |s(v)|, but L > L.
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Priority Queue

 Popular & important application of heaps.

 Max and min priority queues.

 Maintains a dynamic set S of elements.

 Each set element has a key – an associated value.

 Goal is to support insertion and extraction efficiently.

 Applications:

 Ready list of processes in operating systems by their 

priorities – the list is highly dynamic

 In event-driven simulators to maintain the list of events to 

be simulated in order of their time of occurrence.
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Basic Operations
 Operations on a max-priority queue:

 Insert(S, x) - inserts the element x into the queue S

 S  S  {x}.

 Maximum(S) - returns the element of  S with the largest 
key.

 Extract-Max(S) - removes and returns the element of S
with the largest key.

 Increase-Key(S, x, k) – increases the value of element x’s 
key to the new value k.

 Min-priority queue supports Insert, Minimum, 
Extract-Min, and Decrease-Key.

 Heap gives a good compromise between fast 
insertion but slow extraction and vice versa.
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Heap Property (Max and Min)

 Max-Heap
 For every node excluding the root, the value stored in that 

node is at most that of its parent: A[parent[i]]  A[i]

 Largest element is stored at the root.

 In any subtree, no values are larger than the value 
stored at subtree root.

 Min-Heap
 For every node excluding the root, the value stored in that 

node is at least that of its parent: A[parent[i]]  A[i]

 Smallest element is stored at the root.

 In any subtree, no values are smaller than the value 
stored at subtree root
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Heap-Extract-Max(A)

Heap-Extract-Max(A)

1.  if heap-size[A] < 1

2.     then error “heap underflow”

3.  max  A[1]

4.  A[1]  A[heap-size[A]]

5.  heap-size[A]  heap-size[A] - 1

6.  MaxHeapify(A, 1)

7.  return max

Running time : Dominated by the running time of MaxHeapify  

= O(lg n)

Implements the Extract-Max operation.
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Heap-Insert(A, key)

Heap-Insert(A, key)

1.  heap-size[A]  heap-size[A] + 1

2. i  heap-size[A]

4.  while i > 1 and A[Parent(i)] < key

5.       do A[i]  A[Parent(i)] 

6.              i  Parent(i)

7.  A[i]  key

Running time is O(lg n)

The path traced from the new leaf to the root has 

length O(lg n)
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Examples
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Heap-Increase-Key(A, i, key)

Heap-Increase-Key(A, i, key)

1 If key < A[i]

2 then error “new key is smaller than the current key”

3 A[i]  key

4 while i > 1 and A[Parent[i]] < A[i]

5 do exchange A[i]  A[Parent[i]]

6 i  Parent[i]

Heap-Insert(A, key)

1 heap-size[A]  heap-size[A] + 1

2 A[heap-size[A]]  – 

3 Heap-Increase-Key(A, heap-size[A], key)
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➢ Two operations over S:

- extractMax(S) removes and returns the node of S

with the largest key.

- insert(S, v) inserts the node v into the queue S,

which is equivalent to the operation S := S  {v}.

➢ At each step:

v := extractMax(S)

for each child u node of v, do insert(S, u)

Priority-first searching algorithm
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➢ Heuristics for choosing a next attribute a (to generate the

children of the currently encountered node v):

(1) ||s(v)[a]| - |s(v)[a]|| is maximized.

(2) If more than one attributes satisfy condition (1), choose

a from them such that the number of queries q in s(v) with

q[a] = * is minimized (the tie is broken arbitrarily.)

Priority-first searching algorithm

s(v)[a] – all those queries in s(v) with attribute a set to 1

s(v)[a] - all those queries in s(v) with attribute a set to 0
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ALGORITHM 1 PRIORITY-SEARCH(Q, A)

Input: a set of queries Q.

Output: a most popular package P.

begin

1.i := 0; the key of root is set to be (|Q|, 0);

2.S := insert(root); (*root represents the whole Q.*)

3.while (i  n) do

4. (v, L) := extractMax(S);

5. if i = n then return the package represented by the path from root to v;

6. pick up a next attribute a from A according to heuristics;

7. create left child vl of v, representing s(v)[a];

8. create right child vr of v, representing s(v)[a];

9. the key of vl is set to be (|s(v)[a]|, L + 1);

10. the key of vr is set to be (|s(v)[a]|, L + 1);

11. insert(S, vl); insert(S, vr); i := L + 1;

end

Algorithm description
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Priority-first searching algorithm

➢ Example:

Step 1:

v0 (6, 0)

s(v0) = {q1, q2, q3, q4, q5, q6} s(v10 ) = {q1, q3, q5, q6}

s(v11) = {q2, q4, q6}

0

v10

v0

v11

1

S – priority queue: T – search tree:

glacier
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Priority-first searching algorithm

Step 2:

s(v20 ) = {q1, q3, q5} s(v21) = {q1, q5}

S – priority queue:

glacier0

v10

v0

v1

1

1

0

v20 v21

1

v10 (4, 1)

v11 (3, 1)

T – search tree:

ride
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Priority-first searching algorithm

Step 3:

s(v30) = {q1, q5} s(v31 ) = {q1, q3, q5}

S – priority queue:

glacier

T – search tree:

ride

v20 (3, 2)

v11 (3, 1) v21 (2, 2)

0

v10

v0

v11

1

0

v20 v21

1

0

v30 v31

1
hot spring
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Priority-first searching algorithm

glacier

hot spring

airline

hiking

boating

s(v40) = {q3, q5} s(v41 ) = {q1, q3, q5}

s(v50) = {q1, q5} s(v51 ) = {q1, q3, q5}

s(v60) = {q1, q3, q5} s(v61 ) = {q1, q3}

v11(3, 1)

v30(2, 3) v40(2, 4)

v50(2, 5) v61(2, 6)

ridev10

v0

v11

v20 v21

v30 v31

v40 v41

v50 v51

v60 v61

Last step:

Most popular package: airline, hot spring,

hiking
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Priority-first searching algorithm

A probabilistic analysis shows that the average time complexity 

of the algorithm is bounded by

O(mn2m/2), 

much better than the basic algorithm.
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Experiments

In our experiments, we have altogether tested four different

methods:

1)  Basic method (described in this paper, BM for short),

2)  Priority-first search (discussed in this paper, PF for short),

3)  Signature tree based [5] (STB for short),

4)  Approximation method [20] (ApM for short).
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EXperiments

• All the four methods are implemented by ourselves. The code is written in in C++,

running on a Linux machine with 32GB of memory and a 2.9GHz 64-core

processor.

• Real data: 100 customers’ favourites at a Chinese restaurant and surveyed over 

a long time period. The investigation was designed with 10 attributes such as 

lemon chicken, ginger beef, honey garlic shrimp, broccoli with seafood and so on. 

The customers respond “yes”, “no”, or “don’t care” to each attribute to provide 

their preferences.

• Synthetic data: 10000 queries with up to 30 attributes. Each query is 

represented by a string with each position being ‘0’, ‘1’, or ‘?’, evenly populated. 

We may increase the number of‘?’ to obtain different experimental results.
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Experiments (SPD on real data)

➢ Test results on real data sets for SPD



Experiments (SPD on synthetic data)

➢ Test results for varying attributes on SPD



59

Experiments (SPD on synthetic data)

➢ Test results for varying query log size on SPD
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Graph-search based method

q1 = (1, *, 0, *, 1, *)

q1 = hot-spring. (ride, *), (hike, *). airline.(boating, *)
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Sorted attribute sequence:

➢ Compute the appearance frequencies of attributes in a query log

Sorted Attribute Sequences

➢ Global ordering of attribute such that the most frequent attribute

appears first:

attribute Hot spring ride glacier hike airline boating

frequency 5/6 3/6 3/6 5/6 6/6 5/6

airline Hot spring hike boating ride glacier
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Sorted attribute sequence:

Sorted Attribute Sequences

Query ID Attribute sequence Sorted attribute sequence

q1 Hs.(R, *).(H, *).A.(B, *) #.A.Hs.(H, *).(B, *).(R, *).$

q2 Hs.G.(H, *).(A, *).(B, *) #.(A,*).Hs.(H, *).(B, *).G.$

q3 (Hs, *).H.A.(B, *) #.A.(Hs, *).H.(B, *).$

q4 (Hs, *).(R, *).G.(H, *).A.(B, *) #.A.(Hs, *).(H, *).(B, *).(R, *).G.$

q5 (Hs, *).(H, *).(A, *) #.(A, *).(Hs, *).(H, *).$

q6 (Hs, *).R.(G, *).B #.(Hs, *).B.R.(G, *).$

Legend: Hs – hot spring, R – ride, G – glacier, H – hike, A – airline, B - boating
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6363

Definition Let q = d0d1 ... dkdk+1 be an attribute sequence representing a query as

described above (with d0 = # and dk+1 = $). A p-graph over q is a directed graph, in

which there is a node for each dj (j = 0, ..., k + 1); and an edge for (dj, dj+1) for each j

 {0, ..., k}. In addition, there may be an edge from dj to dj+2 for each j  {0, ..., k - 1}

if dj+1 is a pair of the form (a, *), where a is an attribute. Each off-line edge is called

a span.

p-Graphs

# A Hs H B R $

q1 = (1, *, 0, *, 1, *) = #.A.Hs.(H, *).(B, *).(R, *).$

Each span is represented by a sub-path covered by it: (H, *) = <v2, v3, v4>

v1v0 v2 v3 v4 v5 v6
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• Let s1 = <v1, ..., vk> and s2 = <u1, ..., ul> be two spans attached on a same

path. We say, s1 and s2 are overlapped, if u1 = vj for some vj  {v2, ..., vk-1},

or if v1 = uj’ for some uj' {u2, ..., ul-1}.

• For example, in the above figure, <v2, v3, v4> and <v3, v4, v5> are

overlapped. <v3, v4, v5> and <v4, v5, v6> are also overlapped. But <v2, v3,

v4> and <v4, v5, v6> not. Here, we notice that the overlapped spans imply

the consecutive 'don't cares', just like <v2, v3, v4> and <v3, v4, v5>, which

correspond to two consecutive *s: (H, *) and (B, *).

• The overlapped spans exhibit some kind of transitivity. That is, if s1 and s2

are two overlapped spans, the s1  s2 must be a new, but bigger span.

Applying this operation to all the spans over a p-path, we will get a

transitive closure of overlapped spans.

P*-Graphs
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Definition Let P be a p-graph. Let p be its main path and S be the set of

all spans over p. Denote by S* the 'transitive closure' of S. Then, the p*-

graph with respect to P is the union of p and S*, denoted as P* = p 

S*.

P*-Graph

# A Hs H B R $

q1 = (1, *, 0, *, 1, *) = #.A.Hs.(H, *).(B, *).(R, *).$
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Lemma Let P* be a p*-graph for a query (attribute sequence) q in Q.

Then, each path from # to $ in P* represents a package, satisfying q.

P*-Graph

# A Hs H B R $

q1 = (1, *, 0, *, 1, *) = #.A.Hs.(H, *).(B, *).(R, *).$
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• Let p1, p2, …, pn be the main paths in P1*, P2*, …, Pn*. A trie over R = 

{p1, p2, …, pn }, denoted as T = trie(R), is defined as follows. 

• If |R| = 0, trie(R) is, of course, empty. For|R| = 1, trie(R) is a single 

node. If |R| > 1, R is split into m (possibly empty) subsets R1, R2, …, 

Rm so that each Rj (j = 1, …, m) contains all those sequences with 

the same first attribute name. The tries: trie(R1), trie(R2), …, trie(Rm) 

are constructed in the same way except that at the kth step, the 

splitting of sets is based on the kth attribute (along the global 

ordering of attributes). They are then connected from their respective 

roots to a single node to create trie(R).

Trie over Main Paths
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Trie over Main Paths
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Trie-like Graphs
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Layered Graphs
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How to Find Answers

• Each node without parents in a layered graph is called a root.

• All the nodes reachable from a root make up a rooted 

subgraph.

• Each rooted subgraph corresponds to a subset of queries 

satisfied by a certain package.
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How to Find Answers
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Algorithm

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Algorithm 1: SEARCH(G)

--------------------------------------------------------------------------------------------------------------------------------------------------------------

Input: a trie-like graph G

Output: a most popular package

1. G′ :={all leaf nodes of G}; g := {all leaf nodes of G};

2. push(S, g);

3. while S is not empty do

4. g’ := pop(S);

5. find the parents of each node in g’; add them to G′;

6. divide all such parent nodes into several groups: g1, g2, ..., gk such that all the nodes in a

group with the same label; 

7. for each j ∈ {1, ..., k} do

8. if |gj| > 1 then

9. push(S, gj);

10. return findPackage(G′);

-------------------------------------------------------------------------------------------------------------------------------------------------------------



74

Algorithm

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Algorithm 2: findPackage(G’)

--------------------------------------------------------------------------------------------------------------------------------------------------------------

Input: a layered graph G’

Output: a most popular package

1. (u, s, f) := (null, 0, Φ); (* find a package for a maximum subset of queries. *)

2. for each rooted subgraph Gv do

3. determine the subset Q′ of satisfied queries in Gv;

4. if |Q′| > s then

5. u := v; s := |Q′|; f := Q′;

6. return (u, s, f);

-------------------------------------------------------------------------------------------------------------------------------------------------------------
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Further Improvement
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Further Improvements

• Remove redundancy
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Time Complexity Analysis

The total running time of the algorithm consists of four parts.

• The first part 1 is the time for computing the frequencies of attribute 

appearances in queries. Since in this process each attribute in a query is 

accessed only once, 1 = O(nm).

• The second part 2 is the time for constructing a trie-like graph G for Q. This part 

of time can be further partitioned into three portions.

– 21: Time for sorting attribute sequences for queries. It is obviously bounded by 

O(nm log m).

– 22: Time for constructing p*-graphs for each of queries. Since for each query a 

transitive closure over its spans should be first created and needs O(m2) time, 

this part of cost is bounded by O(nm2).

– 23: Time for merging all p*-graphs to form a trie-like graph G, which is also 

bounded by O(nm2). 
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Time Complexity Analysis




