Advanced Algorithm Design

Graph searching algorithms

Red-black trees

Binary search trees

Quick sort and Heap sort

Divide and Conquer (Merge sort)

Algorithm Basics and asymptotic
notation

Algorithm basics

~ Definition of algorithms
RAM computation model
Running time of algorithms
- Worst case running time
- Average case running time
- Best case running time

- Asymptotic notations

Definition

» An algorithm is a finite sequence of
unambiguous instructions for solving a
well-specified computational problem.

» Important Features:
» Finiteness.
» Definiteness.
» Input.
» Output.
» Effectiveness.

RAM Model

» Run time expression should be machine-
independent.

» Use a model of computation or “hypothetica
computer.

» Our choice - RAM model (most commonly-usec
» Model should be

» Simple.

» Applicable.

RAM Model

» Generic single-processor model.

» Supports simple constant-time instructions
real computers.

» Arithmetic (+, -, *, /, %, floor, ceiling).
» Data Movement (load, store, copy, assignment stat
» Control (branch, subroutine call, loop control).

» Run time (cost) is uniform (1 time unit) for all
instructions.

» Memory is unlimited.

» Flat memory model - no hierarchy.
» Access to a word of memory takes 1 time unit.
» Sequential execution - no concurrent operatio

Running Time - Definition

» Call each simple instruction and access to
a word of memory a “primitive operation”
or “step.”

» Running time of an algorithm for a given
input is

» The number of steps executed by the

algorithm on that input.

» Often referred to as the complexity of
the algorithm.

Complexity and Input

» Complexity of an algorithm generally depends
on

» Size of input.
» Input size depends on the problem.

» Examples: No. of items to be
sorted.

» No. of vertices and edges in a
graph.

» Other characteristics of the input data.
» Are the items already sorted?
» Are there cycles in the graph?

Worst, Average, and Best-
case Complexity

» Worst-case Complexity

» Maximum number of steps the algorithm takes
possible input.

» Most tractable measure.
» Average-case Complexity
» Average of the running times of all possible ing

» Demands a definition of probability of each inpuf
which is usually difficult to provide and to analyz

» Best-case Complexity
» Minimum number of steps for any possible inp
» Not a useful measure. Why?

A Simple Example - Linear Se

INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwi

LinearSearch(A, key) cost times

1 1«1 c, 1

2 while i <n and A[i] != key C, X

3 do i++ c; Xx-1

4 ifi<n c, 1

5 then return true c; 1

6 else return false c, 1

X ranges between 1 and n + 1.

So, the running time ranges between Cit CX+Cy(x-1)+c,+C
c,+ C,+ C, + Cc; — best case

and

c,+ Cy(n+1)+ c3n + ¢, + C, — Worst case

A Simple Example - Linear Se

INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwi

LinearSearch(A, key) cost times
1 1«1 1 1

2 whilei<nandAJi] '=key 1 X

3 do i++ 1 X-1

4 if i<n 1 1

5 then return true 1 1

6 else return false 1 1

Assign a cost of 1 to all statement executions.
Now, the running time ranges between

1+ 1+ 1+ 1=4—Dest case
and

I+ (n+1)+n+1+1=2n+4—worst case

A Simple Example - Linear Se

INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwi

LinearSearch(A, key) cost times
1 1«1 1 1
2 whilei<nandAJi] '=key 1 X
3 do i++ 1 X-1
4 if i<n 1 1
5 then return true 1 1
6 else return false 1 1

If we assume that the key iIs equal to a random item in the list,
on average, statements 2 and 3 will be executed n/2 times.
Running times of other statements are independent of inpu
Hence, average-case complexity is
1+n/2+n/2+1+1=n+3

Order of growth

» Principal interest is to determine
» how running time grows with input size - Order of growt
» the running time for large inputs - Asymptotic complexity
» In determining the above,

» Lower-order terms and coefficient of the highest-order te
insignificant.
» Ex: In 7n>+6n3+n+10, which term dominates the running tim
very large n? - n>.

» Complexity of an algorithm is denoted by the highest-or
term in the expression for running time.

» Ex: O(n), ©(1), Q(n?), etc.

» Constant complexity when running time is independent of the i
size - denoted O(1).

» Linear Search: Best case ©(1), Worst and Average cases:
» More on O, O, and Q in next classes. Use O for prese

- Tight bound
Asymptotic notations < Upper bound

- Lower bound

®-notation

g(n) = c (a constant), n, n?, n3, ...

For function\ g(n), we define ®(g(n)),
big-Theta of n, as a set:

®(g(n)) = {f(n) :
3 positive constants ¢y, ¢,, and n,
such that vn > n,,

we have 0 < ¢,g(n) < f(n) <c,g(n)

}

Intuitively: Set of all functions that

have the same rate of growth as g(n). no
f(n) =0O(g(n))

g(n) is an asymptotically tight bound for any f(n) |

n

Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and ny,
such that Vn > n,, 0<c,g(n) < f(n) <c,g(n)}

» 10n% - 3n = ©(n?)?
» What constants for n,, ¢,, and ¢, will work?

» Make c, a little smaller than the leading coefficie
and ¢, a little bigger.

» To compare orders of growth, look at the leadin
term (highest-order term).

» Exercise: Prove that n?/2-3n = ©(n?)

Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and ny,
such that Vn > n,, 0<c,g(n) < f(n) <c,g(n)}

Is 3n3 € ©(n*)?

If it is true, we can find ¢, ¢,, and n, such that f
> Ny, We have

cn*< 3n3 < ¢,n*
c.n*<3n = n< 3/c,.
It is a contradiction. So, 3n3 ¢ ®(n*)?

Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and ny,
such that Vn > n,, 0<c,g(n) < f(n) <c,g(n)}

How about 22"e ©(2")?

If it is true, we can find ¢, ¢,, and n, such that f
> Ny, We have

c2" < 22" < ¢, 2",
220 < ¢,2" = 2'<¢> n<log,c,.
It is a contradiction. So, 22¢ ®(2")?

O-notation

For function g(n), we define O(g(n)),
big-O of n, as the set:

O(g(n) = 1f(n) :
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < f(n) < cg(n) }

Intuitively: Set of all functions
whose rate of growth is the same as

or lower than that of g(n). L F(n) = 0(a(n))
g(n) is an asymptotic upper bound for any f(n) in the s

f(n) = ®(g9(n)) = 1(n) = O(g(n)).
O(g(n)) <O(g(n)).

n

Examples

O(g(n)) = {f(n) : 3 positive constants c and n,,
such that ¥Vn = ng,, we have 0 < f(n) <cg(n) }

* Any linear function an + b is in O(n?). Ho
 To answer this question, we set c =1, to se
whether we have an + b < n? for n > a const
n,.
* To determine the value of n,, we will solve an
equation:n?-an-b = 0.

a+va2+4b
2

We get n,=

Examples

O(g(n)) = {f(n) : 3 positive constants c and n,,
such that ¥Vn = ng,, we have 0 < f(n) <cg(n) }

Show that 3n3 = O(n*) for appropriate c and n,.

The answer is obviously yes, since for any n >ny=4, we m
have n* > 3n3.

Show that 3n3 = O(n3) for appropriate ¢ and n,.

The answer is also yes, since we can take c = 4, and for any n
=1, we must have cn3 > 3n3.

() -notation

For function g(n), we define Q(g(n)), |
big-Omega of n, as the set:

Q(g(n) = {f(n) :

3 positive constants ¢ and n,
such that vn > n,,

we have 0 < cg(n) < f(n)}

Intuitively: Set of all functions
whose rate of growth is the same -
as or higher than that of g(n). M0 r i) = Qe(n)

g(n) is an asymptotic lower bound for any f(n) in the s

f(n) = ®(g(n)) = 1(n) = Q(g(n)).
0(g(n)) <Q(g(n)).

n

Example

> [Q(g(n)) = {f(n) : 3 positive constants ¢ and n,, such
that vn > n,, we have 0 <cg(n) <f(n)}

e \n= Q(log, n). Choose ¢ and n,,.
* For this purpose, we need to determine constan

and n,, such that for any n 2 n,, we have

Clog, n< \/n
* We can c=1 and ny= 25 since log, 25 <log, 32 =

V25

We can also prove that y/n — log, 7 is an incr
function.

Relations Between ®, O,

no

f(n) =0(g(n)

c28(n)

fn)

crg(n)

n

" f) = 0(g(m)

cg(n)

f(n)

n

0 f) = Qg ()

Divide and Conquer
(Merge sort)

<

Divide and conquer

Merge sort

Basic merge sort

Improved merge sort
Running time analysis

Correctness proof (loop invari

Divide and Conquer

» Recursive in structure

» Divide the problem into sub-problems tha
similar to the original but smaller in size

» Conquer the sub-problems by solving them
recursively. If they are small enough, just s
them in a straightforward manner.

» Combine the solutions of the sub-problems t
create a global solution to the original proble

An Example: Merge Sort

Sorting Problem: Sort a sequence of n
elements into non-decreasing order.

» Divide: Divide the n-element sequenc
be sorted into two subsequences of n/2
elements each

» Conquer: Sort the two subsequences
recursively using merge sort.

» Combine: Merge the two sorted
subsequences to produce the sorted an

Original Sequence

Sorted Sequenge

18]26(32| 6]43[15] 9| 1| | 1|6 |9 |15]|18]|26]|32|43
18]26]32] 6[{4315] 9] 1] [6 32| | 1 43
|18[26}132| 6 \43@\ 32|| 15 9
4} / 4\ /\ /\ /\ /\
18 || 26 43 15 32| 6|43 15 9‘J 1
181[26 | 32 é 4‘3_\1‘5 9 |1

Merge-Sort (A, p,

INPUT: a sequence of n numbers stored
OUTPUT: an ordered sequence of n

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 ifp<r

2 thenq <« L(p+r)/2]

3 MergeSort (A, p, Q)

4 MergeSort (A, g+1, 1)

5 Merge (A, p, g, r) // merges A[p..q] with A[g+1..r]

Initial Call: MergeSort(A, 1, n)

Procedure Merge

Merge(A, p,q, 1)

1 n«<qgq-p+1

2 n,<r—g Input: Array conta

3 forie1ton, sorted subarrays A[

4 do L[i]« Alp +i-1] and A[q+1 .. r].

oo e dion, o Output: Merged sorte
6 CoR[J] « Alg +])

;L] < o0 subarray in A[p .. r].

8 R[N,+1] < o

P | \

0 J«1 \

11 fork<ptor Sentinels, to avoid havi
12 doTLi] <Rb] - check if either subarr
13 thern ALK] < L[i] fully copied at each
14 l«<—1+1

15 clse ALKl <~ R[j]
j<j+l

Merge - Example

Merge(A, p, q, I)

1 n<«<qgq-p+1
2 N, «<r—q

3

forie<1ton,
coLfil <« Alp+i-1]
forj< 1ton,
doR[j] <« A
L[n,+1] < o0
R[N,+1] <~
1«1
j<«1
torke«pior
cotf L] £ R[]
then A[K] « L]
l<—i+1
clse ALK] < R[j]
J<jtl

Loop Invariant for the for
« At the start of each iterati
for loop:

subarray A[p .. k—1]
contains the k — p smallest ele
of L and R in sorted order.
« L[i] and R[j] are the smallest
L and R that have not been copie
A.

Initialization:

Before the first iteration:
« Alp..k—1]isempty.
« i=j=1

« L[1] and R[1] are the smalles
elements of L and R not copi

Correctness of Merge

Merge(A, p, q, I)
1n<q-p+l Maintenance:
(We will prove that if after t
Iteration, the Loop Invarian
we still have the LI after the

2 N, «<r—q
3 forie<1ton,

4 do L[]« Alp+i1-1] iteration.)

9 RO, Case 1: L[i] < R[j]

. do R_J- < Alg+]] By Loop Invariant, A contains k

7 Ln#l] oo smallest elements of L and R in sor

8 R[N,*+1] = o0 «Also, L[i] and R[j] are the smallest

9 1«1 elements of L and R not yet copied |
0 Jj«1 Line 13 results in A containing k — p
11 fork<ptor smallest elements (again in sorted

12 9007 L[] < R[] Incrementing i and k reestablishes the

for the next iteration.

13 hen ALK « L[Similarly for Case 2: L[i] > R[j].

l«<—1+1
clse A[K] < R[j]
J<j+1

Merge(A, p, q,)
1n<«<qgq-p+1
2 N,<r—g
3 forie1ltong
4 Co L[]« Alp+i1-1]
5 forj<1ton,
6 20 R[j] « A[q +]]
7 L[n,+1] - o
8 R[N,+1] < o
9 <1
j<«1
orkepitor
cott L] £ R[]
then ALK] < L]
< 1+1
clse ALKl < R[j]
J«<J+1

Maintenance:
Case 1: L[1] £R][j]
*By Loop Invariant (LI), A co
smallest elements of L and R in
By LI, L[i] and R[j] are the sm
elements of L and R not yet copi
Line 13 results in A containing k
smallest elements (again in sorted
Incrementing i and k reestablishes
for the next iteration.

Similarly for Case 2: L[i] > R[j].

Termination:

*On termination, k = r + 1.

By LI, A contains r — p + 1 smallest
elements of L and R in sorted ord

L and R together containr —p +

+ 1) = 2 elements.

All but the two sentinels h
back into A.

Improvements

 Reduction of data movements

* Non-recursive Algorithm

Y. Chen, and R. Su, Merge Sort Revisited, ACTA Scientifi
Computer Sciences, Vol. 4, No. 5, pp. 49 - 52, 2022.

Improvements

Reduction of data movements

We notice that in the procedure merge() of Merge s
copying of A[q + 1 .. r] into R IS not necessary, since
directly merge L and A[g + 1 .. r] and store the merge
sorted sequence back into A.

i merge
result to be sent to j _,\
119 |42

P

Improvements

Algorithm: mergelmpr (A, p, q, 7))
Input: Both A[p .. q] and A[g + 1 .. r] are sorted; but /
whole is not sorted
Output : sorted A

whilei < n,andj < n, do
if L[i] < A[j] then {A[k] := L[i]; i := i+ 1;}
else {Alk] := A[j]; j:==j + 1;}

9. k:=k+1;

10. if j > n, then

11. copy the remaining elements in L into A[k .. r];

1. nyi=q-p+1yny:=r-p+1;k:=p;

2. let 15[1 . n1] be a new array; When going out of
3. fori=1ton,do we distinguish betwee
4. L[i1:=A[p+i-1] i >n,,

5.]_p,]_q+1 j>n2.

6.

7.

8.

Original Sequence

Sorted Sequenge

18]26(32| 6]43[15] 9| 1| | 1|6 |9 |15]|18]|26]|32|43
18]26]32] 6[{4315] 9] 1] [6 32| | 1 43
|18[26}132| 6 \43@\ /K32 15 9
4} / 4\ /\ /\ /\
18 || 26 43 15 32| 6|43 15 9‘J 1
181[26 | 32 é 4‘3_\1‘5 9 |1

Non-recursive algorithm

Algorithm: mSort (A)

Input : A - a sequence of elements stored as an array;
Output : sorted A

1.if |Al <1 then return A;

2.r=1AI; r: the length of A
3.1:=[log, | | : the number of passes
4.j:=2; J : the number of elements In

5.fori=1tol do In a merging process in a pass
6. fork=1to[r/j]) do

7. s=[(k-2) |;

8. mergelmpr(A,s+1,s+ [jl2],s+j);
9. j=2j;

Analysis of Merge Sort

» Running time T(n) of Merge Sort:
» Divide: computing the middle takes O(1
» Conquer: solving 2 subproblems takes 2
» Combine: merging n elements takes ©®(n)
» Total:

T(n) = ©(1) if n=1

T(n) =2T(n/2) + ®(n) ifn>1

= T(n) =®(nlg n) (CLRS, Chapter 4)

Recurrence Relati

Equation or an inequality that characteri
function by its values on smaller inputs.

Solution Methods (Chapter 4)
Substitution Method.
Recursion-tree Method.

Master Theorem Method.

Recurrence relations arise when we analyz
running time of iterative or recursive
algorithms.

Ex: Divide and Conquer.
T(n) = ©(1) ifn<c
T(n) =a T(n/b) + D(n) otherwise

Substitution Method

» Guess the form of the solution, then
use mathematical induction to show i
correct.

» Substitute guessed answer for the function
the inductive hypothesis is applied to small
values.

» Works well when the solution is easy to
guess.

» No general way to guess the correct soluti

Example - Exact Functio

Recurrence: T(n) =1 if n=1
T(n)=2T(n/2) +n if n>1
*Guess: T(N)=nlgn+n.
¢Induction:
‘Basissn=1=nlgn+n=1=T(n).
‘Hypothesis: T(k) =k Ig k + k for all k < n.
*Inductive Step:
T(n) =2 T(n/2) +n
=2 ((n/2)lg(n/2) + (n/2)) + n
=n (Ig(n/2)) + 2n
=nlgn—-n+2n
=nlgn+n

ecursion Tree - Exa

nning time of Merge Sort:
T(n) = ©(1) ifn=1
T(n)=2T(n/2) + ®(n) ifn>1
ewrite the recurrence as
T(n)=c ifn=1
T(n) =2T(n/2) + cn ifn>1
¢ > 0: Running time for the base case and
time per array element for the divide and
combine steps.

Recursion Tree for Merge Sd

For the original problem, Each of the size n/2 prc
we have a cost of cn, has a cost of cn/2 plus

plus two subproblems subproblems, each cos
each of size (n/2) and T(n/4).

running time T(n/2).

ch
cn _ //
Cost of divide
() — /\U\ enl2
T(n/2) T(n/2) / \

— T(n/4) T(n/4) T
Cost of sorting
subproblems.

Recursion Tree for Merge S

Continue expanding until the problem size reduces to 1.

Cn/4 Cn/4 Cn/4 Cn/4 ...

AAANR

C C C C C C ...
Totalg

Other Examples

¢ T(n) =T(n/3) + T(2n/3) + O(n).

Dl ————
/ \
n/3 2 0 Y 2 J
NN\
|093 n n/32 2n/32 2n/32 2 Y e L

N NN N

n/3* 2n/332n/33 2°n/332n/33 2°n/332°2n/33 23n/33 e

The Master Theorem

Theorem 4.1
Leta > 1and b > 1 be constants, let f(n) be a function, and
let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by [n/b] or [n/b]
T(n) can be bounded asymptotically in three cases:
1. If f(n) =O(n'%=<) for some constant € >0, then T(n) = @(n'°%?2),
If f(n) = ®(n'%2), then T(n) = A(n'°%2lg n).
3. If f(n)=Q(n'"°%2*¢) for some constant ¢ > 0,
and If, for some constant ¢ < 1 and all sufficiently large n,

we have a-f(n/b) < c f(n), then T(n) = O(f(n)).

N

Quicksort

 Quick sort
» Correctness of partition
- loop Invariant
 Performance analysis
- Recurrence relations

Design

» Follows the divide-and-conquer paradigm.

» Divide: Partition (separate) the array A[p .
two] (possibly empty) subarrays A[p .. g-1] a
.. r].

» Each element in Alp .. g-1] < Alq].
» Alg] < each element in A[g+1 .. r].
» Index q is often referred to as a pivot.

» Conquer: Sort the two subarrays by recursive
to quicksort.

» Combine: The subarrays are sorted in place -
work is needed to combine them.

» How do the divide and combine steps of quick
compare with those of merge sort?

Pseudocode

Quicksort(A, p, r) Partition(A, p,)
If p <rthen X, 1 ==A[r],p-1;

q := Partition(A, p, 1); forj:=ptor—1do
Quicksort(A, p, g —1); iIf A[j] < xthen
Quicksort(A, g+ 1,r1) 1=i+1
fi Afi] « A[j]
fi
Alp .. 1] od;
" ~ Afi + 1] & AJr];
N 5 returni + 1

t ot
|] 1 Alp..q-1] A[g+1..1]
Partition ‘ | 5

\ R
<5 >5

initially:

next iteration:

next iteration:

next iteration:

next iteration:

Example

p r
25839417106

]
25839417106
I
25839417106

I
25839417106
L)

25389417106
L)

note: pivot

Partition(A, p,)
X, 1 :=A[r],p-1,;
forj.=ptor-1do

If A[j] < xthen
=1+ 1;
Ali]l & AJj]

fi
od;
Ali + 1] & Alr];
returni + 1

Example (Continued)

next iteration: 25389417106
I
next iteration: 25389417106
|]
next iteration: 253 ?1 0 8 J1 7 10 6 Partition(A. b. r)
X, 1 :=A[r],p-1,;
next iteration: 25341897106 forj:i=ptor—-1do
i j IfA[j] < xthen
=1+ 1;
next iteration: 25341897106 Ali] < A[j]
[| fi
. . od;
next iteration: 2534 1 8 97 10 6 Ali + 1] < A[r]:
! J returni +1

after final swap: 25341697108
i J

Partitioning

» Select the last element A[r] in the subarra
as the pivot - the element around which to
partition.

» As the procedure executes, the array is part
into four (possibly empty) regions.
1.
2.
3.
4.

» The above hold before each iteration of the for

loop, and constitute a [oop invariant. (4 is not pas
the LI - loop invariant.)

A[p .. i] — All entries in this region are < pivot.
Ali+1 .. j - 1] — All entries in this region are > pivo
A[j .. r- 1] — Not known how they compare to pivc
A

r] = pivot.

Correctness of Parti

e loop invariant.
itialization:
Before first iteration

Alp.. ilJand A[i +1 .. j- 1] are empty - Conds.
2 are satisfied (trivially).
r is the index of the pivot - Cond. 4

. i<fied Partition(A, p, I)
1S satistied. X, i =A[r].p—1:
Cond. 3 trivially holds. forj:=ptor—1do
Maintenance: ITAl] < x then
. 1=1+1;
Case 1: A[j] > x Ali] < AJj]
Increment j only. fi
: . . od;
LI is maintained. Al + 1] & AJT]:
returni+1

Correctness of Partition

Case 1: A[j] > x

p i j

L] HEEN |
— NG J
' I
<X > X
p i j
— U 4
' Il

<X > X

Correctness of Partition

» Case 2: Alj] < x

» Increment i

» Swap A[i] and A[j] « Condition 3 is

» Condition 1 is maintained.

» Increment j

» Condition 2 is maintained.

» A[r] is unaltered.

maintained.

p |
|| IIII<X
— /\\
'l
<X
p : J
— O~ —

> X

Correctness of Parti

When the loop terminates, j = r, so all elemen
partitioned into one of the three cases:

A[p .. i] < pivot
Ali+1..r-1] > pivot

A[r] = pivot
The last two lines swap A[i + 1] and A[r].

Pivot moves from the end of the array to between
two subarrays.

Thus, procedure partition correctly performs the
step.

Recursion tree for
worst-case partition

/

\1

/\\ n+(n-1) +...+1=n(n+1)/

Worst-case Partition Analy

n Running time for

/ \\ partition at each re

n-1 pivot 0o T(N)=Th-1)+T

DN, T

n-2 pivot 0 =Y . O
AR = O(Zcsio0 k)
n-3 pivot 0 = 0(n%)

Best-case Partitioning

» Size of each subproblem < n/2.
» One of the subproblems is of size | n/2
» The other is of size [n/2]-1.
» Recurrence for running time
» T(n) <2T(n/2) + PartitionTime(n)
=2T(n/2) + ®(n)
» T(n) =0(nlgn)

verage-case Partitic

Average case: Worst cases and best cases interleaving

n

/
0 pivot n-1
(n—2)/2 pivot (n—2)/2

" NG PN

0 pivot (n—-2)/2-1 0 pivot (n—-2)/2-1

\ Average case time complexity: < 2nlog n

Heapsort

* What Is a heap? Max-heap? Min-heap?
» Maintenance of Max-heaps
- MaxHeapify
- BuildMaxHeap
« Heapsort
- Heapsort
- Analysis
* Priority queues
- Maintenance of priority queues

ata Structure Binan

ngth[A] - number of elements in array A.

eap-size[A] - number of elements in heap storec
heap-size[A] < length[A]

Searching the tree in breadth-first

fashion, we will get the arra
G @y 5) 6

Data Structure Binary Hea

- Array viewed as a nearly complete binary t
- Physically - linear array.
- Logically - binary tree, filled on all levels (except

- Map from array elements to tree nodes and v
versa

- Root - A[1], Left[Root] - A[2], Right[Root] - A[3]
- Left[i] - A[2i]

- Right[i] - A[2i+1] Al2] /\. Al3]
N\

- Parent[i] - A[Li/2]] S AL

Heap Property (Max and M

» Max-Heap

» For every node excluding the root, the value
that node is at most that of its parent: A[par
Ali]
» Largest element is stored at the root.
» In any subtree, no values are larger than the
value stored at subtree’s root.
» Min-Heap
» For every node excluding the root, the value store
that node is at least that of its parent: A[parent]i]]
Ali]
» Smallest element is stored at the root.

» In any subtree, no values are smaller than the va
stored at subtree’s root

Heapsort(A)

HeapSort(A)

1. Build-Max-Heap(A)

2. for i < length[A] downto 2
3. do exchange A[1] <> A[i]
4, heap-size[A] <~ heap-size[A] - 1
5 MaxHeapify(A, 1)

Procedure MaxHeapify

MaxHeapify(A, i)
1. 1 < left(i) (* A[l] is the left child of A[i] .*)
2. 1 <« right(i)

3. If | < heap-size[A] and A[l] > Ali]

4. then largest < |

5. else largest < |
6
7
8
9

. 1f r < heap-size[A] and A[r] > A[largest]
then largest < r
S —————,————,———e—e-
then exchange A[i] <> A[largest]
10. MaxHeapify(A, largest)

A[largest] must be
the largest among
A[1], A[l] and Alr].

Building a heap

e MaxHeapify to convert an array A into a m

ow?

all MaxHeapify on each element in a bottom-u
anner.

BuildMaxHeap(A)

1. heap-size[A] « length[A]
2. for i « Llength[A]/2] downto 1 (*A[Llength[A]/2] +1],
3. do MaxHeapify(A, i) A[llength[A]/2] +2],

... are leaf nodes.*)

Heapsort - Examp

1712018124 119|13 /12|14 | 11

2 3 4 5 6 7 8 9 10

Build-Max-heap

Running Time of BuildMaxH

Tighter Bound for T(BuildMaxHeap)

T(BuildMaxHeap)

o™ n
S| o [om)

Can build a heap from an unordered array in line

T (1-1/2)
=2

x = 1in (A.8)

Priority Queue

pular & important application of heaps.
ax and min priority queues.

aintains a dynamic set S of elements.
ach set element has a key - an associated v

Goal is to support insertion and extraction
efficiently.

Applications:

Ready list of processes in operating systems by the
priorities - the list is highly dynamic

In event-driven simulators to maintain the list of
to be simulated in order of their time of occurr

Basic Operations

erations on a max-priority queue:

Insert(S, x) - inserts the element x into the queue S
S« Su{x}.
Maximum(S) - returns the element of S with the larg

Extract-Max(S) - removes and returns the element of
the largest key.

Increase-Key(S, x, k) - increases the value of element
to the new value k.

Min-priority queue supports Insert, Minimum, Extr
Min, and Decrease-Key.

Heap gives a good compromise between fast inse
but slow extraction and vice versa.

Priority queue as max-heap:

2
2 2

18) (D) (9 (3
12) (19)(w

Heap-Extract-Max(A)

Implements the Extract-IVax operation.

Heap-Extract-Max(A)

if heap-size[A] < 1

then error “heap underflow”

. max < A[1]

. heap-size[A] < heap-size[A] - 1

. MaxHeapify(A, 1)

. return max

1.
2
3
4. A[1] « A[heap-size[A]]
5
6
7

Running time :

Dominated by the running time of MaxH

=0O(lg n)

Heap-Insert(A, key)

Heap-Insert(A, key)

1. heap-size[A] <~ heap-size[A] + 1
2. 1 < heap-size[A]

4. while i > 1 and A[Parent(i)] < key
5. do A[i] < A[Parent(i)]
6
7

: i < Parent(i)
. A[i] « key

Running time is O(lg n)
The path traced from the new leaf to the root has
length O(lg n).

Heap-Increase-Key(A, i1, k

Heap-Increase-Key(A, I, key)

1 Ifkey <AJi]

2 then error “new key is smaller than the current key”
3 A[i] « key

4 while1>1and A[Parent[i]] < Ali]

5 do exchange A[i] <> A[Parent[i]]

6 | < Parent][i]

Heap-Insert(A, key)

1 heap-size[A] < heap-size[A] + 1

2 Alheap-size[A]] « —

3 Heap-Increase-Key(A, heap-size[A], key)

Binary Search Trees

* What Is a binary search tree?
* Tree searching

* Inorder traversal of a binary search tree
* Find Min & Max
 Predecessor and successor
« BST insertion and deletion

Binary Search Tree

¢+ Stored keys must
satisfy the binary
search tree

property.
» V yin left subtree @ @

of x, then key[y] <
key|[x]. @ @ @
» YV v in right subtree

of x, then keyly] > (12) (24) (27)

key|[x].

213
©

Tree Search

Tree-Search(x, k)

1. if x = NIL or k = key[x]
2. then return x

3. if k < key[x]

7(1) then return Tree-Search(left[x],

I5<) else return Tree-Search(right[x],

Running time: O(h)

Aside: tail-recursion

Ilterative Tree Search

lterative-Tree-Search(x, k)
1. while x = NIL and k #
key[x]

2. doif k < key[X]

3. then x « left[x]
4., else x « right[x]
5. return x

The iterative tree search is more efficient on most computers.
The recursive tree search is more straightforward.

Inorder Traversal

The binary-search-tree property allows the keys of a bind
tree to be printed, in (monotonically increasing) order, re

Inorder-Tree-Walk (x)

1. if x = NIL

2. then Inorder-Tree-
Walk(left[x])

3. print key[x]

4, Inorder-Tree-Walk(right[x])

Finding Min & Max

+The binary-search-tree property guarantees that:
» The minimum is located at the left-most node.
» The maximum is located at the right-most node.

Tree-Minimum(x) Tree-Maximum(x)

1. while left[x] = NIL 1. while right[x] # NIL
2. do x « left[X] 2. do x « right[x]
3. return x 3. return x

Q: How long do they take? | |

Predecessor and Successo

» Predecessor of node x is the node vy such that k
greatest key smaller than key|[x].

» Successor of node x is the node vy such that key|
smallest key greater than key|x].

» The successor of the largest key is NIL.

» Search consists of two cases.
» If node x has a non-empty right subtree, then x’s
successor is the minimum in the right subtree of
» If node x has an empty right subtree, then:
» As long as we move to the left up the tree (move up thrc
right children), we are visiting smaller keys.
» X’s successor v is the node that is the predecessor of x (
maximum in y’s left subtree).
» In other words, x’s successor vy, is the lowest ancestog
left child is also an ancestor of x or is x itself.

Successor

Case 1: x has a non-empty Case 2: x has an empt
right subtree. right subtree.

successor —‘\»/‘

KX |

|

SUCCeSSOor

Pseudo-code for Successo

Tree-Successor(x)

1.
2.

S

if right[x] = NIL

then return Tree-
Minimum(right[x])

y < plx]
while y # NIL and x = right[y]
dox «vy

y < plyl
return y

Code for predecessor Is symmetric.

Running time: O(h)

BST Insertion - Pseudoco

» Change the dynamic set
represented by a BST.

» Ensure the binary-search-tree
property holds after change.

» Insertion is easier than
deletion.

()
5

() V() @ @
6 0b @

Tree-Insert(T, z)
y < NIL
X < root[T]
while x # NIL
doy« x
if key[z] < key|[X]
then x < left[x]
else x < right[x]

© o NS U AW N =

plz] <y

if v = NIL
10. then root[T] < z
11, else if key[z] < key[y]
12. then left[y] < z
13. else right[y] « z

Tree-Delete (T, z)

if z has no children ¢ case 1
then remove z

if z has one child ¢ case 2 a ﬁ
then make p[z] point to child

if z has two children (subtrees) ¢ case 3
then swap z with its successor
perform case 1 or case 2 to delete it

— TOTAL: O(h) time to delete a node

Tree-Delete (T, 2)

Illustration for case 3:

exchange ©

7
7
\\ /7
\\\ Vi
;'\‘
7
e
'

successor(z)

Deletion - Pseudocode

Tree-Delete(T, z)

/* Determine which node to splice out: either z or z’s successor.
*/

1. if left[z] = NIL or right[z] = NIL

2. then y«z /*Case 1 or Case 2%/

3. elsey @x]:ree-Successor[z] /*Case 3%/

/* Set x to a non-NIk child of y, or to NIL if y has no children. */

4. if left[y] = NIL /*y has one child or no child.*/

5. then x « left[y]\\\ /*x can be a child of y or NIL.*/

6. else x < right[y] .

/* vy is removed from the tree by mampulatlng pointers of ply]
and x */ y is the node be deleted, which

7 if x = NIL has at most one child.

8. then p[x] < plv]

. . "x is the unique child of v.
/* Continued on next slide */ - 2

Deletion - Pseudocode

Tree-Delete(T, z) (Contd. from previous slide)

9. if p[y] = NIL /*if y is the root*/
10. then root[T] < x

11, else if vy = left[p[v]] /*y is a left child.*/
12. then left[p[v]] < x

13. else right[p[v]] < x

/* If z’s successor was spliced out, copy its data into z */
14, ify-z /*y 1s Z’s successor.™/
15. then key[z] < key|y]

16. copy Vv’s satellite data into z.
17. returny

Red-Black Trees

* What is a red-black tree?
- node color: red or black
- nil[T] and black height

 Subtree rotation

* Node insertion

* Node deletion

Red-black Tree — Exam

oW

Red-black Properties

Every node is either red or black,
The root is black.

Every virtual leaf (nil) is black,
If a node iIs red, then both its children ar
black.

For each node, all paths from the node to
descendant leaves contain the same numb
nlack nodes.

Height of a Red-black Tre¢

» Height of a node:

» h(x) = number of edges in a longest pat
leaf.

» Black-height of a node x, bh(x):

» bh(x) = number of black nodes (including
on the path from x to leaf, not counting x

» Black-height of a red-black tree is the black-
of its root.

» By Property 5, black height is well defined.

eight of a Red-black

eight of a node:

h(x) = # of edges in a
longest path to a leaf.
Black-height of a hode bh(x)
= # of black nodes on path

from x to leaf, not counting
X.

How are they related?
bh(x) < h(x) < 2bh(x)

Lemma “RB Height”

Consider a node x in an RB tree: The longe
descending path from x to a leaf has lengt
which is at most twice the length of the s
descending path from x to a leaf.

Proof:
black nodes on any path from x = bh(x) (prc
< # nodes on shortest path from x, s(x). (prop
But, there are no consecutive red (prop 4),

and we end with black (prop 3), so h(x) < 2 bh
Thus, h(x) < 2s(x). QED

Bound on RB Tree Height

» Lemma: The subtree rooted at any node x has
> 2bhX—1 internal nodes.

» Proof: By induction on height of x, h(x).

» Base Case: Height h(x) =0 = x is a leaf = bh(x) =0.
Subtree has 29-1 = 0 nodes.

» Induction Step: Assume that for any node with height
lemma holds.

Consider node x with h(x) = h > 0 and bh(x) = b.

» Each child of x has height at most h - 1 and
black-height either b (child is red) or b - 1 (child is bla

» By ind. hyp., each child has > 26/x-1—-1 jnternal nodes

» Subtree rooted at x has >2(2bhx)-1—-1) +1
= 2bhx) — 1 internal nodes. (The +1 is for x itself.)

Bound on RB Tree Height

number of - number of -

black nodes black nodes

=b - =b-1
number of internal > 9b.q number of internal > ob-1_
nodes of T,

1 nodes of T,

umber of internal nodesof T > |T,| + |T,| +1
> (2b6—-1)+(2°-1-1)+

Bound on RB Tree Height

» Lemma: The subtree rooted at any node
> 2bh(x)-1 internal nodes.

» Lemma 13.1: Ared-black tree with n inte
nodes has height at most 2lg (n+1).

» Proof:

» By the above lemma, n >2bh -1,
» and since bh > h/2, we have n > 22 -1,
»= h<2lg(n +1).

Rotations

Left-Rotate(T, x)»
a Right-Rotate(T, y) /4
g7 a p

Left Rotation - Pseudo-co

Left-Rotate (T, x)
1. y<« right[x] //Sety.

2. right[x] « leftly] //Turn y’s left subtree ginto x’s right
subtree.

if left[y] = nil[T]
then p[left[y]] < x //Set x to be the parent of left[y] = B.

plv] < p[x] //Link x’s parent to .
if p[x] = nil[T] //If xis the
then root[T] < vy Left-Rotate(T, x)

else if x = left[p[x]]
then left[p[x]] <« v
else right[plx]] <y P .
leftly] < x // Put x as y’s left child.

- plx] <y

a Right-Rotate(T, y)

Insertion in RB Trees

» Insertion must preserve all red-black properties
» Should an inserted node be colored Red? Elack!
» Basic steps:

» Use Tree-Insert from BST (slightly modified) to
node z into T.

» Procedure RB-Insert(z).
» Color the node z red.

» Fix the modified tree by re-coloring nodes and
performing rotation to preserve RB tree property.

» Procedure RB-Insert-Fixup.

Insertion

RB-Insert(T, z) RB-Insert(T, z) Contd.
1 y < nil[T] 14. left[z] < nil[T]
2 X < root[T] 15. right[z] < nil[T]
3. while x = nil[T] 16. color[z] « RED
4 doy « x 17. RB-Insert-Fixup(T, z)
5. if key[z] < key[x]
6 then x < left[x]
7 else x « right[x] How does it differ from the
& plzl«vy Tree-Insert procedure of BST
o Ty= Which of the RB propertie
10. then root[T] < z) -
. R might be violated?
then left[y] <z Fix the violations by calli
else right[y] < z RB-Insert-Fixup.

Insertion - Fixup

RB-Insert-Fixup (T,) z s.parent is the left child
of its own parent

1. while color[p[z]] = RED Nz

2. dp'i'f pl[z] = left|p[p[z]]] //for cases 1 - 3
" theny « right[p[p[z]]]
if color[y] = RED

then color[p[z]] < BLACK //Case 1
color|y] < BLACK // Case 1
color[p[p[z]]] <« RED //Case 1

z < p[plz]] // Case 1

Case 1: ‘/.\' ‘/‘ «— Change this node
y =—> \‘ Y keep the numk

nodes not i

N o A w

Insertion - Fixup

RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p[z]] I/ color[y] # RED
10. then z < p|z] // Case 2

11. LEFT-ROTATE(T, z) //Case 2

12. color[p[z]] « BLACK //Case 3

13. color[p[p|[z]]] « RED // Case 3

14. RIGHT-ROTATE(T, p[p[z]]) // Case 3
15. else (if p[z] = right[p[p[z]]]) (for cases 4 — 6, same
16. as 3-14 with “right” and “left” exchanged)

17. color[root[T]] « BLACK

Deletion

» Deletion, like insertion, should preserve
RB properties.

» The properties that may be violated depe
the color of the deleted node.

» Red - OK. Why?
» Black?
» Steps:
» Do regular BST deletion.

» Fix any violations of RB properties that ma
caused by a deletion.

Deletion

RB-Delete(T, z)
1. if left[z] = nil[T] or right[z] = nil[T]
theny < z
else y <— TREE-SUCCESSOR(z)
if left[y] = nil[T]
then x < left[y]
else x <— rightly]
p[x] <— ply] // Do this, even if x is nil[T]

N o A W DN

Deletion

RB-Delete (T, z) (Contd.)

8. 1fply] = nil[T]
9. thenroot[T] « X

10. elseify = left[p[y]] (*ify is a left child.*)

11. then left[p[y]] <« X

12. else right[p[y]] <« x (*Ifyis aright

13.1fy = z child.*)

14. then key[z] « key[y] The node pas

15. copy Y’s satellite data | the fixup routi
Into z " the only child

16. if color[y] = BLACK / spliced up n

17. then RB-Delete-Fixup(T, X) the sentin

18. returny

Deletion - Fixup

RB-Delete-Fixup(T, x)
1. while x # root[T] and color[x] = BLACK
2 do if x = left[p[x] // for cases 1 - 4
3 then w « right[p[x]]
4, if color[w] = RED // Case 1
5 then color[w] « BLACK // Case 1
6 color|[p[x]] « RED // Case 1
7 LEFT-ROTATE(T, p[x]) //Case 1
1 w « right[p[x]] // Case 1

left rotation

RB-Delete-Fixup(T, x) (Contd.)
/* xis still left[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] = BLACK

10. then color[w] < RED // Case 2

11. X < p[X] // Case 2
12. else if color[right[w]] = BLACK // Case 3
13. then color[left[w]] < BLACK // Case 3
14. color[w] < RED // Case 3
15. RIGHT-ROTATE(T, w) // Case 3
16. w <« right[p[x]] // Case 3

Case 2: Case 3:
new X C
Q %
X W X W X

RB-Delete-Fixup(T, x) (Contd.)
[* x is still left[p[x]] */
17. color[w] < color[p[x]] // Case 4
18. color[p[x]] « BLACK // Case 4
19. color[right[w]] < BLACK // Case 4
20. LEFT-ROTATE(T, p[x]) // Case 4
21. X < root[T } // Case 4
22. elseh(for Eiases 5 -8, sarie- -as. lmes 3 - 21 with “right” and “left”
exchanged)
23. color[x] « BLACK > to go out the while-loop
Case 4.
—— >
0] X
e
(0]

Elementary Graph Algorithms

» Graph representation

 Graph traversal
- Breadth-first search
- Depth-first search

e Parenthesis theorem

Graphs

* Types of graphs

» Undirected: edge (u, v) = (v, u); forall v, (v, v
self loops.)

» Directed: (u, v) Is edge from u to v, denoted as
Self loops are allowed.

» Weighted: each edge has an associated weight, g
a weight function w : £ — R. (R —set of all poss
numbers)

» Dense: |E| ~ |V,
» Sparse: |E| << [V/|°.
[E| = O(IVF)

Graphs

» If (u, v) € E, then vertex v is adjacent to
» Adjacency relationship is:

» Symmetric if G is undirected.

» Not necessarily so if G is directed.

» If an undirected graph G is connected:
» There is a path between every pair of vertices.
» |[E| > |V] - 1.
» Furthermore, if |E| = |V| -1, then G is a tree.

+ |If a directed graph G is connected:

» Its undirected version is connected.
+ Other definitions in Appendix B (B.4 and B.5) as needed.

Representation of Graph

» Two standard ways.

» Adjacency Lists.

e @ a b d

. b a c

» Adjacency Matrix. ‘ C d | T—|a
(O—d

d a | T—c

e =
O O KN
P OPR FPW
O ORrih

Storage Requirement

» For directed graphs:
» Sum of lengths of all adj. lists is
2., yout-degree(v) = 2., in-degree(v) = |

No. of edges leaving v
» Total storage: O(|V| + |E|)

» For undirected graphs:

» Sum of lengths of all adj. lists is

>.degree(v) = 2| E|

veV No. of edges incident on v. Edge (u,v) is
\on vertices u and v.

» Total storage: ®(|V| + |E|)

Sparse Matrix

0123
0|13 010
110 0 0 O
210 2 4 1
3]1 0 01

row0 row?2 ro
Nonzero values data]] {31 2 4 1 1

Column indeces col_index([] {02 1 2 3 0 3

Row pointers row_ptr[] {02 2 5 7}

o
—i o0
= ({®)
COoOA 1O HO O - o —
~NlooHdoooooo — L0 o
looHoOoO dHO H O — 00 ~—
Noo-do Ao o o o — < N
O —dOdO0OO0O0OO — P~ —
nmoH oo ocoo oo — O ~—
n — Lo o
O N1 oo oooo oo - < —
e Al OO0 o o0cococoo - o™ <t
e cloocoocoocoococooo — N N
G — —i o
O A NMS< LD © I~
(Vg
-
| | | | | |
a | I— L | N—
Q 5 S 9
T .9 S
S d .._ﬁua m
o)
=
z 8
S S
@)
| -
o)
N
c
o
Z

\

Graph storage in a data file on hard disk

graph.txt

(ay—(b)
W
G’A@

Breadth-first Search

» Input: Graph G = (V, E), either directed or u
and source vertex s c V.
» Output:

» d[v] = distance (smallest # of edges, or shortest path
v, for all v e V. d[v] = « if vis not reachable from s.

» z{v] = u such that (u, v) is last edge on shortest path
» u is v’s predecessor.

» Builds breadth-first tree with root s that contains all rea
vertices.

Definitions:
Path between vertices u and v: Sequence of vertices (vq, V,, ..
v, and v =v,, and (v;, vi,,) € E, forall 1<i<k-1.
Length of the path: Number of edges in the path.
Path is simple if no vertex is repeated.

., Vi) such th

Breadth-first Search

» Expands the frontier between discovered
undiscovered vertices uniformly across th
of the frontier.

» A vertex is “discovered” the first time it
encountered during the search.

» A vertex is “finished” if all vertices adjac
it have been discovered.

» Colors the vertices to keep track of progress.
» White - Undiscovered.

» Gray - Discovered but not finished.
» Black - Finished.

BFS for Shortest Paths

BFS(G,s)

for each vertex u in V[G] - {s}
do color[u] < white
du] « «
n[u] <« nil
color[s] « gray
d[s] « O
n[s] < nil
Q«—d
enqueue(Q, s)
while Q = @
do u < dequeue(Q)
for each v in Adj[u] do
if color[v] = white
then color[v] < gray
d[v] « d[u] + 1
n[v] < u
enqueue(Q, v)

color[u] « black

initialization

dCCesSS Source S

Q: a queue of di
vertices
color[v]: color of
d[v]: distance from
n[u]: predecessor o

Example (BFS)

BFS(G,s)

1.
2
3
4
5
6
/
8

9

10 while Q # @

11
12
13
14
15
16
17
18

for each vertex u in V[G] — {s}
do color[u] < white
du] « o<
n[u] < nil
color[s] « gray
dfs] <« O
nt[s] « nil
Qo
enqueue(Q, s)

do u < dequeue(Q)
for each v in Adj[u] do
if color[v] = white
then color[v] < gray
d[v] « dfu] +1
n[v] < u
enqueue(Q, v)
color[u] < black

Depth-first Search (DFS)

» Explore edges out of the most recently
discovered vertex v. %

» When all edges of v have been explored, bac
to explore other edges leaving the vertex fro

which v was discovered (its predecessor). V
» “Search as deep as possible first.”

» Continue until all vertices reachable from the
original source are discovered.

» If any undiscovered vertices remain, then one o
them is chosen as a new source and search is
repeated from that source.

Depth-first Search

» Input: G = (V, E), directed or undirected. No
vertex given!

» Output:

» 2 timestamps on each vertex. Integers between 1
» d[v] = discovery time (v turns from white to gray)
» f [v] = finishing time (v turns from gray to black)

» nt[v] : predecessor of v = u, such that v was discovere
the scan of u’s adjacency list.

» Coloring scheme for vertices as BFS. A vertex is

» “undiscovered” (white) when it is not yet encountered.

» “discovered” (grey) the first time it is encountered during th
search.

» “finished” (black) if it is a leaf node or all vertices adja
have been finished.

Pseudo-code

DFS(G DFS-Visit(u)
. for each vertex u e V[G] 1. color[u] <~ GRAY // White vertex u

do color[u] < white has been discovered
n[u] < NIL time « time + 1
d[u] <« time

for each v e Adj[u]
do if color[v] = WHITE
then n[v] <« u
DFS-Visit(v)
color[u] <~ BLACK // Blacken u;
it is finished.
Q. flu] < time <« time +1

. for each vertex u € V[G]
do if color[u] = white
then DFS-Visit(u)

1
2
3
4. time < 0
5
6
7

o L

Uses a global timestamp time.

Example (DFS)

DFS-Visit(u)

1. color[u] <~ GRAY // White vertex u
has been discovered

time < time + 1
d[u] < time
for each v e Adj[u]
do if color[v] = WHITE
then n[v] <« u
DFS-Visit(v)
color[u] <~ BLACK // Blacken u;
it is finished.
Q. flu] < time < time + 1

CEl

Example (DFS)

DFS(G)
1. for each vertex u € V[G]
2 do color[u] < white
3 nfu] < NIL

4. time « 0

5. for each vertex u e V[G]
6 do if color[u] = white
7 then DFS-

Visit(u)

Example (DFS)

DFS-Visit(u)
1. color[u] <« GRAY // White vertex u
has been discovered
time «<— time + 1
d[u] « time
for each v € Adj[u]
do if color[v] = WHITE
then w[v] < u
DFS-Visit(v)
color[u] <~ BLACK // Blacken u;
it is finished.
Q. flu] < time < time + 1

GO

Depth-First Trees

* Predecessor subgraph defined slightly differe
that of BFS.

¢ The predecessor subgraph of DFSisG_= (V, E
E_={(r[v], v) : v € Vand r|v] # nil}.
» How does it differ from that of BFS?
» The predecessor subgraph G_forms a depth-first forest

composed of several depth-first trees. The edges in E_a
called tree edges.

Definition:
Forest: An acyclic graph G that
may be disconnected.

Parenthesis Theorem

Theorem 22.7
For all u, v, exactly one of the following holds:

1. d[u] <f [u] <d[v] < f[v] or d[v] < f [v] <d[u] < f [u] and neither u
nor vis a descendant of the other in the DF-tree.

2. d[u] <d[v] <f [v] <f [u] and vis a descendant of u in DF-tree.
3.d[v] <d[u] <f [u] <f [v] and u is a descendant of v in DF-tree.

¢ So d[u] <d[v] < f [u] < f[v] cannot happen.
* Like parentheses:

¢« OK:O)[I(IDIO] ()
¢ NotOK: ([)1[(1) div] f[v]
Corollary ([!

v IS a proper descendant of u if and only if d[u] <d[v] < f

([)
diu] f[u]

Parenthesis Theorem

Case 1: Case 2:

S U g (d[u], f[u])
u ® vV

(dful, flu]) ~ (dIv], f[v])

or y
v u (dlv], 1[v])

(dlvl, flvl) (dlu], f[u])

Example (Parenthesis Theor

(s (z(y (xx)y) (Ww) z)s) (t(vv) (uu)t)
1<2<3<4<5<6<7<8<9<10 11<12<13<14<15<16

In general, if we use ‘(V’ to represent d[Vv], and ‘v)’ to represen
the inequalities in the Parenthesis Theorem are just like par
In an arithmetical expression.

White-path Theorem

Theorem 22.9

vis a descendant of u in DF-tree if and only if at time d[u],
v consisting of only white vertices.
(Except for u, which was just colored gray.)

there is apath u

é(d[u] flu])
V

° (d[v], f[v])

Classification of Edges

» Tree edge: in the depth-first forest. Found b
(u, v).

» Back edge: (u, v), where u is a descendant of
depth-first tree).

» Forward edge: (u, v), where v is a descendant o
but not a tree edge.

» Cross edge: any other edge (u, v) such that uisn
descendant of v (in the depth-first tree) and vicki

Theorem:
In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

|dentification of Edges

» Edge type for edge (u, v) can be identified when it is
explored by DFS. SQn...

» ldentification is based on the color of v.
» If vis white, then (u, v) is a tree edge. ,
» If vis gray, then (u, v) is a back edge. Yy

» If vis black, then (u, v) is a forward or cross edge.

[d(u), f(u)] [d(u), f(u)] [d(v), (V)]

[d(v), f(v)]
d(v), fv)] @ [d(u), ()] &
[d(v), f(v)

Graph Algorithms - 2

e DAGS

 Topological order
« Recognition of strongly connected components

Directed Acyclic Graph

» DAG - Directed Acyclic Graph (directed graph wit
cycles)

» Used for modeling processes and structures that
partial order:

» Let a, b, c be three elements in a set U.
»a>band b >c=a>c. (Transitivity)
» But may have a and b such that neither a > b no

» We can always make a total order (either a>b or b
all a = b) from a partial order (by imposing a relatio
any two elements whose relation is not specified witl
original partial order, as long as the transitivity of t
partial order not violated.)

Example

DAG of dependencies for putting on goalie equipm

hose @t pa
G G
ské@ m;sE

eg @ =@glove

Topological Sort

¢ Performed on a DAG.

¢ Linear ordering of the vertices of G(V, E) s
if (u, v) € E, then u appears somewhere b

Topological Sort

Sort a directed acyclic graph (DAG) by the nodes’ finis

@H

Think of original DAG as a partial order.

By sorting, we get a total order that extends this parti

Topological Sort

» Performed on a DAG.

» Linear ordering of the vertices of G such that if (u,
then u appears somewhere before v.

Topological-Sort (G)
1. call DFS(G) to compute finishing times f[v] for all v € V
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(|V| +|E|).

Example 1

A B D
C E
Linked List:

*eee

Correctness Proof

» Just need to show if (u, v) € E, then f[u] > f[v].
» When we explore (u, v), what are the colors of u and v/
» U is gray.
» Is vwhite?
» Then becomes descendant of u.
» By parenthesis theorem, d[u] < d[v] < f[v] < flu].
» Is vblack?
» Then vis already finished.

» Since we’re exploring (u, v), we have not yet finished u.

» Therefore, f[v] < fl[u].
» Is vgray, too?

» No.

» because then v would be ancestor of u = (u, v)isa b

» = contradiction of Lemma 22.11 (dag has no bac

d(u), f(y d(u), W] o A, f(v)]/;
[d(v). f(v)] /

V), V)] @ 1), fu)] &
[d(v), (V)]

Example:

[1, 4]
2, 3] /

Strongly Connected Compon

» G is strongly connected if every pair (u, v
vertices in G is reachable from one anothe

» A strongly connected component (SCC) of
maximal set of vertices C — V such that for
e C, both u ~» vand v ~ u exist.

Component Graph

b GSCC = (V/SCC, EFSCOy,
» V5CC has one vertex for each SCC in G.

» E°CC has an edge if there’s an edge between the
corresponding SCC’s in G.

» G>Cfor the example considered:

G>Cis a DAG

Lemma 22.13

Let C and C’ be distinct SCC’sin G, letu,ve C,u’, v € C’, and
suppose there is a path u ~ u’" in G. Then there cannot also be a path V'’
~ Vv in G.

Proof:
» Suppose there is a path v-~vin G.
» Then there are paths u ~u'~~v' and v A~y ~A~u in

» Therefore, u and v’ are reachable from each other, so t
are not in separate SCC’s.

C:

Transpose of a Directed Gr

» G’ =transpose of directed G.
»G"=(V,ET), ET ={(u, v) : (v, u) € E}.
» G' is G with all edges reversed.

» Can create G" in O(| V| +|E|) time if using
adjacency lists.

» G and G’ have the same SCC’s. (u and v are
reachable from each other in G if and only if
reachable from each other in G'.)

Algorithm to determine SC

SCC(G)
1. call DFS(G) to compute finishing times f[u] for all u

2. compute G’

3. call DFS(G"), but in the main loop, consider vertices in
order of decreasing f[u] (as computed in the first DFS)

4. output the vertices in each tree of the depth-first forest
formed in the second DFS as a separate SCC

Time: O(|V| +|E|).

Example

‘-/10 -9

\

Example

‘-/10 -9

\

SCCs and DFS finishing tim

Lemma 22.14
Let C and C' be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v) € E such thatu € C and v eC’. Then f(C) > f(C’).

Proof:
» Case 1: d(C)<d(C)
» Let x be the first vertex discovered in C.

» At time d[x], all vertices in C and C' are
white. Thus, there exist paths of white
vertices from x to all vertices in C and C'.

» By the white-path theorem, all vertices in C
and C’' are descendants of x in depth-first
tree.

» By the parenthesis theorem, f [x] = f (C) > d(C) = min,_c{d[u]})
ue

e f(C) = max,_c{f [u]}
d(x) < d(v) < f(v) < f(X)

SCCs and DFS finishing timt

Lemma 22.14
Let C and C' be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v) € E such thatu € C and v eC’. Then f(C) > f(C’).

Proof:

» Case2:d(C) >d(C)

>
>

Let y be the first vertex discovered in C'. C

At time d[y], all vertices in C' are white and there

is a white path from y to each vertex in C' = all o

vertices in C' become descendants of y. Again, fly] u —Q
=f(C)). N .V
At time d[y], all vertices in C are also white. y
By earlier lemma, since there is an edge (u, v), w

cannot have a path from C' to C. '

So no vertex in Cis reachable from y.

Therefore, at time f[y], all vertices in C are still d(C) = minUeC{d[u]})
white. f(C) = max, { flu]}

Therefore, for all v € C, fl[v] > fly], which implies
that f(C) > f(C').

SCCs and DFS finishing tim

Corollary 22.15
Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an
edge (u, v) € ET, whereu € Cand v € C’. Then f(C) < f(C').

Proof:
» (U v)e ET= (v, u) € E.

» Since SCC’s of G and G' are the same, f(C') > f(C), by L
22.14.

