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Advanced Algorithm Design
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Algorithm basics
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Definition of algorithms

RAM computation model

Running time of algorithms

- Worst case running time

- Average case running time

- Best case running time

- Asymptotic notations



Definition

 An algorithm is a finite sequence of

unambiguous instructions for solving a 

well-specified computational problem.

 Important Features:

 Finiteness.

 Definiteness.

 Input.

 Output.

 Effectiveness.
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RAM Model

 Run time expression should be machine-

independent.

 Use a model of computation or “hypothetical” 

computer.

 Our choice – RAM model (most commonly-used).

 Model should be

 Simple.

 Applicable.
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RAM Model

 Generic single-processor model.

 Supports simple constant-time instructions found in 
real computers.

 Arithmetic (+, –, *, /, %, floor, ceiling).

 Data Movement (load, store, copy, assignment statement).

 Control (branch, subroutine call, loop control).

 Run time (cost) is uniform (1 time unit) for all simple 
instructions.

 Memory is unlimited.

 Flat memory model – no hierarchy.

 Access to a word of memory takes 1 time unit.

 Sequential execution – no concurrent operations.
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Running Time – Definition

 Call each simple instruction and access to 

a word of memory a “primitive operation” 

or “step.”

 Running time of an algorithm for a given 

input is 

 The number of steps executed by the 

algorithm on that input.

 Often referred to as the complexity of 

the algorithm.
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Complexity and Input

 Complexity of an algorithm generally depends 

on

 Size of input.

 Input size depends on the problem.

Examples: No. of items to be 

sorted.

 No. of vertices and edges in a 

graph.

 Other characteristics of the input data.

Are the items already sorted? 

Are there cycles in the graph?
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Worst, Average, and Best-

case Complexity
 Worst-case Complexity

 Maximum number of steps the algorithm takes for any 
possible input.

 Most tractable measure.

 Average-case Complexity

 Average of the running times of all possible inputs.

 Demands a definition of probability of each input, 
which is usually difficult to provide and to analyze.

 Best-case Complexity

 Minimum number of steps for any possible input.

 Not a useful measure. Why?
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A Simple Example – Linear Search 

INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

 =

n

i 2
1
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LinearSearch(A, key)                      cost  times

1    i  1 c1 1

2   while i ≤ n and A[i] != key                    c2 x

3 do i++                                              c3 x-1

4 if i  n c4 1

5 then return true                             c5 1

6 else  return false                             c6 1

x ranges between 1 and n + 1.

So, the running time ranges between c1+ c2x+ c3(x - 1) + c4 + c6

c1+ c2+ c4 + c5 – best case

and

c1+ c2(n+1)+ c3n + c4 + c6 – worst case



A Simple Example – Linear Search 

INPUT: a sequence of n numbers, key to search for.

OUTPUT:  true if key occurs in the sequence, false otherwise.

 =

n

i 2
1
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Assign a cost of 1 to all statement executions.

Now, the running time ranges between

1+ 1+ 1 + 1 = 4 – best case

and

1+ (n+1)+ n + 1 + 1 = 2n + 4 – worst case

LinearSearch(A, key) cost        times

1    i  1 1 1

2   while i ≤ n and A[i] != key 1 x

3 do i++ 1 x-1

4 if i  n 1 1

5 then return true 1 1

6 else  return false 1 1



A Simple Example – Linear Search 

INPUT: a sequence of n numbers, key to search for.

OUTPUT:  true if key occurs in the sequence, false otherwise.

 =

n

i 2
1
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If we assume that the key is equal to a random item in the list, 

on average, statements 2 and 3 will be executed n/2 times. 

Running times of other statements are independent of input. 

Hence, average-case complexity is

1+ n/2+ n/2 + 1 + 1 = n + 3

LinearSearch(A, key) cost times

1    i  1 1 1

2   while i ≤ n and A[i] != key 1 x

3 do i++ 1 x-1

4 if i  n 1 1

5 then return true 1 1

6 else  return false 1 1



Order of growth

 Principal interest is to determine

 how running time grows with input size – Order of growth.

 the running time for large inputs – Asymptotic complexity.

 In determining the above,

 Lower-order terms and coefficient of the highest-order term are 

insignificant.

 Ex: In 7n5+6n3+n+10, which term dominates the running time for 

very large n? - n5.

 Complexity of an algorithm is denoted by the highest-order 
term in the expression for running time.

 Ex: Ο(n), Θ(1), Ω(n2), etc.

 Constant complexity when running time is independent of the input 
size – denoted Ο(1).

 Linear Search: Best case Θ(1), Worst and Average cases: Θ(n).

 More on Ο, Θ, and Ω in next classes. Use Θ for present.
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Asymptotic notations

Tight bound

Upper bound

Lower bound



-notation

(g(n)) = {f(n) : 

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define (g(n)), 

big-Theta of n, as a set:

g(n) is an asymptotically tight bound for any f(n) in the set.

Intuitively: Set of all functions that

have the same rate of growth as g(n).

g(n) = c (a constant), n, n2, n3, …



Example

 10n2 - 3n = (n2)?

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading coefficient, 
and c2 a little bigger.

 To compare orders of growth, look at the leading 
term (highest-order term).

 Exercise: Prove that n2/2-3n = (n2)

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}



Example

• Is 3n3  (n4)?

• If it is true, we can find c1, c2, and n0 such that for n 

> n0, we have

c1n
4 ≤ 3n3 ≤ c2n

4.

c1n
4 ≤ 3n3 ⇒ n ≤ 3/c1.

• It is a contradiction. So, 3n3  (n4)?

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}



Example

• How about 22n (2n)?

• If it is true, we can find c1, c2, and n0 such that for n 

> n0, we have

c12
n ≤ 22n ≤ c22

n.

22n ≤ c22
n ⇒ 2n ≤ c2⇒ n ≤ log2 c2.

• It is a contradiction. So, 22n (2n)?

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}



O-notation

O(g(n)) = {f(n) : 

 positive constants c and n0,

such that n  n0,

we have 0  f(n)  cg(n) }

For function g(n), we define O(g(n)), 

big-O of n, as the set:

g(n) is an asymptotic upper bound for any f(n) in the set.

Intuitively: Set of all functions 

whose rate of growth is the same as 

or lower than that of g(n).

f(n) = (g(n))  f(n) = O(g(n)).

(g(n))   O(g(n)).



Examples

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }

.



Examples

• Show that 3n3 = O(n4) for appropriate c and n0.

• The answer is obviously yes, since for any n > n0 = 4, we must 
have n4 > 3n3.

• Show that 3n3 = O(n3) for appropriate c and n0.

• The answer is also yes, since we can take c = 4, and for any n > n0 

= 1, we must have cn3 > 3n3.

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }



 -notation

g(n) is an asymptotic lower bound for any f(n) in the set.

Intuitively: Set of all functions 

whose rate of growth is the same 

as or higher than that of g(n).

f(n) = (g(n))  f(n) = (g(n)).

(g(n))   (g(n)).

(g(n)) = {f(n) : 

 positive constants c and n0,

such that n  n0,

we have 0  cg(n)  f(n)}

For function g(n), we define (g(n)), 

big-Omega of n, as the set:



Example

 (g(n)) = {f(n) :  positive constants c and n0, such 

that n  n0, we have 0  cg(n)  f(n)}



Relations Between , O, 



Divide and Conquer

(Merge sort)

Divide and conquer

Merge sort

- Basic merge sort

- Improved merge sort

- Running time analysis

- Correctness proof (loop invariant)



Divide and Conquer

 Recursive in structure  

 Divide the problem into sub-problems that are 

similar to the original but smaller in size

 Conquer the sub-problems by solving them 

recursively.  If they are small enough, just solve 

them in a straightforward manner.

 Combine the solutions of the sub-problems to 

create a global solution to the original problem



An Example:  Merge Sort

Sorting Problem: Sort a sequence of n
elements into non-decreasing order.

 Divide: Divide the n-element sequence to 
be sorted into two subsequences of n/2 
elements each

 Conquer: Sort the two subsequences 
recursively using merge sort.

 Combine: Merge the two sorted 
subsequences to produce the sorted answer.



Merge Sort – Example 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

2618 6 32 1543 1 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 326 15 43 1 9 

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

6 

6 

32 6 

18 26 32 6 

43

43

15

15

43 15

9 

9 

1 

1 

9 1 

43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 6 32

6 26 3218

1543 1 9 

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence



Merge-Sort (A, p, r)
INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r)   // sort A[p..r] by divide & conquer

1 if p < r

2 then q  (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r] 

Initial Call: MergeSort(A, 1, n)



Procedure Merge

Merge(A, p, q, r)

1  n1  q – p + 1

2  n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Sentinels, to avoid having to

check if either subarray is

fully copied at each step.

Input: Array containing 

sorted subarrays A[p .. q] 

and A[q+1 .. r].

Output: Merged sorted 

subarray in A[p .. r].



j 

Merge – Example 

…A

k                                                   

6 8 26 32 1 9 42 43

k                                            k                                     k                            k                            k                      k                 k                                                    k             

i                          

 

j   

6 8 26 32 1 9 42 43

6 8 26 32 1 9 42 431 6 8 9 26 32 42 43

L R

6 8 26 32 1 9 42 43… …A 6 8 26 32 1 9 42 43

merge

p r

at the very beginning at the termination

…

p r



Merge(A, p, q, r)

1  n1  q – p + 1

2  n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Loop Invariant for the for loop

• At the start of each iteration of the   

for loop: 

subarray A[p . . k – 1] 

contains the k – p smallest elements

of L and R in sorted order. 

• L[i] and R[j] are the smallest elements of 

L and R that have not been copied back into 

A.

Initialization:

Before the first iteration: 

• A[p .. k – 1] is empty.

• i = j = 1.

• L[1] and R[1] are the smallest 

elements of L and R not copied to A.



Correctness of Merge

Maintenance:

(We will prove that if after the kth 

iteration, the Loop Invariant (LI) holds, 

we still have the LI after the (k+1)th 

iteration.)

Case 1: L[i]  R[j]

•By Loop Invariant, A contains k – p

smallest elements of L and R in sorted order.

•Also, L[i] and R[j] are the smallest 

elements of L and R not yet copied into A.

•Line 13 results in A containing k – p + 1 

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI 

for the next iteration.

Similarly for Case 2: L[i] > R[j].

Merge(A, p, q, r)

1  n1  q – p + 1

2  n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1



Merge(A, p, q, r)

1  n1  q – p + 1

2  n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Maintenance:

Case 1: L[i]  R[j]

•By Loop Invariant (LI), A contains k – p

smallest elements of L and R in sorted order.

•By LI, L[i] and R[j] are the smallest 

elements of L and R not yet copied into A.

•Line 13 results in A containing k – p + 1 

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI 

for the next iteration.

Similarly for Case 2: L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r – p + 1 smallest

elements of L and R in sorted order.

•L and R together contain r – p + 3 – (r – p 

+ 1) = 2 elements.

All but the two sentinels have been copied 

back into A.



• Reduction of data movements

• Non-recursive Algorithm

Improvements

Y. Chen, and R. Su, Merge Sort Revisited, ACTA Scientific

Computer Sciences, Vol. 4, No. 5, pp. 49 - 52, 2022.



• Reduction of data movements

We notice that in the procedure 𝑚𝑒𝑟𝑔𝑒( ) of Merge sort the 

copying of 𝐴[𝑞 + 1 .. 𝑟 ] into 𝑅 is not necessary, since we can 

directly merge 𝐿 and 𝐴[𝑞 + 1 .. 𝑟 ] and store the merged, but 

sorted sequence back into 𝐴.

Improvements

j 

6 8 26 32 1 9 42 43 6 8 26 32 1 9 42 43L R

6 8 26 32 1 9 42 43… …A 6 8 26 32 1 9 42 43

p r

not necessary



j 

6 8 26 32

i                          

j   

6 8 26 32L

1 9 42 43… …A

p r

merge

result to be sent to



j 

6 8 26 32

i                          

j   

6 8 26 32L

1 9 42 43… …A

merge

result to be sent to

42 43… …1 

42 43… …1 6 9 

42 43… …1 6 9 8 

42 43… …1 6 9 8 

9 



Improvements

Algorithm: 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟 (𝐴, 𝑝, 𝑞, 𝑟 )

Input:  Both 𝐴[𝑝 .. 𝑞] and 𝐴[𝑞 + 1 .. 𝑟 ] are sorted; but 𝐴 as a 

whole is not sorted

Output :  sorted 𝐴
1. 𝑛1 := 𝑞 - 𝑝 + 1; 𝑛2 := 𝑟 – p + 1; k := p;

2. let 𝐿[1 .. 𝑛1] be a new array;

3. for i = 1 to 𝑛1 do

4. 𝐿[𝑖] := 𝐴[𝑝 + 𝑖 - 1 ]

5. i := p; 𝑗 := 𝑞 + 1;
6. while 𝑖 ≤ 𝑛1 and 𝑗 ≤ 𝑛2 do
7. if 𝐿[𝑖] ≤ 𝐴[𝑗] then {𝐴[𝑘] := 𝐿[𝑖]; 𝑖 := 𝑖 + 1;}

8. else {𝐴[𝑘] := 𝐴[𝑗]; 𝑗 := 𝑗 + 1;}

9. 𝑘 := 𝑘 + 1;
10. if j > 𝑛2 then
11. copy the remaining elements in 𝐿 into 𝐴[𝑘 .. 𝑟 ];

When going out of while-loop,

we distinguish between two cases:

i > 𝑛1,

j > 𝑛2.



18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

2618 6 32 1543 1 

18 26 32 6 43 15 9 1 
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18 26 326 15 43 1 9 

6 18 26 32 1 9 15 43
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6 26 3218

1543 1 9 

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence



Algorithm: 𝑚𝑆𝑜𝑟𝑡 (𝐴)

Input : 𝐴 - a sequence of elements stored as an array;

Output : sorted 𝐴
1. if |A| ≤ 1 then return A;
2. r := |A|;
3. 𝑙 := log2 𝑟;
4. j : = 2;

5. for i = 1 to 𝑙 do
6. for k = 1 to ⌈𝑟/𝑗⌉) do
7. 𝑠 := ⌊(𝑘 - 1)𝑗 ⌋;

8. 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟(𝐴, 𝑠 + 1, 𝑠 + ⌈𝑗/2 ⌉, 𝑠 + 𝑗 );

9. 𝑗 := 2𝑗 ;

Non-recursive algorithm

r: the length of A

l : the number of passes

j : the number of elements involved 

in a merging process in a pass



Analysis of Merge Sort

 Running time T(n) of Merge Sort:

 Divide: computing the middle takes (1)

 Conquer: solving 2 subproblems takes 2T(n/2)

 Combine: merging n elements takes (n)

 Total:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) (CLRS, Chapter 4)



Recurrence Relations
Equation or an inequality that characterizes a 
function by its values on smaller inputs.

Solution Methods (Chapter 4)

Substitution Method.

Recursion-tree Method.

Master Theorem Method.

Recurrence relations arise when we analyze the 
running time of iterative or recursive 
algorithms.

Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) otherwise



Substitution Method

 Guess the form of the solution, then 

use mathematical induction to show it 

correct.

 Substitute guessed answer for the function when 

the inductive hypothesis is applied to smaller 

values.

 Works well when the solution is easy to 

guess.

 No general way to guess the correct solution.



Example – Exact Function

Recurrence:  T(n) = 1                         if   n = 1

T(n) = 2T(n/2) + n   if   n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1  n lg n + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step:

T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n



Recursion Tree – Example 

Running time of Merge Sort:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

Rewrite the recurrence as

T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.



Recursion Tree for Merge Sort

For the original problem, 

we have a cost of cn, 

plus two subproblems 

each of size (n/2) and 

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems 

has a cost of cn/2 plus two 

subproblems, each costing 

T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide 

and merge. 

Cost of sorting 

subproblems.

T(n)



Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n + 1

cn

cn

cn

cn

Total: cnlg n+cn



Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).
n

n/3 2n/3
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The Master Theorem

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and 

let T(n) be defined on nonnegative integers by the recurrence 

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b. 

T(n) can be bounded asymptotically in three cases:

1. If  f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If  f(n) = (nlogba), then T(n) = (nlogbalg n).

3. If  f(n) = (nlogba+) for some constant  > 0, 

and if, for some constant c < 1 and all sufficiently large n, 

we have a·f(n/b)  c f(n), then T(n) = (f(n)).



Quicksort

• Quick sort

• Correctness of partition

- loop invariant

• Performance analysis

- Recurrence relations



Design

 Follows the divide-and-conquer paradigm.

 Divide: Partition (separate) the array A[p .. r] into 
two (possibly empty) subarrays A[p .. q–1] and A[q+1 
.. r].

 Each element in A[p .. q–1]  A[q].

 A[q] < each element in A[q+1 .. r].

 Index q is often referred to as a pivot.

 Conquer: Sort the two subarrays by recursive calls 
to quicksort. 

 Combine: The subarrays are sorted in place – no 
work is needed to combine them.

 How do the divide and combine steps of quicksort 
compare with those of merge sort?



Pseudocode

Quicksort(A, p, r)

if p < r then

q := Partition(A, p, r);

Quicksort(A, p, q – 1);

Quicksort(A, q + 1, r)

fi

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 15

A[p .. r]

A[p .. q – 1] A[q + 1 .. r]

 5  5

Partition 5

i   j



Example

p                                    r

initially: 2  5  8  3  9  4  1  7  10  6 note: pivot (x) = 6

i  j

next iteration: 2 5  8  3  9  4  1  7  10  6

i   j

next iteration: 2 5 8  3  9  4  1  7  10  6

i   j

next iteration: 2  5 8 3  9  4  1  7  10  6

i       j

next iteration: 2  5 3 8 9  4  1  7  10  6

i       j

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1



Example (Continued)

next iteration: 2  5 3 8 9  4  1  7  10  6

i       j

next iteration: 2  5 3 8 9 4  1  7  10  6

i           j

next iteration: 2  5 3 4 9 8 1  7  10  6

i           j

next iteration: 2  5 3 4 1 8 9 7  10  6

i           j

next iteration: 2  5 3 4 1 8 9 7 10  6

i                j

next iteration: 2  5 3 4 1 8 9 7 10 6

i                     j

after final swap: 2  5 3 4 1 6 9 7 10 8

i                     j

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1



Partitioning

 Select the last element A[r] in the subarray A[p .. r] 
as the pivot – the element around which to 
partition.

 As the procedure executes, the array is partitioned 
into four (possibly empty) regions.

1. A[p .. i] — All entries in this region are  pivot.

2. A[i+1 .. j – 1] — All entries in this region are > pivot.

3. A[j .. r – 1] — Not known how they compare to pivot.

4. A[r] = pivot.

 The above hold before each iteration of the for
loop, and constitute a loop invariant. (4 is not part of 
the LI - loop invariant.)



Correctness of Partition
Use loop invariant.

Initialization:

Before first iteration

A[p.. i] and A[i + 1 ..  j – 1] are empty – Conds. 1 and 

2 are satisfied (trivially).

r is the index of the pivot – Cond. 4

is satisfied.

Cond. 3 trivially holds.

Maintenance:

Case 1: A[j] > x

Increment j only.

LI is maintained.

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1



Correctness of Partition

>x x

p i j r

 x > x

x

p i j r

 x > x

Case 1: A[j] > x



Correctness of Partition

 x x

p i j r

 x > x

 Case 2: A[j]  x

 Increment i

 Swap A[i] and A[j]

 Condition 1 is maintained.

 Increment j

 Condition 2 is maintained.

» A[r] is unaltered.

• Condition 3 is 

maintained.

 x > x

x

p i j r



Correctness of Partition
Termination:

When the loop terminates, j = r, so all elements in A are 

partitioned into one of the three cases: 

A[p .. i]  pivot

A[i + 1 .. r – 1] > pivot

A[r] = pivot

The last two lines swap A[i + 1] and A[r].

Pivot moves from the end of the array to between the 

two subarrays.

Thus, procedure partition correctly performs the divide 

step.



Worst-case Partition Analysis

Running time for worst-case

partition at each recursive level:

T(n) = T(n – 1) + T(0)

+ PartitionTime(n)

= T(n – 1) + (n)

= k=1 to n(k)

= (k=1 to n k )

= (n2)

n

Recursion tree for

worst-case partition
n

n – 1 0 pivot 

0 n -2 pivot 

0 n - 3 pivot 

0 1 pivot 

… … 

n + (n - 1)  + … + 1 = n(n + 1)/2 = O(n2)



Best-case Partitioning

 Size of each subproblem  n/2.

One of the subproblems is of size n/2

The other is of size n/2 −1. 

 Recurrence for running time

T(n)  2T(n/2) + PartitionTime(n)

= 2T(n/2) + (n)

 T(n) = (n lg n)



Average-case Partitioning

2log n

n

n – 1 0 pivot 

(n – 2)/2 (n – 2)/2 pivot 

(n – 2)/2 - 1 0 pivot 

… … 

(n – 2)/2 - 1 0 pivot 

worst case

best case

worst case

best case

… … 

Average case: Worst cases and best cases interleavingly appear.

Average case time complexity:  2n log n



Heapsort

• What is a heap? Max-heap? Min-heap?

• Maintenance of Max-heaps

- MaxHeapify

- BuildMaxHeap

• Heapsort

- Heapsort

- Analysis

• Priority queues

- Maintenance of priority queues



Data Structure Binary Heap 
•length[A] – number of elements in array A.

•heap-size[A] – number of elements in heap stored in A.

heap-size[A]  length[A]

24 21 23 22 36 29 30 34 28 27 24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

1          2        3        4         5        6         7        8        9       10

Searching the tree in breadth-first

fashion, we will get the array. 



Data Structure Binary Heap 

• Array viewed as a nearly complete binary tree.

• Physically – linear array.

• Logically – binary tree, filled on all levels (except lowest.)

• Map from array elements to tree nodes and vice 
versa

• Root – A[1], Left[Root] – A[2], Right[Root] – A[3]

• Left[i] – A[2i]

• Right[i] – A[2i+1]

• Parent[i] – A[i/2]

A[i]

A[2i] A[2i + 1]

A[2] A[3]

A[i/2]



Heap Property (Max and Min)
 Max-Heap

 For every node excluding the root, the value stored in 
that node is at most that of its parent: A[parent[i]] 
A[i]

 Largest element is stored at the root.

 In any subtree, no values are larger than the

value stored at subtree’s root.

 Min-Heap

 For every node excluding the root, the value stored in 
that node is at least that of its parent: A[parent[i]] 
A[i] 

 Smallest element is stored at the root.

 In any subtree, no values are smaller than the value 
stored at subtree’s root



Heapsort(A)

HeapSort(A)

1.  Build-Max-Heap(A)

2.  for i  length[A] downto 2

3.       do exchange A[1]  A[i] 

4.              heap-size[A]  heap-size[A] – 1

5.              MaxHeapify(A, 1)



Procedure MaxHeapify

MaxHeapify(A, i)

1.  l  left(i) (* A[l] is the left child of A[i] .*)

2.  r  right(i)

3.  if l  heap-size[A] and A[l] > A[i]

4.     then largest  l

5.     else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7.     then largest  r

8.  if largest  i

9.     then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i) 

are max-heaps.

A[largest] must be

the largest among

A[i], A[l] and A[r].

i

l r



Building a heap

Use MaxHeapify to convert an array A into a max-heap.

How?

Call MaxHeapify on each element in a bottom-up 

manner.

BuildMaxHeap(A)

1.  heap-size[A]  length[A]

2.  for i  length[A]/2 downto 1 (*A[length[A]/2 +1],

3.       do MaxHeapify(A, i) A[length[A]/2 +2],

… are leaf nodes.*)



Heapsort  – Example 
26 17 20 18 24 19 13 12 14 11

1          2        3        4         5        6         7        8        9       10

26

17 20

18 24 19 13

12 14 11

26

24 20

18 17 19 13

12 14 11

Build-Max-heap



24

18 20

14 17 19 13

12 11 11

11

18 20

14 17 19 13

12 14 11

24, 26

26

24 20

18 17 19 13

12 14 11

11

24 20

18 17 19 13

12 14 11

26

Maxheapify

Maxheapify



Running Time of BuildMaxHeap
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Priority Queue
Popular & important application of heaps.

Max and min priority queues.

Maintains a dynamic set S of elements.

Each set element has a key – an associated value.

Goal is to support insertion and extraction 
efficiently.

Applications:

Ready list of processes in operating systems by their 
priorities – the list is highly dynamic

In event-driven simulators to maintain the list of events 
to be simulated in order of their time of occurrence.



Basic Operations

Operations on a max-priority queue:

Insert(S, x) - inserts the element x into the queue S

S  S  {x}.

Maximum(S) - returns the element of  S with the largest key.

Extract-Max(S) - removes and returns the element of S with 
the largest key.

Increase-Key(S, x, k) – increases the value of element x’s key 
to the new value k.

Min-priority queue supports Insert, Minimum, Extract-
Min, and Decrease-Key.

Heap gives a good compromise between fast insertion 
but slow extraction and vice versa.



26

24 20

18 17 19 13

12 14 11

Priority queue as max-heap:



Heap-Extract-Max(A)

Heap-Extract-Max(A)

1.  if heap-size[A] < 1

2.     then error “heap underflow”

3.  max  A[1]

4.  A[1]  A[heap-size[A]]

5.  heap-size[A]  heap-size[A] - 1

6.  MaxHeapify(A, 1)

7.  return max

Running time : Dominated by the running time of MaxHeapify  

= O(lg n)

Implements the Extract-Max operation.



Heap-Insert(A, key)

Heap-Insert(A, key)

1.  heap-size[A]  heap-size[A] + 1

2. i  heap-size[A]

4.  while i > 1 and A[Parent(i)] < key

5.       do A[i]  A[Parent(i)] 

6.              i  Parent(i)

7.  A[i]  key

Running time is O(lg n)

The path traced from the new leaf to the root has 

length O(lg n).



Heap-Increase-Key(A, i, key)

Heap-Increase-Key(A, i, key)

1 If key < A[i]

2 then error “new key is smaller than the current key”

3 A[i]  key

4 while i > 1 and A[Parent[i]] < A[i]

5 do exchange A[i]  A[Parent[i]]

6 i  Parent[i]

Heap-Insert(A, key)

1 heap-size[A]  heap-size[A] + 1

2 A[heap-size[A]]  – 

3 Heap-Increase-Key(A, heap-size[A], key)



Binary Search Trees

• What is a binary search tree?

• Tree searching 

• Inorder traversal of a binary search tree

• Find Min & Max

• Predecessor and successor

• BST insertion and deletion



Binary Search Tree

 Stored keys must 

satisfy the binary 

search tree

property.

»  y in left subtree 

of x, then key[y] < 

key[x].

»  y in right subtree 

of x, then key[y] 

key[x].

56

26 200

18 28 190 213

12 24 27 195



Tree Search

Tree-Search(x, k)

1.  if x = NIL or k = key[x]

2.     then return x

3.  if k < key[x]

4.     then return Tree-Search(left[x], 
k)

5.     else return Tree-Search(right[x], 
k)

Running time: O(h)

Aside: tail-recursion

56

26 200

18 28 190 213

12 24 27 195



Iterative Tree Search

Iterative-Tree-Search(x, k)

1.  while x  NIL and k 
key[x]

2.     do if k < key[x]

3.          then x  left[x]

4.          else x  right[x]

5.  return x

The iterative tree search is more efficient on most computers.

The recursive tree search is more straightforward.

56

26 200

18 28 190 213

12 24 27 195



Inorder Traversal

Inorder-Tree-Walk (x)

1. if x  NIL

2. then Inorder-Tree-

Walk(left[x])

3. print key[x]

4. Inorder-Tree-Walk(right[x])

The binary-search-tree property allows the keys of a binary search 

tree to be printed, in (monotonically increasing) order,  recursively.

56

26 200

18 28 190 213

12 24 27 195



Finding Min & Max

Tree-Minimum(x) Tree-Maximum(x)

1.  while left[x]  NIL 1.  while right[x]  NIL 

2.     do x  left[x] 2.         do x  right[x]

3.  return x 3.  return x

Q:  How long do they take?

The binary-search-tree property guarantees that:

» The minimum is located at the left-most node.

» The maximum is located at the right-most node.



Predecessor and Successor

 Predecessor of node x is the node y such that key[y] is the 
greatest key smaller than key[x].

 Successor of node x is the node y such that key[y] is the 
smallest key greater than key[x].

 The successor of the largest key is NIL.

 Search consists of two cases.
 If node x has a non-empty right subtree, then x’s 

successor is the minimum in the right subtree of x.
 If node x has an empty right subtree, then:

 As long as we move to the left up the tree (move up through 

right children), we are visiting smaller keys.

 x’s successor y is the node that is the predecessor of x (x is the 

maximum in y’s left subtree).

 In other words, x’s successor y, is the lowest ancestor of x whose 

left child is also an ancestor of x or is x itself.



Successor

Case 1: x has a non-empty

right subtree.

Case 2: x has an empty

right subtree.

x

x

successor

successor

x



Pseudo-code for Successor

Tree-Successor(x)

1. if right[x]  NIL 

2.          then return Tree-
Minimum(right[x]) 

3.     y  p[x]

4.     while y  NIL and x = right[y]

5.     do x  y

6.          y  p[y]

7.     return y

Code for predecessor is symmetric.

Running time: O(h)

56

26 200

18 28 190 213

12 24 27

NIL



BST Insertion – Pseudocode 

Tree-Insert(T, z)

1. y  NIL

2. x  root[T]

3. while x  NIL

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = NIL

10. then root[T]  z

11. else if key[z] < key[y]

12. then left[y]  z

13. else right[y]  z

 Change the dynamic set 
represented by a BST.

 Ensure the binary-search-tree 
property holds after change.

 Insertion is easier than 
deletion.

insert 29
56

26 200

18 28 190 213

12 24 27

y

x



Tree-Delete (T, z)

if z has no children                   case 1

then remove z

if z has one child  case 2

then make p[z] point to child

if z has two children (subtrees)  case 3

then swap z with its successor

perform case 1 or case 2 to delete it

 TOTAL: O(h) time to delete a node

z

z z

z



Tree-Delete (T, z)

Illustration for case 3:

z

successor(z)

exchange



Deletion – Pseudocode 
Tree-Delete(T, z)

/* Determine which node to splice out: either z or z’s successor. 
*/

1. if left[z] = NIL or right[z] = NIL

2. then y  z /*Case 1 or Case 2*/

3. else y  Tree-Successor[z] /*Case 3*/

/* Set x to a non-NIL child of y, or to NIL if y has no children. */

4. if left[y]  NIL /*y has one child or no child.*/

5. then x  left[y] /*x can be a child of y or NIL.*/

6. else x  right[y]

/* y is removed from the tree by manipulating pointers of  p[y] 
and x */

7. if x  NIL

8. then p[x]  p[y]

/* Continued on next slide */

y is the node be deleted, which

has at most one child.

x is the unique child of y.



Deletion – Pseudocode 

Tree-Delete(T, z) (Contd. from previous slide)

9. if p[y] = NIL /*if y is the root*/

10. then root[T]  x

11. else if y = left[p[y]] /*y is a left child.*/

12. then left[p[y]]  x

13. else right[p[y]]  x

/* If z’s successor was spliced out, copy its data into z */

14. if y  z /*y is z’s successor.*/

15. then key[z]  key[y]

16. copy y’s satellite data into z.

17. return y



Red-Black Trees

• What is a red-black tree?

- node color: red or black

- nil[T] and black height

• Subtree rotation

• Node insertion

• Node deletion 



Red-black Tree – Example 

26

17

30 47

38 50

41

nil[T]



Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every virtual leaf (nil) is black.

4. If a node is red, then both its children are 

black.

5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes.



Height of a Red-black Tree

 Height of a node:

h(x) = number of edges in a longest path to a 

leaf.

 Black-height of a node x, bh(x):

bh(x) = number of black nodes (including nil[T ]) 

on the path from x to leaf, not counting x.

 Black-height of a red-black tree is the black-height 

of its root.

By Property 5, black height is well defined.



Height of a Red-black Tree

Example:

Height of a node:

h(x) = # of edges in a 

longest path to a leaf.

Black-height of a node bh(x)
= # of black nodes on path 

from x to leaf, not counting 

x.

How are they related?

bh(x) ≤ h(x) ≤ 2bh(x)
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nil[T]
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bh=2
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Lemma “RB Height”

Consider a node x in an RB tree: The longest 

descending path from x to a leaf has length h(x),  

which is at most twice the length of the shortest 

descending path from x to a leaf.

Proof:

# black nodes on any path from x = bh(x)  (prop 5)

 # nodes on shortest path from x, s(x). (prop 1)

But, there are no consecutive red (prop 4),

and we end with black (prop 3), so h(x) ≤ 2 bh(x).

Thus, h(x) ≤ 2s(x).  QED



Bound on RB Tree Height

 Lemma: The subtree rooted at any node x has 
 2bh(x)–1 internal nodes.

 Proof: By induction on height of x, h(x).

 Base Case: Height h(x) = 0  x is a leaf  bh(x) = 0.
Subtree has 20–1 = 0 nodes.

 Induction Step: Assume that for any node with height < h the 
lemma holds.

Consider node x with h(x) = h > 0 and bh(x) = b.

 Each child of x has height at most h - 1 and 
black-height either b (child is red) or b - 1 (child is black).

 By ind. hyp., each child has  2bh(x)– 1 – 1 internal nodes.

 Subtree rooted at x has   2(2bh(x) – 1 – 1) + 1 
= 2bh(x) – 1 internal nodes. (The +1 is for x itself.) 



Bound on RB Tree Height

number of 

black nodes

= b

number of 

black nodes

= b - 1

bh(x) = b h

number of internal 

nodes of T1

> 2b-1 > 2b-1-1

T:

T1: T2:

number of internal 

nodes of T2

 |T1| + |T2| + 1
 (2b – 1) + (2b – 1 – 1) + 1  2b - 1 

number of internal nodes of T

x



Bound on RB Tree Height

 Lemma: The subtree rooted at any node x has 

 2bh(x)–1 internal nodes.

 Lemma 13.1: A red-black tree with n internal 

nodes has height at most 2lg (n+1).

 Proof:

By the above lemma, n  2bh – 1,

and since bh  h/2, we have n  2h/2 – 1.

 h  2lg(n + 1).



Rotations

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)



Left Rotation – Pseudo-code

Left-Rotate (T, x)

1. y  right[x]   // Set y.

2. right[x]  left[y]  //Turn y’s left subtree  into x’s right 
subtree.

3. if left[y]  nil[T]

4. then p[left[y]]  x //Set x to be the parent of left[y] = .

5. p[y]  p[x]           //Link x’s parent to y.

6. if p[x] = nil[T] //If x is the root.

7. then root[T]  y

8. else if x = left[p[x]]

9. then left[p[x]]  y

10. else right[p[x]]  y

11. left[y]  x             // Put x as y’s left child.

12. p[x]  y

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)



Insertion in RB Trees

 Insertion must preserve all red-black properties.

 Should an inserted node be colored Red? Black?

 Basic steps:

 Use Tree-Insert from BST (slightly modified) to insert a 

node z into T.

Procedure RB-Insert(z).

 Color the node z red.

 Fix the modified tree by re-coloring nodes and 

performing rotation to preserve RB tree property.

Procedure RB-Insert-Fixup.



Insertion

RB-Insert(T, z)

1. y  nil[T]

2. x  root[T]

3. while x  nil[T]

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = nil[T]

10. then root[T]  z

11. else if key[z] < key[y]

12. then  left[y]  z

13. else right[y]  z

RB-Insert(T, z) Contd.

14. left[z]  nil[T]

15. right[z]  nil[T]

16. color[z]  RED

17. RB-Insert-Fixup(T, z)

How does it differ from the 

Tree-Insert procedure of BSTs?

Which of the RB properties 

might be violated?

Fix the violations by calling 

RB-Insert-Fixup.



Insertion – Fixup 

RB-Insert-Fixup (T, z)

1. while color[p[z]] = RED

2. do if p[z] = left[p[p[z]]]  //for cases 1 – 3

then y  right[p[p[z]]]

3. if color[y] = RED

4. then color[p[z]]  BLACK // Case 1

5. color[y]  BLACK // Case 1

6. color[p[p[z]]]  RED // Case 1

7. z  p[p[z]] // Case 1

z

z

y

z

y

z

y
Case 1:

z’s parent is the left child

of its own parent

Change this node to red to

keep the number of black

nodes not increased



Insertion – Fixup 

RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p[z]]  // color[y]  RED

10. then z  p[z] // Case 2

11. LEFT-ROTATE(T, z) // Case 2

12. color[p[z]]  BLACK // Case 3

13. color[p[p[z]]]  RED // Case 3

14. RIGHT-ROTATE(T, p[p[z]]) // Case 3

15. else (if p[z] = right[p[p[z]]]) (for cases 4 – 6, same

16. as 3-14 with “right” and “left” exchanged)

17. color[root[T ]]  BLACK

y
Case 2:

z

y



 

a

b az

 



b
Case 3:

y

az

 



b z
y 

b

a c

c



Deletion

 Deletion, like insertion, should preserve all the 
RB properties.

 The properties that may be violated depends on 
the color of the deleted node.

Red – OK. Why?

Black?

 Steps:

Do regular BST deletion.

Fix any violations of RB properties that may be 
caused by a deletion.



Deletion

RB-Delete(T, z)

1. if left[z] = nil[T] or right[z] = nil[T]

2. then y  z

3. else y  TREE-SUCCESSOR(z)

4. if left[y]  nil[T ]

5. then x  left[y]

6. else x  right[y]

7. p[x]  p[y]   // Do this, even if x is nil[T]



Deletion

RB-Delete (T, z) (Contd.)

8. if p[y] = nil[T ]

9. then root[T ]  x

10. else if y = left[p[y]] (*if y is a left child.*)

11. then left[p[y]]  x

12. else right[p[y]]  x  (*if y is a right

13. if y  z child.*)

14. then key[z]  key[y]

15. copy y’s satellite data 
into z

16. if color[y] = BLACK

17. then RB-Delete-Fixup(T, x)

18. return y

The node passed to 

the fixup routine is 

the only child of the 

spliced up node, or 

the sentinel.



Deletion – Fixup 

RB-Delete-Fixup(T, x)

1. while x  root[T] and color[x] = BLACK

2. do if x = left[p[x]] // for cases 1 - 4

3. then w  right[p[x]]

4. if color[w] = RED // Case 1

5. then color[w]  BLACK // Case 1

6. color[p[x]]  RED // Case 1

7. LEFT-ROTATE(T, p[x]) // Case 1

1. w  right[p[x]]                  // Case 1

A D

C E

B

A

x w
D

C

E

x new w

left rotationCase 1: B



RB-Delete-Fixup(T, x) (Contd.)

/* x is still left[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] = BLACK

10. then color[w]  RED // Case 2

11. x  p[x] // Case 2

12. else if color[right[w]] = BLACK // Case 3

13. then color[left[w]]  BLACK // Case 3

14. color[w]  RED // Case 3

15. RIGHT-ROTATE(T, w) // Case 3

16. w  right[p[x]] // Case 3

B

A D

C E

x w

B

A D

C E

Case 2: Case 3:

B

A D

C E

x w

B

A C

D

c
c

E

new wx

new x



RB-Delete-Fixup(T, x) (Contd.)

/* x is still left[p[x]] */

17. color[w]  color[p[x]] // Case 4

18. color[p[x]]  BLACK // Case 4

19. color[right[w]]  BLACK // Case 4

20. LEFT-ROTATE(T, p[x]) // Case 4

21. x  root[T ] // Case 4

22. else (for cases 5 – 8, same as lines 3 - 21 with “right” and “left” 
exchanged)

23. color[x]  BLACK

B

A D

C E
 

   

B

A

   

 

x w
D

C

E

x

c

c’

Case 4:

to go out the while-loop



Elementary Graph Algorithms

• Graph representation

• Graph traversal
- Breadth-first search

- Depth-first search

• Parenthesis theorem



Graphs

 Types of graphs

» Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No
self loops.)

» Directed: (u, v) is edge from u to v, denoted as u → v. 
Self loops are allowed.

» Weighted: each edge has an associated weight, given by 
a weight function w : E → R. (R – set of all possible real 
numbers)

» Dense: |E|  |V|2.

» Sparse: |E| << |V|2.

 |E| = O(|V|2)



Graphs

 If (u, v)  E, then vertex v is adjacent to vertex u.

 Adjacency relationship is:

 Symmetric if G is undirected.

 Not necessarily so if G is directed.

 If an undirected graph G is connected:

 There is a path between every pair of vertices.

 |E|  |V| – 1.

 Furthermore, if |E| = |V| – 1, then G is a tree.

 If a directed graph G is connected:

 Its undirected version is connected.

 Other definitions in Appendix B (B.4 and B.5) as needed.



Representation of Graphs

 Two standard ways.

 Adjacency Lists.

 Adjacency Matrix.

a

dc

b

a

dc

b
1 2

3 4

1   2   3   4

1  0   1   1   1

2  1   0   1   0

3  1   1   0   1

4  1   0   1   0

a

b

c

d

b         

a         

d         

d         c         

c         

a         b         

a         c         



Storage Requirement

 For directed graphs:

 Sum of lengths of all adj. lists is

vV out-degree(v) = vV in-degree(v) = |E|

 Total storage: (|V| + |E|)

 For undirected graphs:

 Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

 Total storage: (|V| + |E|)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) is incident 

on vertices u and v.



Nonzero values data[ ]

0   1   2   3

0  3   0   1   0

1  0   0   0   0

2  0   2   4   1

3  1   0   0   1

Sparse Matrix

{3 1 2 4 1 1 1}

{0 2 1 2 3 0 3}

{0 2 2 5 7}

row0 row2   row3

Column indeces col_index[ ]

Row pointers row_ptr[ ]



Nonzero values data[ ]

0   1   2   3  4  5  6  7  8

0  0   1   1   0  0  0  0  0  0

1  0   0   0   1  1  0  0  0  0

2  0   0   0   0  0  1  1  1  0

3 0   0   0   0  1  0  0  0  1

4 0   0   0   0  0  1  0  0  1

5 0   0   0   0  0  0  1  0  0

6 0   0   0   0  0  0  0  0  1

7 0   0   0   0  0  0  1  0  0

8 0   0   0   0  0  0  0  0  0

Sparse Graph

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 4 8 5 8 6 8 0 8

0 2 4 7 9 11 12 13 15 16

3

0

1 4 8

2 5

7 6

destination[ ]

edges[ ]



a

dc

b

Graph storage in a data file on hard disk

a b
a c

a c

b c

c d

graph.txt



Breadth-first Search

 Input: Graph G = (V, E), either directed or undirected, 
and source vertex s  V.

 Output:

 d[v] = distance (smallest # of edges, or shortest path) from s to 
v, for all v  V. d[v] =  if v is not reachable from s.

 [v] = u such that (u, v) is last edge on shortest path s      v.

 u is v’s predecessor.

 Builds breadth-first tree with root s that contains all reachable 
vertices.

Definitions:

Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that u = 

v1 and v = vk, and (vi, vi+1)  E, for all 1 i  k-1.

Length of the path: Number of  edges in the path.

Path is simple if no vertex is repeated.



Breadth-first Search

 Expands the frontier between discovered and 
undiscovered vertices uniformly across the breadth 
of the frontier.

A vertex is “discovered” the first time it is 
encountered during the search.

A vertex is “finished” if all vertices adjacent to 
it have been discovered.

 Colors the vertices to keep track of progress.

White – Undiscovered.

Gray – Discovered but not finished.

Black – Finished.



BFS for Shortest Paths

Finished

Discovered

Undiscovered
S

1
1

1

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3



BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u]  

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q  

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

white: undiscovered

gray: discovered

black: finished

Q: a queue of discovered 

vertices

color[v]: color of v

d[v]: distance from s to v

[u]: predecessor of v

initialization

access source s



Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w  r

1  1

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black



Depth-first Search (DFS)

 Explore edges out of the most recently

discovered vertex v.

 When all edges of v have been explored, backtrack 

to explore other edges leaving the vertex from

which v was discovered (its predecessor).

 “Search as deep as possible first.”

 Continue until all vertices reachable from the 

original source are discovered.

 If any undiscovered vertices remain, then one of 

them is chosen as a new source and search is 

repeated from that source.

v

v



Depth-first Search

 Input: G = (V, E), directed or undirected. No source 
vertex given!

 Output:

 2 timestamps on each vertex. Integers between 1 and 2|V|.

 d[v] = discovery time (v turns from white to gray)

 f [v] = finishing time (v turns from gray to black)

 [v] : predecessor of v = u, such that v was discovered during 
the scan of u’s adjacency list.

 Coloring scheme for vertices as BFS. A vertex is

 “undiscovered” (white) when it is not yet encountered.

 “discovered” (grey) the first time it is encountered during the 
search.

 “finished” (black) if it is a leaf node or all vertices adjacent to it 
have been finished.



Pseudo-code

DFS(G)

1.  for each vertex u  V[G]

2.       do color[u]  white

3.            [u]  NIL

4.  time  0

5.  for each vertex u  V[G]

6.        do if color[u] = white

7.                 then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1

s0

s1



Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1



Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

DFS(G)

1.  for each vertex u  V[G]

2.       do color[u]  white

3.            [u]  NIL

4.  time  0

5.  for each vertex u  V[G]

6.        do if color[u] = white

7.                 then DFS-

Visit(u)



Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1



Depth-First Trees

 Predecessor subgraph defined slightly different from 

that of BFS.

 The predecessor subgraph of DFS is G = (V, E) where 

E ={([v], v) : v  V and [v]  nil}.

» How does it differ from that of BFS?

» The predecessor subgraph G forms a depth-first forest

composed of several depth-first trees.  The edges in E are 

called tree edges.

Definition:

Forest: An acyclic graph G that

may be disconnected.

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C



Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u 

nor v is a descendant of the other in the DF-tree.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u in DF-tree.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v in DF-tree.

(

d[u]

)

f[u](

d[v]

)

f[v]

d[v]

[

f[v]

]

( )[ ]

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:

 OK: ( ) [ ] ( [ ] ) [ ( ) ]

 Not OK: ( [ ) ] [ ( ] )

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].



Parenthesis Theorem

u v

(d[u], f[u]) (d[v], f[v])

Case 1:

u

v

(d[u], f[u])

(d[v], f[v])

Case 2:

v

u

(d[v], f[v])

(d[u], f[u])

Case 3:

v u

(d[v], f[v]) (d[u], f[u])

or



Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

In general, if we use ‘(v’ to represent d[v], and ‘v)’ to represent f[v],

the inequalities in the Parenthesis Theorem are just like parentheses

in an arithmetical expression.

1<2<3<4<5<6<7<8<9<10  11<12<13<14<15<16



White-path Theorem

Theorem 22.9

v is a descendant of u in DF-tree if and only if at time d[u], 
there  is a path u  v consisting of only white vertices. 
(Except for u, which was just colored gray.)

u

v

(d[u], f[u])

(d[v], f[v])

u

v



Classification of Edges

 Tree edge: in the depth-first forest. Found by exploring 
(u, v).

 Back edge: (u, v), where u is a descendant of v (in the 
depth-first tree).

 Forward edge: (u, v), where v is a descendant of u, 
but not a tree edge.

 Cross edge: any other edge (u, v) such that u is not a 
descendant of v (in the depth-first tree) and vice versa. 

Theorem:

In DFS of an undirected graph, we get only tree and back edges. 

No forward or cross edges.



3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

s

z

y w

x

t

v u

C

C

C

C

B

B

F



Identification of Edges

 Edge type for edge (u, v) can be identified when it is first 
explored by DFS. 

 Identification is based on the color of v.

 If v is white, then (u, v) is a tree edge.

 If v is gray, then (u, v) is a back edge.

 If v is black, then (u, v) is a forward or cross edge.

s

z

y w

x

t

v u

C

C

C

C

B

B

F

[d(u), f(u)]

[d(v), f(v)]

[d(u), f(u)]

[d(v), f(v)]

[d(v), f(v)]

[d(u), f(u)]

[d(u), f(u)]
[d(v), f(v)]



Graph Algorithms – 2 

• DAGs
• Topological order

• Recognition of strongly connected components



Directed Acyclic Graph

 DAG – Directed Acyclic Graph (directed graph with no 

cycles)

 Used for modeling processes and structures that have a 

partial order:

 Let a, b, c be three elements in a set U.

 a > b and b > c  a > c. (Transitivity)

 But may have a and b such that neither a > b nor b > a.

 We can always make a total order (either a > b or b > a for 

all a  b) from a partial order (by imposing a relation on 

any two elements whose relation is not specified with the 

original partial order, as long as the transitivity of this 

partial order not violated.)



Example

DAG of dependencies for putting on goalie equipment.

socks shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove



Topological Sort

 Performed on a DAG.

 Linear ordering of the vertices of G(V, E) such that 

if (u, v)  E, then u appears somewhere before v.



Topological Sort

Sort a directed acyclic graph (DAG) by the nodes’ finishing times.

B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

By sorting, we get a total order that extends this partial order.

C EDA B



Topological Sort

 Performed on a DAG.

 Linear ordering of the vertices of G such that if (u, v)  E, 
then u appears somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f[v] for all v  V

2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices

Time: (|V| +|E|).



Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10

A



Correctness Proof

 Just need to show if (u, v)  E, then f[u] > f[v].

 When we explore (u, v), what are the colors of u and v?

 u is gray.

 Is v white?

 Then becomes descendant of u.

 By parenthesis theorem, d[u] < d[v] < f[v] < f[u].

 Is v black?

 Then v is already finished.

 Since we’re exploring (u, v), we have not yet finished u.

 Therefore, f[v] < f[u].

 Is v gray, too?

 No.

 because then v would be ancestor of u  (u, v) is a back edge.

 contradiction of Lemma 22.11 (dag has no back edges).



[d(u), f(u)]

[d(v), f(v)]

[d(u), f(u)]

[d(v), f(v)]

[d(v), f(v)]

[d(u), f(u)]

[d(u), f(u)]
[d(v), f(v)]

[1, 4]

[2, 3]

Example:



Strongly Connected Components

 G is strongly connected if every pair (u, v) of 

vertices in G is reachable from one another.

 A strongly connected component (SCC) of G is a 
maximal set of vertices C  V such that for all u, v 
 C, both u ↝ v and v ↝ u exist.

A B C D

not an SCC



Component Graph

 GSCC = (VSCC, ESCC).

 VSCC has one vertex for each SCC in G.

 ESCC has an edge if there’s an edge between the 

corresponding SCC’s in G.

 GSCC for the example considered:

A B

C

D



GSCC is a DAG

Proof:

 Suppose there is a path v v in G. 

 Then there are paths u   u v and v v u in G. 

 Therefore, u and v are reachable from each other, so they 

are not in separate SCC’s.

Lemma 22.13

Let C and C be distinct SCC’s in G, let u, v  C, u, v C, and 

suppose there is a path u ↝ u in G. Then there cannot also be a path v

↝ v in G.

C: C :
u

v

u

v




Transpose of a Directed Graph

 GT = transpose of directed G.

GT = (V, ET), ET = {(u, v) : (v, u)  E}.

GT is G with all edges reversed.

 Can create GT in Θ(|V| +|E|) time if using 

adjacency lists.

 G and GT have the same SCC’s. (u and v are 

reachable from each other in G if and only if 

reachable from each other in GT.)



Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times f[u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in 
order of decreasing f[u] (as computed in the first DFS)

4. output the vertices in each tree of the depth-first forest 
formed in the second DFS as a separate SCC

Time: (|V| +|E|).



Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d

G



Example

GT

-/15 -/4 -/7

-/16 -/10

a b c

e f g

-/6

-/9

h

d

-/14



Example

GT

-/15 -/4 -/7

-/16 -/10

a b c

e f g

-/6

-/9

h

d

-/14



Example

GT

-/15 -/4 -/7

-/16 -/10

a b c

e f g

-/6

-/9

h

d

-/14



SCCs and DFS finishing times

Proof:

 Case 1: d(C) < d(C)

 Let x be the first vertex discovered in C. 

 At time d[x], all vertices in C and C are 

white. Thus, there exist paths of white 

vertices from x to all vertices in C and C.

 By the white-path theorem, all vertices in C 

and C are descendants of x in depth-first 

tree.

 By the parenthesis theorem, f [x] = f (C) > 

f(C).

Lemma 22.14

Let C and C be distinct SCC’s in G = (V, E). Suppose there is an 

edge (u, v)  E such that u  C and v C. Then f(C) > f(C).

C C

u v

x

d(C) = minuC{d[u]})

f(C) = maxuC{f [u]}
d(x) < d(v) < f(v) < f(x)



SCCs and DFS finishing times

Proof:

 Case 2: d(C) > d(C)

 Let y be the first vertex discovered in C. 

 At time d[y], all vertices in C are white and there 
is a white path from y to each vertex in C  all 
vertices in C become descendants of y. Again, f[y] 
= f(C).

 At time d[y], all vertices in C are also white.

 By earlier lemma, since there is an edge (u, v), we 
cannot have a path from C to C.

 So no vertex in C is reachable from y.

 Therefore, at time f[y], all vertices in C are still 
white.

 Therefore, for all v  C, f[v] > f[y], which implies 
that f(C) > f(C).

Lemma 22.14

Let C and C be distinct SCC’s in G = (V, E). Suppose there is an 

edge (u, v)  E such that u  C and v C. Then f(C) > f(C).

C C

u v

y

d(C) = minuC{d[u]})

f(C) = maxuC{ f[u]}



SCCs and DFS finishing times

Proof:

 (u, v)  ET  (v, u)  E. 

 Since SCC’s of G and GT are the same,  f(C) > f(C), by Lemma 
22.14.

Corollary 22.15

Let C and C be distinct SCC’s in G = (V, E). Suppose there is an 

edge (u, v)  ET, where u  C and v  C. Then f(C) < f(C).


