Advanced Algorithm Design

10/23/2024

Graph algorithm

Graph searching algorithms

1

Algorithm basics

Definition of algorithms RAM computation model Running time of algorithms

- Worst case running time
- Average case running time
- Best case running time
- Asymptotic notations

Definition

- An algorithm is a <u>finite</u> sequence of <u>unambiguous</u> instructions for solving a well-specified computational problem.
- Important Features:
 - Finiteness.
 - Definiteness.
 - Input.
 - Output.
 - Effectiveness.

RAM Model

Run time expression should be machineindependent.

Use a model of computation or "hypothetical" computer.

Our choice - RAM model (most commonly-used).

- Model should be
 - Simple.
 - Applicable.

RAM Model

- Generic single-processor model.
- Supports simple constant-time instructions found in real computers.
 - Arithmetic (+, -, *, /, %, floor, ceiling).
 - Data Movement (load, store, copy, assignment statement).
 - Control (branch, subroutine call, loop control).
- Run time (cost) is uniform (1 time unit) for all simple instructions.
- Memory is unlimited.
- Flat memory model no hierarchy.
- Access to a word of memory takes 1 time unit.
- Sequential execution no concurrent operations.

Running Time - Definition

- Call each simple instruction and access to a word of memory a "primitive operation" or "step."
- Running time of an algorithm for a given input is
 - The number of steps executed by the algorithm on that input.
- Often referred to as the complexity of the algorithm.

Complexity and Input

- Complexity of an algorithm generally depends on
 - Size of input.
 - Input size depends on the problem.
 - Examples: No. of items to be sorted.
 - No. of vertices and edges in a graph.
 - Other characteristics of the input data.
 - Are the items already sorted?
 - Are there cycles in the graph?

Worst, Average, and Bestcase Complexity

- Worst-case Complexity
 - Maximum number of steps the algorithm takes for any possible input.
 - Most tractable measure.
- Average-case Complexity
 - Average of the running times of all possible inputs.
 - Demands a definition of probability of each input, which is usually difficult to provide and to analyze.
- Best-case Complexity
 - Minimum number of steps for any possible input.
 - Not a useful measure. <u>Why?</u>

A Simple Example - Linear Search

INPUT: a sequence of *n* numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

LinearSearch(A, key)		cost time	S
1	$i \leftarrow 1$	$c_1 = 1$	
2	while $i \le n$ and $A[i] != key$	$c_2 x$	
3	do <i>i</i> ++	<i>c</i> ₃ <i>x</i> -1	
4	if $i \leq n$	c_4 1	
5	then return true	c_{5} 1	
6	else return false	c ₆ 1	
x ranges between 1 and $n + 1$.			
Sc	o, the running time ranges between	$c_1 + c_2 x - c_2 x $	$+ c_3(x - 1) + c_4 + c_6$
	$c_1 + c_2 + c_4 + c_5 - best case$		

and

 $c_1 + c_2(n+1) + c_3n + c_4 + c_6 -$ worst case

10/23/2024

9

A Simple Example - Linear Search

INPUT: a sequence of *n* numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

Li	nearSearch(A, key)	cost	times
1	$i \leftarrow 1$ 1 1		
2	while $i \le n$ and $A[i] != key$	1	X
3	do <i>i</i> ++	1	<i>x</i> -1
4	if $i \leq n$	1	1
5	then return true	1	1
6	else return false	1	1

Assign a cost of 1 to all statement executions.

Now, the running time ranges between

1 + 1 + 1 + 1 = 4 - best case

and

1 + (n+1) + n + 1 + 1 = 2n + 4 -worst case

10

10/23/<mark>2024</mark>

A Simple Example - Linear Search

INPUT: a sequence of *n* numbers, *key* to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

Lii	nearSearch(A, key)	cost	times
1	$i \leftarrow 1$	1	1
2	while $i \le n$ and $A[i] != key$	1	X
3	do <i>i</i> ++	1	<i>x</i> -1
4	if $i \leq n$	1	1
5	then return true	1	1
6	else return false	1	1

If we assume that the *key* is equal to a random item in the list, on average, statements 2 and 3 will be executed n/2 times. Running times of other statements are independent of input. Hence, **average-case complexity** is 1+n/2+n/2+1+1=n+3 11

Order of growth

Principal interest is to determine

how running time grows with input size - Order of growth.

the running time for large inputs - <u>Asymptotic complexity</u>.

In determining the above,

- Lower-order terms and coefficient of the highest-order term are insignificant.
- Ex: In $7n^5+6n^3+n+10$, which term dominates the running time for very large n? n^5 .
- Complexity of an algorithm is denoted by the highest-order term in the expression for running time.

Ex: O(n), Θ(1), Ω(n²), etc.

Constant complexity when running time is independent of the input size - denoted O(1).

Linear Search: Best case Θ(1), Worst and Average cases: Θ(n).

More on O, Θ , and Ω in next classes. Use Θ for present.

12

Asymptotic notations

Tight bound Upper bound Lower bound

Θ -notation

have the same rate of growth as g(n).

 $\frac{1}{n_0} f(n) = \Theta(g(n))$

 $c_2g(n)$

f(n)

 $c_1g(n)$

g(n) is an *asymptotically tight bound* for any f(n) in the set.

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

▶
$$10n^2 - 3n = \Theta(n^2)$$
?

- ▶ What constants for n_0 , c_1 , and c_2 will work?
- Make c_1 a little smaller than the leading coefficient, and c_2 a little bigger.
- To compare orders of growth, look at the leading term (highest-order term).
- **Exercise:** Prove that $n^2/2-3n = \Theta(n^2)$

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

- Is $3n^3 \in \Theta(n^4)$?
- If it is true, we can find c₁, c₂, and n₀ such that for n
 > n₀, we have

 $c_1 n^4 \leq 3n^3 \leq c_2 n^4.$

 $c_1 n^4 \leq 3n^3 \Rightarrow n \leq 3/c_1$.

• It is a contradiction. So, $3n^3 \notin \Theta(n^4)$?

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

- How about $2^{2n} \in \Theta(2^n)$?
- If it is true, we can find c₁, c₂, and n₀ such that for n
 > n₀, we have

 $c_1 2^n \le 2^{2n} \le c_2 2^n$.

 $2^{2n} \leq c_2 2^n \qquad \Rightarrow \qquad 2^n \leq c_2 \Rightarrow \quad n \leq \log_2 c_2.$

• It is a contradiction. So, $2^{2n} \notin \Theta(2^n)$?

O-notation

For function g(n), we define O(g(n)), big-O of *n*, as the set:

 $O(g(n)) = \{f(n) :$ \exists positive constants *c* and $n_{0,}$ such that $\forall n \ge n_0$,

we have $0 \le f(n) \le cg(n)$ }

Intuitively: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

g(n) is an *asymptotic upper bound* for any f(n) in the set. $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$ $\Theta(g(n)) \subset O(g(n)).$

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,$ such that $\forall n \ge n_0$, we have $0 \le f(n) \le cg(n) \}$

- Any linear *function* an + b is in $O(n^2)$. **How?**
- To answer this question, we set c = 1, to see whether we have an + b < n² for n > a constant n₀.
- To determine the value of n₀, we will solve an equation: n² an b = 0.

• We get
$$n_0 = \frac{a + \sqrt{a^2 + 4b}}{2}$$

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,$ such that $\forall n \ge n_0$, we have $0 \le f(n) \le cg(n) \}$

- Show that $3n^3 = O(n^4)$ for appropriate *c* and n_0 .
- The answer is obviously *yes*, since for any $n > n_0 = 4$, we must have $n^4 > 3n^3$.
- Show that $3n^3 = O(n^3)$ for appropriate *c* and n_0 .
- The answer is also yes, since we can take c = 4, and for any n > n₀
 = 1, we must have cn³ > 3n³.

$\boldsymbol{\Omega}$ -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of *n*, as the set:

 $\Omega(g(n)) = \{f(n) : \\ \exists \text{ positive constants } c \text{ and } n_{0,} \\ \text{such that } \forall n \ge n_0, \end{cases}$

we have $0 \le cg(n) \le f(n)$

Intuitively: Set of all functions whose *rate of growth* is the same as or higher than that of g(n). $\int \frac{f(n)}{cg(n)}$ $\frac{rg(n)}{rg(n)}$ $\frac{n_0}{rg(n)} = \Omega(g(n))$

g(n) is an *asymptotic lower bound* for any f(n) in the set.

$$\begin{split} f(n) &= \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).\\ \Theta(g(n)) &\subset \Omega(g(n)). \end{split}$$

- $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}$
- $\sqrt{n} = \Omega(\log_2 n)$. Choose *c* and n_0 .
- For this purpose, we need to determine constants cand n_0 , such that for any $n \ge n_0$, we have

 $C\log_2 n \le \sqrt{n}$

- We can c = 1 and $n_0 = 25$ since $\log_2 25 < \log_2 32 = 5 = \sqrt{25}$
- We can also prove that $\sqrt{n} \log_2 n$ is an increasing function.

Relations Between Θ , O, Ω

Divide and Conquer (Merge sort)

Divide and conquer Merge sort

- Basic merge sort
- Improved merge sort
- Running time analysis
- Correctness proof (loop invariant)

Divide and Conquer

Recursive in structure

- Divide the problem into sub-problems that are similar to the original but smaller in size
- Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
- Combine the solutions of the sub-problems to create a global solution to the original problem

An Example: Merge Sort

<u>Sorting Problem</u>: Sort a sequence of *n* elements into non-decreasing order.

- Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each
- Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

Merge-Sort (A, p, r) INPUT: a sequence of *n* numbers stored in array A OUTPUT: an ordered sequence of *n* numbers

MergeSort (A, p, r)// sort A[p..r] by divide & conquer1if p < r2then $q \leftarrow \lfloor (p+r)/2 \rfloor$ 3MergeSort (A, p, q)4MergeSort (A, q+1, r)5Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: *MergeSort*(*A*, 1, *n*)

Procedure Merge

Merge(*A*, *p*, *q*, *r*) $1 \quad n_1 \leftarrow q - p + 1$ $2 n_2 \leftarrow r - q$ for $i \leftarrow 1$ to n_1 3 do $L[i] \leftarrow A[p+i-1]$ 4 for $j \leftarrow 1$ to n_2 5 **do** $R[j] \leftarrow A[q+j]$ 6 $L[n_1+1] \leftarrow \infty$ 7 $R[n_2+1] \leftarrow \infty$ 8 $i \leftarrow 1$ 9 $j \leftarrow 1$ 10 for $k \leftarrow p$ to r11 **do if** $L[i] \leq R[j] \leftarrow$ 12 then $A[k] \leftarrow L[i]$ 13 $i \leftarrow i + 1$ 14 else $A[k] \leftarrow R[j]$ 15 $j \leftarrow j + 1$ 16

Input: Array containing sorted subarrays A[p .. q]and A[q+1 .. r]. Output: Merged sorted subarray in A[p .. r].

Sentinels, to avoid having to check if either subarray is fully copied at each step.

Me	erge(A, p, q, r)
1 1	$n_1 \leftarrow q - p + 1$
21	$n_2 \leftarrow r - q$
3	for $i \leftarrow 1$ to n_1
4	do $L[i] \leftarrow A[p+i-1]$
5	for $j \leftarrow 1$ to n_2
6	do $R[j] \leftarrow A[q+j]$
7	$L[n_1+1] \leftarrow \infty$
8	$R[n_2+1] \leftarrow \infty$
9	$i \leftarrow 1$
10	$j \leftarrow 1$
11	for $k \leftarrow p$ to $r \checkmark$
12	do if $L[i] \leq R[j]$
13	then $A[k] \leftarrow L[i]$
14	$i \leftarrow i + 1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j + 1$

Loop Invariant for the *for***loop**

• At the start of each iteration of the for loop:

subarray A[p . . k - 1]contains the k - p smallest elements of *L* and *R* in sorted order.

• *L*[*i*] and *R*[*j*] are the smallest elements of *L* and *R* that have not been copied back into *A*.

Initialization:

Before the first iteration:

- A[p ... k 1] is empty.
- i=j=1.
- *L*[1] and *R*[1] are the smallest elements of *L* and *R* not copied to *A*.

Correctness of Merge

Merge(A, p, q, r) $1 \quad n_1 \leftarrow q - p + 1$ $2 n_2 \leftarrow r - q$ for $i \leftarrow 1$ to n_1 3 **do** $L[i] \leftarrow A[p+i-1]$ 5 **for** $j \leftarrow 1$ **to** n_2 **do** $R[j] \leftarrow A[q+j]$ 6 $L[n_1+1] \leftarrow \infty$ 7 $R[n_2+1] \leftarrow \infty$ 8 $i \leftarrow 1$ 9 $j \leftarrow 1$ 10 for $k \leftarrow p$ to r11 **do if** $L[i] \leq R[j]$ 12 then $A[k] \leftarrow L[i]$ 13 $i \leftarrow i + 1$ 14 else $A[k] \leftarrow R[j]$ 15 $j \leftarrow j + 1$ 16

Maintenance:

(We will prove that if after the *k*th iteration, the Loop Invariant (LI) holds, we still have the LI after the (*k*+1)th iteration.)

Case 1: $L[i] \le R[j]$ •By Loop Invariant, *A* contains k - psmallest elements of *L* and *R* in *sorted order*. •Also, L[i] and R[j] are the smallest elements of *L* and *R* not yet copied into *A*. •Line 13 results in *A* containing k - p + 1smallest elements (again in sorted order). Incrementing *i* and *k* reestablishes the LI for the next iteration. Similarly for Case 2: L[i] > R[j].

Μ	Merge(A, p, q, r)	
1	$n_1 \leftarrow q - p + 1$	
2	$n_2 \leftarrow r - q$	
3	for $i \leftarrow 1$ to n_1	
4	do $L[i] \leftarrow A[p+i-1]$	
5	for $j \leftarrow 1$ to n_2	
6	$\frac{\mathbf{do}}{\mathbf{R}[j]} \leftarrow \mathbf{A}[q+j]$	
7	$L[n_1+1] \leftarrow \infty$	
8	$R[n_2+1] \leftarrow \infty$	
9	$i \leftarrow 1$	
10	$j \leftarrow 1$	
11	$\mathbf{for} \ k \leftarrow p \ \mathbf{to} \ r$	
12	$2 \qquad \mathbf{do if } L[i] \le R[j]$	
13	$3 \qquad \qquad \mathbf{then} A[k] \leftarrow L[i]$	
14	$i \leftarrow i + 1$	
15	5 else $A[k] \leftarrow R[j]$	
16	$j \leftarrow j + 1$	

Maintenance:

Case 1: $L[i] \le R[j]$ •By Loop Invariant (LI), *A* contains k - psmallest elements of *L* and *R* in *sorted order*. •By LI, L[i] and R[j] are the smallest elements of *L* and *R* not yet copied into *A*. •Line 13 results in *A* containing k - p + 1smallest elements (again in sorted order). Incrementing *i* and *k* reestablishes the LI for the next iteration. Similarly for Case 2: L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r - p + 1 smallest elements of L and R in sorted order.

•*L* and *R* together contain r - p + 3 - (r - p + 1) = 2 elements.

All but the two sentinels have been copied back into *A*.

Improvements

- Reduction of data movements
- Non-recursive Algorithm

Y. Chen, and R. Su, Merge Sort Revisited, ACTA Scientific Computer Sciences, Vol. 4, No. 5, pp. 49 - 52, 2022.

Improvements

• Reduction of data movements

We notice that in the procedure merge() of Merge sort the copying of A[q + 1 .. r] into R is not necessary, since we can directly merge L and A[q + 1 .. r] and store the merged, but sorted sequence back into A.

Improvements

Algorithm: mergeImpr(A, p, q, r)**Input:** Both $A[p \dots q]$ and $A[q + 1 \dots r]$ are sorted; but A as a whole is not sorted **Output :** sorted A 1. $n_1 := q - p + 1; n_2 := r - p + 1; k := p;$ 2. let $L[1 \dots n_1]$ be a new array; When going out of while-loop, **3.** for i = 1 to n_1 do we distinguish between two cases: 4. L[i] := A[p + i - 1] $i > n_1$, 5. i := p; j := q + 1; $j > n_2$. 6. while $i \leq n_1$ and $j \leq n_2$ do if $L[i] \leq A[j]$ then $\{A[k] := L[i]; i := i + 1;\}$ 7. 8. else {A[k] := A[j]; j := j + 1;} 9. k := k + 1;**10.** if $j > n_2$ then 11. copy the remaining elements in L into A[k ... r];

Non-recursive algorithm

Algorithm: *mSort* (A) **Input** : *A* - a sequence of elements stored as an array; **Output :** sorted A **1.** if $|A| \leq 1$ then return *A*; *r*: the length of *A* **2**. r := |A|;3. $l := \lceil \log_2 r \rceil;$ *l* : the number of passes *j* : the number of elements involved **4**. *j* : = 2; in a merging process in a pass **5. for** *i* = 1 to *l* **do 6.** for k = 1 to $\lceil r/j \rceil$) do 7. $s := \lfloor (k - 1)j \rfloor;$ 8. $mergeImpr(A, s + 1, s + \lceil j/2 \rceil, s + j);$ 9. j := 2j;

Analysis of Merge Sort

- Running time T(n) of Merge Sort:
- \blacktriangleright Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 subproblems takes 2T(n/2)
- Combine: merging *n* elements takes Θ(*n*)
 Total:

 $T(n) = \Theta(1) \qquad \text{if } n = 1$ $T(n) = 2T(n/2) + \Theta(n) \qquad \text{if } n > 1$

 \Rightarrow T(n) = $\Theta(n \lg n)$ (CLRS, Chapter 4)

Recurrence Relations

Equation or an inequality that characterizes a function by its values on smaller inputs.

Solution Methods (Chapter 4)

- Substitution Method.
- Recursion-tree Method.
- Master Theorem Method.

Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.

Ex: Divide and Conquer.

 $T(n) = \Theta(1)$ T(n) = a T(n/b) + D(n) if $n \le c$ otherwise

Substitution Method

- Guess the form of the solution, then use mathematical induction to show it correct.
 - Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values.
- Works well when the solution is easy to guess.

No general way to guess the correct solution.

Example - Exact Function

Recurrence: T(n) = 1 if n = 1 T(n) = 2T(n/2) + n if n > 1• <u>Guess:</u> $T(n) = n \lg n + n$. • <u>Induction:</u> • Basis: $n = 1 \Rightarrow n \lg n + n = 1 = T(n)$. • Hypothesis: $T(k) = k \lg k + k$ for all k < n. • Inductive Step:

> T(n) = 2 T(n/2) + n= 2 ((n/2)lg(n/2) + (n/2)) + n = n (lg(n/2)) + 2n = n lg n - n + 2n = n lg n + n

Recursion Tree - Examp Running time of Merge Sort: if *n* = 1 $T(n) = \Theta(1)$ $T(n) = 2T(n/2) + \Theta(n)$ if n > 1Rewrite the recurrence as if *n* = 1 T(n) = cT(n) = 2T(n/2) + cn if n > 1**c > 0:** Running time for the base case and time per array element for the divide and combine steps.

Recursion Tree for Merge Sol

For the original problem, we have a cost of *cn*, plus two subproblems each of size (n/2) and running time T(n/2).

Each of the size n/2 problems has a cost of cn/2 plus two subproblems, each costing T(n/4).

cn

The Master Theorem

Theorem 4.1

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. T(n) can be bounded asymptotically in three cases:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

Quicksort

- Quick sort
- Correctness of partition
 loop invariant
- Performance analysis
 - Recurrence relations

Design

- Follows the divide-and-conquer paradigm.
- Divide: Partition (separate) the array A[p .. r] into two (possibly empty) subarrays A[p .. q-1] and A[q+1 .. r].
 - ► Each element in $A[p \dots q-1] \leq A[q]$.
 - ► A[q] < each element in A[q+1 ... r].
 - Index q is often referred to as a pivot.
- Conquer: Sort the two subarrays by recursive calls to quicksort.
- Combine: The subarrays are sorted in place no work is needed to combine them.
- How do the divide and combine steps of quicksort compare with those of merge sort?

Pseudocode

5

 ≥ 5

Example

<u>initially:</u>	p 2 i j	5	8	3	9	4	1	7	10	r 6	
next iteration:	2 i	5 j	8	3	9	4	1	7	10	6	
next iteration:	2	5 i	8 j	3	9	4	1	7	10	6	
next iteration:	2	5 i	8	3 j	9	4	1	7	10	6	
next iteration:	2	5	3 i	8	9 j	4	1	7	10	6	

note: pivot (x) = 6

 $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p-1; \\ \textbf{for } j := p \textbf{ to } r-1 \textbf{ do} \\ \textbf{ if } A[j] \leq x \textbf{ then} \\ i := i+1; \\ A[i] \leftrightarrow A[j] \\ \textbf{ fi} \\ \textbf{ od}; \\ A[i+1] \leftrightarrow A[r]; \\ \textbf{ return } i+1 \end{array}$

Example (Continued)

<u>next iteration:</u>	2	5	3 i	8	9 j	4	1	7	10	6	
<u>next iteration:</u>	2	5	3 i	8	9	4 j	1	7	10	6	
<u>next iteration:</u>	2	5	3	4 i	9	8	1 j	7	10	6	
<u>next iteration:</u>	2	5	3	4	1 i	8	9	7 j	10	6	
<u>next iteration:</u>	2	5	3	4	1 i	8	9	7	10 j	6	
<u>next iteration:</u>	2	5	3	4	1 i	8	9	7	10	6 j	
<u>after final swap:</u>	2	5	3	4	1 i	6	9	7	10	8 j	

 $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p-1; \\ \textbf{for } j := p \textbf{ to } r-1 \textbf{ do} \\ \textbf{ if } A[j] \leq x \textbf{ then} \\ i := i+1; \\ A[i] \leftrightarrow A[j] \\ \textbf{ fi} \\ \textbf{ od}; \\ A[i+1] \leftrightarrow A[r]; \\ \textbf{ return } i+1 \end{array}$

Partitioning

- Select the last element A[r] in the subarray A[p .. r] as the pivot - the element around which to partition.
- As the procedure executes, the array is partitioned into four (possibly empty) regions.
 - 1. $A[p \dots i] All$ entries in this region are $\leq pivot$.
 - 2. $A[i+1 \dots j 1] All$ entries in this region are > pivot.
 - 3. A[j ... r 1] Not known how they compare to *pivot*.
 - 4. A[r] = pivot.
- The above hold before each iteration of the for loop, and constitute a loop invariant. (4 is not part of the LI - loop invariant.)

Correctness of Partition

<mark>Us</mark>e loop invariant.

Initialization:

Before first iteration

A[p.. i] and A[i + 1 .. j - 1] are empty - Conds. 1 and 2 are satisfied (trivially).

r is the index of the *pivot* - Cond. 4 is satisfied.

Cond. 3 trivially holds.

Maintenance:

<u>Case 1:</u> A[j] > x Increment j only. LI is maintained. $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p - 1; \\ \textbf{for } j := p \textbf{ to } r - 1 \textbf{ do} \\ \textbf{ if } A[j] \leq x \textbf{ then} \\ i := i + 1; \\ A[i] \leftrightarrow A[j] \\ \textbf{ fi} \\ \textbf{ od}; \\ A[i + 1] \leftrightarrow A[r]; \\ \textbf{ return } i + 1 \end{array}$

Correctness of Partition

Correctness of Partition

Termination:

When the loop terminates, j = r, so all elements in A are partitioned into one of the three cases:

 $A[p ... i] \le pivot$ A[i + 1 ... r - 1] > pivotA[r] = pivot

The last two lines swap A[i + 1] and A[r].

Pivot moves from the end of the array to between the two subarrays.

Thus, procedure *partition* correctly performs the divide step.

Worst-case Partition Analys

Recursion tree for worst-case partition

Running time for worst-case partition at each recursive level: T(n) = T(n-1) + T(0)+ PartitionTime(n) $= T(n-1) + \Theta(n)$ $= \sum_{k=1 \text{ to } n} \Theta(k)$ $= \Theta(\sum_{k=1 \text{ to } n} k)$ $= \Theta(\sum_{k=1 \text{ to } n} k)$

 $n + (n - 1) + ... + 1 = n(n + 1)/2 = O(n^2)$

Best-case Partitioning

Size of each subproblem $\leq n/2$. \triangleright One of the subproblems is of size $\lfloor n/2 \rfloor$ The other is of size $\lceil n/2 \rceil - 1$. Recurrence for running time $ightarrow T(n) \le 2T(n/2) + PartitionTime(n)$ $= 2T(n/2) + \Theta(n)$ \blacktriangleright T(n) = $\Theta(n \lg n)$

Heapsort

- What is a heap? Max-heap? Min-heap?
- Maintenance of Max-heaps
 - MaxHeapify
 - BuildMaxHeap
- Heapsort
 - Heapsort
 - Analysis
- Priority queues
 - Maintenance of priority queues

Data Structure Binary

length[A] - number of elements in array A.
heap-size[A] - number of elements in heap stored in A.
heap-size[A] \leq length[A]

?£

24	21	23	22	36	29	30	34	28	27
1	2	3	4	5	6	7	8	9	10

Searching the tree in breadth-first fashion, we will get the array.

Data Structure Binary Hea

- Array viewed as a nearly complete binary tree.
 - Physically linear array.
 - Logically binary tree, filled on all levels (except lowest.)
- Map from array elements to tree nodes and vice versa
 - Root *A*[1], Left[Root] *A*[2], Right[Root] *A*[3]
 - Left[*i*] *A*[2*i*]
 - Right[*i*] *A*[2*i*+1]
 - Parent[*i*] *A*[⌊*i*/2⌋]

Heap Property (Max and M

- Max-Heap
 - For every node excluding the root, the value stored in that node is at most that of its parent: A[parent[i]] ≥ A[i]
- Largest element is stored at the root.
- In any subtree, no values are larger than the value stored at subtree's root.
- Min-Heap
 - ► For every node excluding the root, the value stored in that node is at least that of its parent: A[parent[i]] ≤ A[i]
- Smallest element is stored at the root.
- In any subtree, no values are smaller than the value stored at subtree's root

Heapsort(A)

HeapSort(A)

5.

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap-size[A] \leftarrow heap-size[A] 1$

MaxHeapify(A, 1)

Procedure MaxHeapify

MaxHeapify(A, i)

- 1. $l \leftarrow \text{left}(i)$ (* A[l] is the left child of A[i].*)
- 2. $r \leftarrow \operatorname{right}(i)$
- 3. if $l \leq heap-size[A]$ and A[l] > A[i]
- 4. **then** *largest* $\leftarrow l$
- 5. **else** *largest* \leftarrow *i*
- 6. if $r \leq heap-size[A]$ and A[r] > A[largest]
- 7. **then** *largest* \leftarrow *r*
- 8. **if** *largest* \neq *i*
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$

10. MaxHeapify(A, largest)

A[*largest*] must be the largest among A[*i*], A[*l*] and A[*r*].

Building a heap

Use MaxHeapify to convert an array A into a max-heap. <u>How?</u>

Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1 (* $A[\lfloor length[A]/2 \rfloor + 1]$,
- 3. **do** *MaxHeapify*(*A*, *i*)

... are leaf nodes.*)

 $A[\lfloor length[A]/2 \rfloor + 2],$

Running Time of BuildMaxHeap

Tighter Bound for *T*(*BuildMaxHeap*)

T(*BuildMaxHeap*)

=O(n)

 $\left| O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \right) = O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) \right|$

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^{h}}$$

$$\leq \sum_{h=0}^{\infty} \frac{h}{2^{h}}$$

$$= \frac{1/2}{(1-1/2)^{2}}$$

$$= 2$$

x = 1 in (A.8)

Can build a heap from an unordered array in linear time.
Priority Queue

Popular & important application of heaps.

- Max and min priority queues.
- Maintains a dynamic set S of elements.
- Each set element has a *key* an associated value.
- Goal is to support insertion and extraction efficiently.

Applications:

- Ready list of processes in operating systems by their priorities the list is highly dynamic
- In event-driven simulators to maintain the list of events to be simulated in order of their time of occurrence.

Basic Operations

Operations on a max-priority queue:

Insert(S, x) - inserts the element x into the queue S $\leq S \leq S \cup \{x\}$.

Maximum(S) - returns the element of S with the largest key.

Extract-Max(S) - removes and returns the element of S with the largest key.

Increase-Key(S, x, k) - increases the value of element x's key to the new value k.

Min-priority queue supports Insert, Minimum, Extract-Min, and Decrease-Key.

Heap gives a good compromise between fast insertion but slow extraction and vice versa.

Priority queue as max-heap:

Heap-Extract-Max(A)

Implements the Extract-Max operation.

Heap-Extract-Max(A)

- 1. if *heap-size*[*A*] < 1
- 2. then error "heap underflow"
- 3. $max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[heap-size[A]]$
- 5. $heap-size[A] \leftarrow heap-size[A] 1$
- 6. MaxHeapify(A, 1)
- 7. return max

Running time : Dominated by the running time of MaxHeapify = $O(\lg n)$

Heap-Insert(A, key)

Heap-Insert(A, key)

- 1. $heap-size[A] \leftarrow heap-size[A] + 1$
- 2. $i \leftarrow heap-size[A]$
- 4. while *i* > 1 and *A*[Parent(*i*)] < *key*
- 5. **do** $A[i] \leftarrow A[Parent(i)]$
- 6. $i \leftarrow Parent(i)$
- 7. $A[i] \leftarrow key$

Running time is $O(\lg n)$

The path traced from the new leaf to the root has length $O(\lg n)$.

Heap-Increase-Key(A, i, ke

<u>Heap-Increase-Key(A, i, key)</u>

- 1 If key < A[i]
- 2 **then error** "new key is smaller than the current key"
- 3 $A[i] \leftarrow key$

5

6

- 4 while i > 1 and A[Parent[i]] < A[i]
 - **do** exchange $A[i] \leftrightarrow A[Parent[i]]$
 - $i \leftarrow \text{Parent}[i]$

<u>Heap-Insert(A, key)</u>

- 1 $heap-size[A] \leftarrow heap-size[A] + 1$
- 2 $A[heap-size[A]] \leftarrow -\infty$
- 3 *Heap-Increase-Key*(A, heap-size[A], key)

Binary Search Trees

- What is a binary search tree?
- Tree searching
- Inorder traversal of a binary search tree
- Find Min & Max
- Predecessor and successor
- BST insertion and deletion

Binary Search Tree

- Stored keys must satisfy the **binary** search tree property.
 - $> \forall y$ in left subtree of x, then key[y] <key[x].
 - $> \forall y$ in right subtree of x, then $key[y] \ge (12)$ key[x].

Tree Search

(190)

Aside: tail-recursion

Iterative Tree Search

195)

The iterative tree search is more efficient on most computers. The recursive tree search is more straightforward.

Inorder Traversal

The binary-search-tree property allows the keys of a binary search tree to be printed, in (monotonically increasing) order, recursively.

Inorder-Tree-Walk (x)

- 1. if $x \neq \text{NIL}$
- 2. then Inorder-Tree-Walk(left[x])
- 3. print *key*[x]
 - Inorder-Tree-Walk(right[x])

Finding Min & Max

The binary-search-tree property guarantees that:
» The minimum is located at the left-most node.
» The maximum is located at the right most node.

» The maximum is located at the right-most node.

Tree-Minimum(x)		Tree-Maximum(x)		
1.	while <i>left</i> [x] ≠ NIL	1. while $right[x] \neq NIL$		
2.	do $x \leftarrow left[x]$	2. do $x \leftarrow right[x]$		
3.	return x	3. return x		

Q: How long do they take?

Predecessor and Successo

- Predecessor of node x is the node y such that key[y] is the greatest key smaller than key[x].
- Successor of node x is the node y such that key[y] is the smallest key greater than key[x].

The successor of the largest key is NIL.

- Search consists of two cases.
 - If node x has a non-empty right subtree, then x's successor is the minimum in the right subtree of x.
 - If node x has an empty right subtree, then:
 - As long as we move to the left up the tree (move up through right children), we are visiting smaller keys.
 - x's successor y is the node that is the predecessor of x (x is the maximum in y's left subtree).
 - In other words, x's successor y, is the lowest ancestor of x whose left child is also an ancestor of x or is x itself.

Successor

BST Insertion - Pseudocod

- Change the dynamic set represented by a BST.
- Ensure the binary-search-tree property holds after change.
- Insertion is easier than deletion.

Iree	<u>e-Insert(I, z)</u>
1.	$y \leftarrow NIL$
2.	$x \leftarrow root[T]$
3.	while $x \neq \text{NIL}$
4.	do $y \leftarrow x$
5.	if key[z] < key[x]
6.	then $x \leftarrow left[x]$
7.	else $x \leftarrow right[x]$
8.	$p[z] \leftarrow y$
9.	if $y = NIL$
10.	then $root[T] \leftarrow z$
11.	else if key[z] < key[y]
12.	then $left[y] \leftarrow z$
13.	else $right[y] \leftarrow z$

Tree-Delete (T, z)

case 1

- if z has no children then remove z
- if z has one child then make p[z] point to child

 \Rightarrow TOTAL: O(h) time to delete a node

Deletion - Pseudocode

Tree-Delete(T, z)

- 1. **if** left[z] = NIL **or** right[z] = NIL
- 2. then $y \leftarrow z$ /*Case 1 or Case 2*/ 3. else $y \leftarrow Tree-Successor[z]$ /*Case 3*/

/* Set x to a non-NIL child of y, or to NIL if y has no children. */

- 4. if $left[y] \neq NIL$ `` /*y has one child or no child.*/
- 5. then $x \leftarrow left[y]$ /*x can be a child of y or NIL.*/ 6. else $x \leftarrow right[y]$
- /* y is removed from the tree by manipulating pointers of p[y]and x */ y is the node be deleted, which

7. if $x \neq \text{NIL}$

8. then $p[x] \leftarrow p[y]$

/* Continued on next slide */

x is the unique child of y.

has at most one child.

Deletion - Pseudocode

Tree-Delete(T	, z) (Contd. from p	revious slide)		
9. if <i>p</i> [<i>y</i>] =	NIL	/*if y is the root*/		
10. then <i>r</i>	$root[T] \leftarrow x$			
11. else if	y = <i>left</i> [p[y]]	/*y is a left child.*/		
12. th	nen $left[p[y]] \leftarrow x$			
13. e	lse right[p[y]] $\leftarrow x$			
/* If z's successor was spliced out, copy its data into z */				
$14. \text{if } y \neq z$		/*y is z's successor.*/		
15. then	$key[z] \leftarrow key[y]$			
16.	copy y's satellite o	data into z.		
17. return y				

Red-Black Trees

- What is a red-black tree?
 - node color: red or black
 - nil[T] and black height
- Subtree rotation
- Node insertion
- Node deletion

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every *virtual* leaf (*nil*) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Height of a Red-black Tree

Height of a node:

h(x) = number of edges in a longest path to a leaf.

Black-height of a node x, bh(x):

- bh(x) = number of black nodes (including nil[T]) on the path from x to leaf, not counting x.
- Black-height of a red-black tree is the black-height of its root.
 - ▶ By Property 5, black height is well defined.

leight of a Red-black Tree

Example:

Height of a node:

h(x) = # of edges in a longest path to a leaf.

Black-height of a node bh(x) = # of black nodes on path from x to leaf, not counting x.

How are they related?

 $bh(x) \leq h(x) \leq 2bh(x)$

Lemma "RB Height"

Consider a node x in an RB tree: The longest descending path from x to a leaf has length h(x), which is at most twice the length of the shortest descending path from x to a leaf.

Proof:

black nodes on any path from x = bh(x) (prop 5) \leq # nodes on shortest path from x, s(x). (prop 1) But, there are no consecutive red (prop 4), and we end with black (prop 3), so $h(x) \leq 2 bh(x)$. Thus, $h(x) \leq 2s(x)$. QED

Bound on RB Tree Height

- Lemma: The subtree rooted at any node x has $\geq 2^{bh(x)}-1$ internal nodes.
- **Proof:** By induction on height of x, h(x).
 - ▶ Base Case: Height $h(x) = 0 \Rightarrow x$ is a leaf $\Rightarrow bh(x) = 0$. Subtree has $2^0-1 = 0$ nodes.
 - Induction Step: Assume that for any node with height < h the lemma holds.

Consider node x with h(x) = h > 0 and bh(x) = b.

- Each child of x has height at most h 1 and black-height either b (child is red) or b - 1 (child is black).
- ▶ By ind. hyp., each child has $\geq 2^{bh(x)-1} 1$ internal nodes.
- Subtree rooted at x has $\geq 2(2^{bh(x)-1}-1)+1$ = $2^{bh(x)}-1$ internal nodes. (The +1 is for x itself.)

Bound on RB Tree Height

Lemma: The subtree rooted at any node x has $\geq 2^{bh(x)}-1$ internal nodes.

Lemma 13.1: A red-black tree with n internal nodes has height at most 2lg (n+1).

Proof:

- ▶ By the above lemma, $n \ge 2^{bh} 1$,
- ▶ and since $bh \ge h/2$, we have $n \ge 2^{h/2} 1$.

► \Rightarrow $h \leq 2\lg(n + 1)$.

Rotations Left-Rotate(T, x) x V **Right-Rotate**(*T*, *y*) α x y α

Left Rotation - Pseudo-code

Left-Rotate (T, x)

- 1. $y \leftarrow right[x]$ // Set y.
- 2. $right[x] \leftarrow left[y] //Turn y's left subtree \beta into x's right subtree.$
- 3. if $left[y] \neq nil[T]$
- 4. then $p[left[y]] \leftarrow x / / \text{Set } x$ to be the parent of $left[y] = \beta$.
- 5. $p[y] \leftarrow p[x]$ //Link x's parent to y.
- 6. if p[x] = nil[T] //lf x is the
- 7. then $root[T] \leftarrow y$
- 8. else if x = left[p[x]]
- 9. then $left[p[x]] \leftarrow y$
- 10. else right[p[x]] \leftarrow y β γ
- 11. $left[y] \leftarrow x$ // Put x as y's left child.
- 12. $p[x] \leftarrow y$

Insertion in RB Trees

- Insertion must preserve all red-black properties.
- Should an inserted node be colored Red? Black?
- Basic steps:
 - Use Tree-Insert from BST (slightly modified) to insert a node z into T.
 - Procedure RB-Insert(z).
 - Color the node z red.
 - Fix the modified tree by re-coloring nodes and performing rotation to preserve RB tree property.
 - Procedure RB-Insert-Fixup.

Insertion

RB-Insert(T, z)

1. $y \leftarrow nil[T]$

- 2. $x \leftarrow root[T]$
- 3. while $x \neq nil[T]$
- 4. do $y \leftarrow x$
- 5. **if** key[z] < key[x]
 - then $x \leftarrow left[x]$
 - else $x \leftarrow right[x]$
- 8. $p[z] \leftarrow y$

6.

7.

13.

- **9. if** *y* = *nil*[*T*]
- 10. **then** $root[T] \leftarrow z$
- 11. else if key[z] < key[y]
- 12. then $left[y] \leftarrow z$
 - else right[y] \leftarrow z

RB-Insert(T, z) Contd.

- $14. \quad left[z] \leftarrow nil[T]$
- 15. $right[z] \leftarrow nil[T]$
- 16. $color[z] \leftarrow \text{RED}$
- 17. **RB-Insert-Fixup**(T, z)

How does it differ from the Tree-Insert procedure of BSTs? Which of the RB properties might be violated?

Fix the violations by calling RB-Insert-Fixup.

Insertion - Fixup

Insertion - Fixup

	RB-I	nsert-Fixup(<i>T, z</i>) (Contd.)		
	9.	else if <i>z</i> = <i>right</i> [<i>p</i> [<i>z</i>]]	// color[y] \neq RED	
	10.	then $z \leftarrow p[z]$	// Case 2	
	11.	LEFT-ROTATE	Z(T, z) // Case 2	
	12.	$color[p[z]] \leftarrow BLAC$	CK // Case 3	
	13.	$color[p[p[z]]] \leftarrow \text{RE}$	D // Case 3	
	14.	RIGHT-ROTATE(T,	<i>p</i> [<i>p</i> [<i>z</i>]]) // Case 3	
	15.	else (if $p[z] = right[p[p[z]]])$ (f	for cases $4 - 6$, same	
	16. as 3-14 with "right" and "left" exchanged)			
	17. се	$olor[root[T]] \leftarrow BLACK$		
C	ase 2:	a $y \rightarrow b$ y Cas	e 3: $y \Rightarrow z$ a	
	O		$z \stackrel{\sim}{a} \gamma \qquad \alpha \beta \gamma$	Y

Deletion

- Deletion, like insertion, should preserve all the RB properties.
- The properties that may be violated depends on the color of the deleted node.
 - ▶ Red OK. <u>Why?</u>
 - Black?
- Steps:
 - Do regular BST deletion.
 - Fix any violations of RB properties that may be caused by a deletion.
Deletion

RB-Delete(T, z)

- 1. if left[z] = nil[T] or right[z] = nil[T]
- 2. then $y \leftarrow z$
- 3. else $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- 4. if $left[y] \neq nil[T]$
- 5. then $x \leftarrow left[y]$
- $6. \qquad else x \leftarrow right[y]$
- 7. $p[x] \leftarrow p[y]$ // Do this, even if x is nil[T]

Deletion

RB-Delete (*T*, *z*) (Contd.) **8.** if p[y] = nil[T]

- 9. then $root[T] \leftarrow x$
- **10.** else if y = left[p[y]] (*if y is a left child.*)
- **11.** then $left[p[y]] \leftarrow x$
- **12.** else $right[p[y]] \leftarrow x$ (*if y is a right
- **13. if** $y \neq z$ child.*)
- **14.** then $key[z] \leftarrow key[y]$

copy y's satellite data

into z

15.

- **16. if** *color*[*y*] = BLACK
- **17.** then RB-Delete-Fixup(T, x)

18. return *y*

The node passed to the fixup routine is the only child of the spliced up node, or the sentinel.

Deletion - Fixup

<u>RB-Delete-Fixup(</u>*T***,** *x***) (Contd.)</u>**

/* x is still *left*[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] =	BLACK
---	-------

10.	then $color[w] \leftarrow RED$	// Case 2
11.	$x \leftarrow p[x]$	// Case 2
12.	<pre>else if color[right[w]] = BLACK</pre>	// Case 3
13.	then <i>color</i> [<i>left</i> [<i>w</i>]] \leftarrow BLACK	// Case 3
14.	$color[w] \leftarrow RED$	// Case 3
15.	RIGHT-ROTATE(T, w)	// Case 3
16.	$w \leftarrow right[p[x]]$	// Case 3

Elementary Graph Algorithms

- Graph representation
- Graph traversal
 - Breadth-first search
 - Depth-first search
- Parenthesis theorem

Graphs

- Types of graphs
 - » Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - » Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - » Weighted: each edge has an associated weight, given by a weight function $w : E \to R$. (R – set of all possible real numbers)
 - » Dense: $|E| \approx |V|^2$.
 - » Sparse: $|E| << |V|^2$.
 - $|E| = O(|V|^2)$

Graphs

If $(u, v) \in E$, then vertex v is adjacent to vertex u.

Adjacency relationship is:

Symmetric if G is undirected.

▶ Not necessarily so if *G* is directed.

▶ If an undirected graph *G* is connected:

- There is a path between every pair of vertices.
- $|E| \ge |V| 1.$
- Furthermore, if |E| = |V| 1, then G is a *tree*.
- If a directed graph G is connected:
- Its undirected version is connected.
- Other definitions in Appendix B (B.4 and B.5) as needed.

Representation of Graphs

- Two standard ways.
 - Adjacency Lists.

Adjacency Matrix.

a

С

Storage Requirement

For directed graphs:

Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = \sum_{v \in V} \text{in-degree}(v) = |E|$$

∼No. of edges leaving *v*

• Total storage: $\Theta(|V| + |E|)$

For undirected graphs:

Sum of lengths of all adj. lists is

 $\sum_{v \in V} \text{degree}(v) = 2|E|$

No. of edges incident on v. Edge (u,v) is incident on vertices u and v.

► Total storage: $\Theta(|V| + |E|)$

Sparse Matrix

Nonzero values data[]

Column indeces col_index[]

Row pointers row_ptr[]

row0	row2			row3		
{3 1	2	4	1	1	1}	
{0 2	1	2	3	0	3}	
{0 2	2	5	7}			

Sparse Graph

Graph storage in a data file on hard disk

graph.txt

Breadth-first Search

Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V.

Output:

- ► d[v] = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
- > $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.

▶ *u* is *v*'s predecessor.

Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:

Path between vertices *u* and *v*: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u = v_1$ and $v = v_k$, and $(v_i, v_{i+1}) \in E$, for all $1 \le i \le k-1$. Length of the path: Number of edges in the path. Path is simple if no vertex is repeated.

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.

White - Undiscovered.

Gray - Discovered but not finished.

Black - Finished.

BFS for Shortest Paths

BFS(G,s)

- 1. **for** each vertex *u* in *V*[*G*] {s}
- 2 **do** *color*[*u*] \leftarrow white
- 3 $d[u] \leftarrow \infty$
- 4 $\pi[u] \leftarrow \text{nil}$
- 5 color[s] \leftarrow gray
- $6 \quad d[s] \leftarrow 0$
- 7 $\pi[s] \leftarrow \text{nil}$
- 8 $Q \leftarrow \Phi$
- 9 enqueue(*Q*, *s*)
- 10 while $Q \neq \Phi$
- 11 **do** $u \leftarrow \text{dequeue}(Q)$
- 12 for each v in Adj[u] do
- 13 **if** color[*v*] = white
- 14 **then** color[v] \leftarrow gray
- 15 $d[v] \leftarrow d[u] + 1$
- 16 $\pi[v] \leftarrow u$
- 17 enqueue(Q, v)
- 18 $\operatorname{color}[u] \leftarrow \operatorname{black}$

initialization

access source s

gray: discovered black: finished Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v $\pi[u]$: predecessor of v

white: undiscovered

Example (BFS)

BFS(G,s)

- for each vertex u in $V[G] \{s\}$ 1.
- 2 **do** *color*[u] \leftarrow white

$$d[u] \leftarrow \infty$$

$$\pi[u] \leftarrow \text{nil}$$

- 5 $color[s] \leftarrow gray$
- $d[s] \leftarrow 0$ 6
- $\pi[s] \leftarrow \text{nil}$ 7
- 8 $Q \leftarrow \Phi$

15

enqueue(Q, s)9

while $Q \neq \Phi$ 10

- **do** $u \leftarrow \text{dequeue}(Q)$ 11
- 12 for each v in Adj[u] do
- **if** color[v] = white 13
- **then** color[v] \leftarrow gray 14

$$d[v] \leftarrow d[u] + 1$$

16
$$\pi[v] \leftarrow u$$

- 17 enqueue(Q, v)
- $color[u] \leftarrow black$ 18

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor). v
- Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

Input: G = (V, E), directed or undirected. No source vertex given!

Output:

- 2 timestamps on each vertex. Integers between 1 and 2 | V |.
 - b d[v] = discovery time (v turns from white to gray)
 - f [v] = finishing time (v turns from gray to black)
- π[v] : predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Coloring scheme for vertices as BFS. A vertex is
 - "undiscovered" (white) when it is not yet encountered.
 - "discovered" (grey) the first time it is encountered during the search.
 - "finished" (black) if it is a leaf node or all vertices adjacent to it have been finished.

Pseudo-code

5.

6.

7.

DFS(G)

- 1. for each vertex $u \in V[G]$
- 2. **do** *color*[u] \leftarrow white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. time $\leftarrow 0$

7.

- 5. for each vertex $u \in V[G]$
- 6. **do if** *color*[*u*] = white

then DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(*u*)

- 1. $color[u] \leftarrow GRAY // White vertex u$ has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
 - **do if** *color*[*v*] = WHITE
 - then $\pi[v] \leftarrow u$
 - DFS-Visit(*v*)
- 8. $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Example (DFS)

DFS-Visit(*u*)

9.

- . $color[u] \leftarrow GRAY // White vertex u$ has been discovered
 - $time \leftarrow time + 1$
 - $d[u] \leftarrow time$
 - for each $v \in Adj[u]$
 - **do if** *color*[*v*] = WHITE
 - **then** $\pi[v] \leftarrow u$

DFS-Visit(*v*)

- $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- $f[u] \leftarrow time \leftarrow time + 1$

Example (DFS)

DFS(G)

7.

- 1. for each vertex $u \in V[G]$
- 2. **do** *color*[*u*] \leftarrow white
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. time $\leftarrow 0$
- 5. for each vertex $u \in V[G]$
- 6. **do if** *color*[*u*] = white
 - then DFS-

Visit(*u*)

Example (DFS)

DFS-Visit(*u*)

- 1. $color[u] \leftarrow GRAY // White vertex u$ has been discovered
 - $time \leftarrow time + 1$
 - $d[u] \leftarrow time$
 - **for** each $v \in Adj[u]$

do if color[v] = WHITE

then $\pi[v] \leftarrow u$

DFS-Visit(*v*)

- $color[u] \leftarrow BLACK$ // Blacken u; it is finished.
- $f[u] \leftarrow time \leftarrow time + 1$

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq nil\}.$
 - » How does it differ from that of BFS?
 - » The predecessor subgraph G_{π} forms a *depth-first forest* composed of several *depth-first trees*. The edges in E_{π} are called *tree edges*.

Definition:

Forest: An acyclic graph *G* that may be disconnected.

Parenthesis Theorem

Theorem 22.7

For all *u*, *v*, exactly one of the following holds:

1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other in the *DF-tree*.

d[v]

f[u]

d[u]

fv

- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u in DF-tree.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v in DF-tree.

- Like parentheses:
 - OK: ()[]([])[()]
 - Not OK: ([)][(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

f[v]

d[v]

Parenthesis Theorem

Example (Parenthesis Theorem)

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

1<2<3<4<5<6<7<8<9<10 11<12<13<14<15<16

In general, if we use '(v' to represent d[v], and 'v)' to represent f[v], the inequalities in the Parenthesis Theorem are just like parentheses in an arithmetical expression.

White-path Theorem

Theorem 22.9

v is a descendant of u in DF-tree if and only if at time d[u], there is a path u = v consisting of only white vertices. (Except for u, which was just colored gray.)

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge (u, v) such that u is not a descendant of v (in the depth-first tree) and vice versa.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Identification of Edges

В

[d(v), f(v)]

[d(u), f(u)]

Х

[d(v), f(v)]

C

[d(u), f(u)]

Edge type for edge (u, v) can be identified when it is first explored by DFS.

Identification is based on the color of v.

- If v is white, then (u, v) is a tree edge.
- If v is gray, then (u, v) is a back edge.

[d(v), f(v)]

If v is black, then (u, v) is a forward or cross edge.

[d(u), f(u)]

[d(v), f(v)]

[d(u), f(u)]

Graph Algorithms - 2

- DAGs
- Topological order
- Recognition of strongly connected components

Directed Acyclic Graph

- DAG Directed Acyclic Graph (directed graph with no cycles)
- Used for modeling processes and structures that have a partial order:
 - Let *a*, *b*, *c* be three elements in a set *U*.
 - ▶ a > b and $b > c \Rightarrow a > c$. (Transitivity)
 - But may have a and b such that neither a > b nor b > a.

We can always make a total order (either a > b or b > a for all a ≠ b) from a partial order (by imposing a relation on any two elements whose relation is not specified with the original partial order, as long as the transitivity of this partial order not violated.)

Example

DAG of dependencies for putting on goalie equipment.

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G(V, E) such that if $(u, v) \in E$, then u appears somewhere before v.
Topological Sort

Sort a directed acyclic graph (DAG) by the nodes' finishing times.

Think of original DAG as a partial order.

By sorting, we get a **total order** that extends this partial order.

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices

Time: $\Theta(|V| + |E|)$.

Example 1

Linked List:

Correctness Proof

- ▶ Just need to show if $(u, v) \in E$, then f[u] > f[v].
- ▶ When we explore (*u*, *v*), what are the colors of *u* and *v*?
 - ► *u* is gray.
 - Is v white?
 - ▶ Then becomes descendant of *u*.
 - ▶ By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - ► Is v black?
 - Then v is already finished.
 - Since we're exploring (u, v), we have not yet finished u.
 - ▶ Therefore, f[v] < f[u].
 - Is v gray, too?
 - ► No.
 - because then v would be ancestor of $u \Rightarrow (u, v)$ is a back edge.
 - $ightarrow \Rightarrow$ contradiction of Lemma 22.11 (dag has no back edges).

Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.

Component Graph

- $\blacktriangleright G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}}).$
- \triangleright V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in G.
- ► *G*^{SCC} for the example considered:

G^{SCC} is a DAG

Lemma 22.13

Let *C* and *C'* be distinct SCC's in *G*, let $u, v \in C, u', v' \in C'$, and suppose there is a path $u \sim u'$ in *G*. Then there cannot also be a path $v' \sim v$ in *G*.

Proof:

- Suppose there is a path $v' \sim v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCC's.

Transpose of a Directed Graph

• G^T = transpose of directed G.

$$\blacktriangleright G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}.$$

 $\triangleright G^{T}$ is G with all edges reversed.

- Can create G^T in $\Theta(|V| + |E|)$ time if using adjacency lists.
- G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)

Algorithm to determine SC

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^T
- 3. call DFS(G^{T}), but in the main loop, consider vertices in order of decreasing f[u] (as computed in the first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in the second DFS as a separate SCC

Time: $\Theta(|V| + |E|)$.

SCCs and DFS finishing times

Lemma 22.14

Let *C* and *C'* be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- ► Case 1: d(C) < d(C')</p>
 - Let x be the first vertex discovered in C.
 - At time d[x], all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of x in depth-first tree.
 - By the parenthesis theorem, f [x] = f (C) > f(C').

d(x) < d(v) < f(v) < f(x)

SCCs and DFS finishing times

Lemma 22.14

Let *C* and *C'* be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

C

U

 $d(C) = \min_{u \in C} \{d[u]\})$

 $f(C) = \max_{u \in C} \{ f[u] \}$

Proof:

- Case 2: d(C) > d(C')
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C' are white and there is a white path from y to each vertex in C' ⇒ all vertices in C' become descendants of y. Again, f[y] = f(C').
 - At time *d*[*y*], all vertices in *C* are also white.
 - By earlier lemma, since there is an edge (u, v), w cannot have a path from C' to C.
 - So no vertex in *C* is reachable from *y*.
 - Therefore, at time f[y], all vertices in C are still white.
 - ▶ Therefore, for all $v \in C$, f[v] > f[y], which implies that f(C) > f(C').

SCCs and DFS finishing times

Corollary 22.15 Let *C* and *C'* be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

Proof:

- ► $(u, v) \in E^T \Rightarrow (v, u) \in E$.
- Since SCC's of G and G^T are the same, f(C') > f(C), by Lemma 22.14.