Tutte's 1-Factor Theorem (West, §3.3)

Let $G=(V, E)$ be a simple graph with $n=n(G)$.
$o(G)=$ number of odd components of G (that is, components with an odd number of vertices)

- $o(G) \equiv n(\bmod 2)$ (i.e., $o(G)$ and $n(G)$ are either both even or both odd).
- For $S \subseteq V$

$$
o(G-S) \equiv n(G-S)=n-|S| \quad(\bmod 2)
$$

so

$$
\begin{equation*}
|S|+o(G-S) \equiv n(G) \quad(\bmod 2) \tag{1}
\end{equation*}
$$

Theorem 3.3.3: (Tutte's 1-Factor Theorem) Let G be a graph. Then G has a 1-factor if and only if

$$
\begin{equation*}
\forall S \subset V: \quad o(G-S) \leq|S| \tag{2}
\end{equation*}
$$

(this is called Tutte's condition for G).

Proof. Suppose that G has a perfect matching M, and let $S \subset V$. No odd component of $G-S$ has a perfect matching, so for every odd component H of $G-S$, there must exist some $v \in V(H)$ such that $w=\operatorname{sp}_{M}(v) \notin V(H)$. The vertex w cannot belong to any other component of $G-S$, hence must belong to S. Putting $w=f(H)$, we have a function

$$
f:\{\text { odd components of } G-S\} \rightarrow S
$$

that is one-to-one. In particular, $o(G-S) \leq|S|$. So we have shown that Tutte's condition is necessary for the existence of a perfect matching.

We now want to show that if G satisfies Tutte's condition, then it has a perfect matching. Note first that putting $S=\emptyset$ in (2) gives $o(G-S)=o(G) \leq|S|=0$, so $n(G)$ is even by (1).

Claim 1: Adding an edge preserves Tutte's condition. That is, if $e \in E(H)$ and $H-e$ satisfies Tutte's condition then so does H.

To prove this, suppose that Tutte's condition holds for $H-e$. Let $S \subseteq V(H)$. If e has an endpoint in S, then $H-S=H-e-S$, so $o(H-S)=o(H-e-S) \leq|S|$. Otherwise, let J, J^{\prime} be the (possibly equal) components of $H-e-S$ containing the endpoints of e. Then

$$
o(H-S)= \begin{cases}o(H-e-S) & \text { if } J=J^{\prime} \\ o(H-e-S) & \text { if } J \neq J^{\prime} \text { are both even } \\ o(H-e-S) & \text { if } J \text { is even, } J^{\prime} \text { is odd } \\ o(H-e-S)-2 & \text { if } J \neq J^{\prime} \text { are both odd. }\end{cases}
$$

In all cases, $o(H-S) \leq o(H-e-S) \leq|S|$, proving Claim 1 .

Thus, if Tutte's condition does not suffice for the existence of a 1-factor, we can choose a maximal counterexample G : that is, a simple graph such that

- G satisfies Tutte's condition;
- $\quad G$ has no 1-factor; and
- adding any single missing edge to G produces a graph with a 1-factor.

Claim 2: These conditions imply a contradiction.

The idea of the proof is to look at the graph $G-U$, where

$$
U=\left\{v \in V \mid N(v)=V-\{v\}=\left\{v \in V \mid d_{G}(v)=n-1\right\} .\right.
$$

Case 1: $G-U$ is a disjoint union of cliques. For example, it might look like this:

Here U consists of the vertices colored in gray. I've only drawn the edges of $G-U$; since $N(u)=V-\{u\}$ for $u \in U$, putting all the other edges in would make the picture incomprehensible. In this example, $o(G-U)=4$ (two 1 -cliques (isolated vertices), one 3 -clique and one 7 -clique), and $|U|=8$ (by Tutte's condition and (1), this has the same parity as, and is greater than or equal to, $o(G-U))$.

A maximum matching M on $G-U$ (the red edges in the figure below) saturates all but $o(G-U)$ verticesevery vertex of every even clique, and all vertices but one from each odd clique.

To enlarge this to a perfect matching M^{\prime} of G, we first match each M-unsaturated vertex in $G-U$ to a vertex in U (the green edges).

At this point, the number of unmatched vertices is $|U|-o(G-U)$. All these vertices belong to U, hence are pairwise adjacent. There is an even number of them (since $|U|$ and $o(G-U)$ have the same parity) so we can complete the perfect matching (the blue edges).

Case 2: $G-U$ is not a disjoint union of cliques.

Let H be a component of $G-U$ which is not a clique. It must have at least three vertices, and two of those vertices must be at distance 2. That is, x and z are not adjacent, but have a common neighbor y. Also, there is a vertex $w \in V(G-U)$ such that $w y \notin E$ (if no such vertex existed, then $y \in U$ by definition of U, which is not the case). (Note: w may or may not belong to H.) Again, the vertices of U are colored gray, and all edges with one or both endpoints in U are omitted.

By the choice of G, adding a single edge to G produces a graph with a perfect matching. Accordingly, let M_{1} and M_{2} be matchings of $G+x z$ and $G+w y$ respectively, as shown below.

The dashed edges $w y$ and $x z$ do not belong to G; all other edges do. Let $F=M_{1} \triangle M_{2}$; then $x z, w y \in F$. By Lemma 3.1.9, every component of F is a path or an even cycle. Actually, each component that is a path must be an isolated vertex, otherwise its endpoints would not be saturated by both M_{1} and M_{2}. So the component C that contains $x z$ is an even cycle.

CASE 2A: $y w \notin C$ (not the case of the example). Then

$$
M_{1} \triangle C=\left(M_{2} \cap E(C)\right) \cup\left(M_{1}-E(C)\right)
$$

is a perfect matching that contains neither $x z$ nor $w y$, so it is a perfect matching of G.

CASE 2B: $y w \in C$. Label the vertices of C as $w, y, a_{1}, a_{2}, \ldots, a_{p}, z, x, b_{1}, b_{2}, b_{q}$. (It is possible that x and z are switched, but that case is equivalent because, we have made no distinction between these vertices - they can be interchanged.) Note also that the numbers p and q are both odd (in the example, $p=7$ and $q=3$). This is because the path $y, a_{1}, \ldots, a_{p}, z$ has the same number of edges in M_{1} and M_{2}, hence has an even number of edges and an odd number of vertices. Meanwhile, $|V(C)|=4+p+q$ is even, so p and q have the same parity.

Now, the edge set

$$
M^{*}=\left\{a_{1} a_{2}, \ldots, a_{p-2} a_{p-1}, a_{p} z, \quad y x, \quad b_{1} b_{2}, \ldots, b_{q-2} b_{q-1}, b_{q} w\right\} \subset E
$$

(shown in green below) is a perfect matching on $V(C)$. Since $M_{1}-E(C)$ (shown in yellow) is a perfect matching on $V-V(C)$, it follows that $\left(M_{1}-E(C)\right) \cup M^{*}$ is a perfect matching of G, as desired.

