Tutte’s 1-Factor Theorem (West, §3.3)

Let G = (V, E) be a simple graph with n = n(G).

0(G) = number of odd components of G (that is, components with an odd number of vertices)

— 0o(G) =n (mod 2) (i.e., o(G) and n(G) are either both even or both odd).

— For SCV
o(G—=95)=n(G—-S5)=n—|5|] (mod 2),
S0

|S| +0o(G — S)=n(G) (mod 2). (1)

Theorem 3.3.3:  (Tutte’s 1-Factor Theorem) Let G be a graph. Then G has a 1-factor if and only if
VSCV: ofG-2S8)<]|S] (2)
(this is called Tutte’s condition for G).

Proof. Suppose that G has a perfect matching M, and let S C V. No odd component of G — S has a
perfect matching, so for every odd component H of G — S, there must exist some v € V(H) such that
w = sp,;(v) € V(H). The vertex w cannot belong to any other component of G — S, hence must belong to
S. Putting w = f(H), we have a function

f: {odd components of G — S} — S

that is one-to-one. In particular, o(G — S) < |S|. So we have shown that Tutte’s condition is necessary for
the existence of a perfect matching.

We now want to show that if G satisfies Tutte’s condition, then it has a perfect matching. Note first that
putting S =0 in (2) gives o(G — S) = 0o(G) < |S| =0, so n(G) is even by (1).

Claim 1: Adding an edge preserves Tutte’s condition. That is, if e € E(H) and H — e satisfies Tutte’s
condition then so does H.

To prove this, suppose that Tutte’s condition holds for H —e. Let S C V(H). If e has an endpoint in S,
then H—S=H —e—S,s0 o(H —S) =0(H —e—5) <|S|. Otherwise, let J,J" be the (possibly equal)
components of H — e — S containing the endpoints of e. Then

o(H—e—5) it J=J',

o(H—e—29) if J # J' are both even,

o(H—e—S5) if J is even, J' is odd,

o(H—e—S)—2 if J# J are both odd.

In all cases, o(H — S) < o(H — e —S) < |S|, proving Claim 1.

o(H-S)=

1



Thus, if Tutte’s condition does not suffice for the existence of a 1-factor, we can choose a maximal coun-
terexample G: that is, a simple graph such that

e (G satisfies Tutte’s condition;

e ( has no 1-factor; and

e adding any single missing edge to G produces a graph with a 1-factor.

Claim 2: These conditions imply a contradiction.

The idea of the proof is to look at the graph G — U, where
U={veV|Nw=V—-{v} = {veV|deglv)=n-1}

Case 1: G — U is a disjoint union of cliques. For example, it might look like this:
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Here U consists of the vertices colored in gray. I've only drawn the edges of G — U since N(u) = V — {u} for
u € U, putting all the other edges in would make the picture incomprehensible. In this example, o(G—U) = 4
(two 1-cliques (isolated vertices), one 3-clique and one 7-clique), and |U| = 8 (by Tutte’s condition and (1),
this has the same parity as, and is greater than or equal to, o(G — U)).

A maximum matching M on G — U (the red edges in the figure below) saturates all but o(G — U) vertices—
every vertex of every even clique, and all vertices but one from each odd clique.
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To enlarge this to a perfect matching M’ of G, we first match each M-unsaturated vertex in G — U to a
vertex in U (the green edges).
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At this point, the number of unmatched vertices is |U| — o(G — U). All these vertices belong to U, hence
are pairwise adjacent. There is an even number of them (since |U| and o(G — U) have the same parity) so
we can complete the perfect matching (the blue edges).
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Case 2: G — U is not a disjoint union of cliques.

Let H be a component of G — U which is not a clique. It must have at least three vertices, and two of those
vertices must be at distance 2. That is, x and z are not adjacent, but have a common neighbor y. Also,
there is a vertex w € V(G — U) such that wy ¢ E (if no such vertex existed, then y € U by definition of U,
which is not the case). (Note: w may or may not belong to H.) Again, the vertices of U are colored gray,
and all edges with one or both endpoints in U are omitted.
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By the choice of G, adding a single edge to G produces a graph with a perfect matching. Accordingly, let
My and Ms be matchings of G + xz and G + wy respectively, as shown below.
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The dashed edges wy and xz do not belong to Gj; all other edges do. Let F' = M;AMs; then xz,wy € F.
By Lemma 3.1.9, every component of F' is a path or an even cycle. Actually, each component that is a path
must be an isolated vertex, otherwise its endpoints would not be saturated by both M; and M. So the
component C' that contains xz is an even cycle.

CASE 2A: yw ¢ C (not the case of the example). Then
MAC = (MzNE(C)) U (M — E(C))

is a perfect matching that contains neither xzz nor wy, so it is a perfect matching of G.

CASE 2B: yw € C. Label the vertices of C as w, y, a1, a2, ..., ap, 2, =, b1, ba, by. (It is possible
that = and z are switched, but that case is equivalent because, we have made no distinction between these
vertices—they can be interchanged.) Note also that the numbers p and ¢ are both odd (in the example,
p =7 and ¢ = 3). This is because the path y,a1,...,ap, z has the same number of edges in M; and M,
hence has an even number of edges and an odd number of vertices. Meanwhile, |V(C)| =4+ p + ¢ is even,
so p and g have the same parity.

Now, the edge set
M* ={a1as, ..., ap—2ap_1, apz, yx, biba, ..., bg_2bg_1, bqw} C E

(shown in green below) is a perfect matching on V(C). Since M; — E(C) (shown in yellow) is a perfect
matching on V' — V(C), it follows that (M; — E(C)) U M* is a perfect matching of G, as desired. [ |




