Approximation Algorithms

Given an NP-hard problem, what should be done?
Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
. Solve problem to optimality.
. Solve problem in poly-time.
. Solve arbitrary instances of the problem.

p-approximation algorithm.
. Guaranteed to run in poly-time.
. Guaranteed to solve arbitrary instance of the problem
. Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time ft;.
. Job j must run contiguously on one machine.
. A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiisL; =% 54 1;-

Def. The makespan is the maximum load on any machine L = max; L..

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
. Consider n jobs in some fixed order. -
. Assign job j fo machine whose load is smallest so far.

Implementation. O(n log n) using a priority queue.

file:\\localhost\Volumes\WAYNE\CS423\kleinberg-tardos\slides\11demo-list-schedule.ppt

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.
. Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* > max; 1;.
Pf. Some machine must process the most time-consuming job. -

Lemma 2. The optimal makespan L* > 13 /.
Pf.
- The total processing time is Z; ;.

. One of m machines must do at least a 1/m fraction of total work. =

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L. of bottleneck machine i.
. Let j be last job scheduled on machine i.

- When job j assigned to machine i, i had smallest load. Its load
before assignment isLi-t; = Li-t; < L, foralll<ks<m.

blue jobs scheduled before j

|
I N O

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L, of bottleneck machine i.
. Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load
before assignment isLi-t; = Li-t; < L, foralll<ks<m.
. Sum inequalities over all k and divide by m:

t~
I
IA

1
I J %ZkLk
|
- Ezk Ui
Lemmal —, < L*

. Now L, = ﬁﬁluj]fﬁuﬁt@ < 2L*,

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentidlly yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

m =10 machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

list scheduling makespan = 19

v

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

v

Load Balancing: LPT Rule

Longest processing tfime (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

10

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put onits own machine. =

Lemma 3. If there are more thanm jobs,L*>2+,.;.
Pf.
. Consider first m+1 jobs ty, ..., T,.1.
. Since the t,'s are in descending order, each takes at least t,.; time.
. There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

Li:ﬁ%"_t'gﬁ“t@ < SL* .

L*

8 |—

EEEES <

T

Lemma 3
(by observation, can assume number of jobs >m)

1

Load Balancing: LPT Rule

Q. Isour 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and
one job of length m.

12

11.2 Center Selection

Center Selection Problem

Input. Set of nsites sy, ..., s,

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4

@ center
m site

14

Center Selection Problem

Input. Set of nsites sy, ..., s,

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
. dist(x, y) = distance between x and y.
. dist(s;, C) = min_ _ . dist(s;, ¢) = distance from s; to closest center.
. r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.
Distance function properties.

. dist(x,x)=0 (identity)

. dist(x, y) = dist(y, x) (symmetry)

. dist(x, y) < dist(x, z) + dist(z, y) (triangle inequality)

15

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinitel

@ center
m site

16

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

oy - |
EE N ® oy
guEN EE B
gl greedy center 1 gl N
| L
@ center

k = 2 centers B site

17

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Greedy-Center-Selection(k, n, s;,s,,...,8,) {

C=1¢
repeat k times ({
Select a site s; with maximum dist(s;, C)
Add s; to C T
} site farthest from any center
return C

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < 3 r(C).

. For each site ¢, in C, consider ball of radius 3 r(C) around it.

. Exactly one ¢;* in each ball; let ¢; be the site paired with ¢;*.

. Consider any site s and its closest center ¢;* in C*.

. dist(s, C) < dist(s, ¢;) < dist(s, ¢*) + dist(c*, ¢;)) < 2r(C*).

. Thusr(C) < 2r(C*). = \ N

A-inequality < r(C*) since ¢;* is closest center

19

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

\

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

20

114 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

2 ® ®

weight=2+2+4 weight = 9

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e
pays price p, > 0 To use vertex i.

Fairness. Edges incident o vertex i should pay < w; in total.

@ ®

foreach vertexi: > p,<w
e=(i,])

© ®

Claim. For any vertex cover S and any fair prices p,: >, p. < w(S).

Proof. .

Zpegz zpegzwizw(s)-

eckE ieS e=(i,j) ieS

T

each edge e covered by sum fairness inequalities
at least one node in S for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

24

Pricing Method

(a)

b: tight c d
(c)

b: tight c d
(b)
a: tight

b: tight c d: tight
(d)

Figure 11.8

25

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.

Pf.
. Algorithm terminates since at least one new node becomes tight

after each iteration of while loop.

. Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

wS)=2w,=2 Xp < 2 Xp. =22p < 2mS*). =

ieS ieS e=(i,j) ieV e=(ij) ecE
I T T T

all nodes in S are tight ScV, each edge counted twice fairness lemma
prices > 0

26

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; > 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

10 (A 9

16 (B 10

23 33

total weight = 55

28

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; > 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

Integer programming formulation.
. Model inclusion of each vertex i using a 0/1 variable x;.

i

{ 0 1f vertex i 1S not 1 vertex cover

1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieV:x=1}

. Objective function: maximize Z; w; Xx;.

- Must take eitherior j: x;+x; > 1,

29

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min >, w X
ieV
S. t. XX > 1 (,)) e E

X; e {0,1} i1eV

Observation. If x* is optimal solution to (ILP), then S={i e V: x*, =1}

is a min weight vertex cover.

30

Integer Programming

INTEGER-PROGRAMMING. Given integers a;; and b;, find integers x; that
satisfy:

n
j=1
s.t. Ax > b x; > 0 1< i<n
X integral :
X; mtegral 1</ <

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

\

even if all coefficients are 0/1 and
at most two variables per inequality

31

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
- Input: integers c;, b;, a;.

- Output: real numbers x;.

(P) max gcjxj
(P) max c'x "

s. t. Ax

X

\Y
S

n

s. t. 2 a;x; . 1<i<m
j=1

0 X; 0 1<j<nm

v Vv
(\Y

Linear. No x?, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

32

LP Feasible Region

LP geometry in 2D.

X1 = 0
The region satisfying the inequalities
X1 2> 0, X >0
6 X1 + 2x2 > 06
le + Xy >6
5 —
4 —
\3
2 —
1 —
| | | | Xz =0
1 2 3’4\ AN
X +2X,= 6

33

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min D Wi X;
iecV
St X X 1 (i,j)eE

0 1eV

AVARN

X

Observation. Optimal value of (LP) is < optimal value of (ILP)
Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover. 2

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

(N[

34

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), thenS={ieV : x*;> 3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

. Consider an edge (i, j) € E.

. Since x*; + x*j > 1, either x*,> 3 or x*J- >3 = (i, j) covered.
Pf. [S has desired cost]

. Let S* be optimal vertex cover. Then

Sw,o > Ywx, > 72w
i e S* ielS ieS

T T

LP is a relaxation X* > 3

35

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. If P = NP, then no p-approximation for p < 1.3607, even with
unit weights.

Open research problem. Close the gap.

36

* 11.7 Generalized Load Balancing

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
. Job j must run contiguously on an authorized machine in M; = M.
- Job j has processing time t;.
. Each machine can process at most one job at a fime.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiisL; =% 5, t;

Def. The makespan is the maximum load on any machine = max; L..

Generalized load balancing. Assigh each job to an authorized machine
to minimize makespan.

38

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = time machine i spends processing job j.

LP relaxation.

39

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* > L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* > max; 1;.
Pf. Some machine must process the most time-consuming job.

40

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge

from machine i to job j if x;; > 0. Then 6(x) is acyclic.

T

can transform x into another LP solution where
Pf (defer'r'ed) 6(x) is acyclic if LP solver doesn't return such an x

5 o o

O

G(x) acyclic O . G(x) cyclic
Jjob

machine

41

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest G(x) at some arbitrary machine node r.

. If job j is a leaf node, assign j to its parent machine i.

. If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job jis assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines.

() Job

machine g z

42

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then x;; = t;.
Pf. Sinceiis aleaf, x;; = O for all j # parent(i). LP constraint
guarantees %; x;; = ¥;.

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i).

() Job

machine g z

43

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
. Let J(i) be the jobs assigned to machine i.
. By Lemma 6, the load L; on machine i has fwo components:

- |€Gf nodes Lemma 5 LP Lemmal (LP is a relaxation)
>t, = Xx; < Yx; <L < L*
j e J(@) j e J(i) jeJ T
j is aleaf j is aleaf
optimal value of LP
Lemma 2

. Thus, the overall load L, < 2L*. =

44

Flow formulation of LP.

2X;;
2 X

i

ij

IA

\%

S O N

forallj e J

foralli e M

forallj € Jandi e M,
forallj e Jandi ¢ M,

Generalized Load Balancing: Flow Formulation

Jobs

00 Machines

Supply = t;(J L

i v)Demand = ng

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

45

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution (x’,
L) such that 6(x") is acyclic.

Pf. Let C be a cycle in 6(x).
. Augment flow along the cycle C. «— flow conservation maintained
. At least one edge from C is removed (and none are added).
. Repeat until 6(x") is acyclic.

30_3 30_3
\6 \6
K, >3 $ K, >:>
1 5 5

augment along C

G(x) R G(x')

46

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

47

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant ¢ > 0.
. Load balancing. [Hochbaum-Shmoys 19871
. Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades

off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

49

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i has value v; > 0 and weighs w;> 0. «— we'llassume w;<W
- Knapsack can carry weight up to W.
. Goal: fill knapsack so as to maximize total value.

Ex: (3,4} has value 40.

1 1 1
2 6 2
W=l 3 18 5
4 22 6
5 28 7

Knapsack Problem: Dynamic Programming

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v

. Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v;

- OPT selects best of 1, ..., i-1 that achieves exactly value v
0 if v=0
o0 if 1=0,v>0
OPT(i,v)=1 . _
OPT(i—1,v) if v,>v
| mn {OPT(i-1,v), w;+ OPT(i—1,v—v;)} otherwise

*x
V* <N v

<
Running time. O(n V*) = O(n% v, 4).
. V* = optimal value = maximum v such that OPT(n, v) < W.
. Not polynomial in input size!

51

Knapsack: FPTAS

Intuition for approximation algorithm.
. Round all values up to lie in smaller range.
. Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

1 134,221 1 1 2 1

2 656,342 2 2 7 2

3 1,810,013 5 — 3 19 5

4 22,217,800 6 4 23 6

5 28,343,199 7 5 29 7
W =11 w=11

original instance rounded instance

Knapsack: FPTAS

Yile, v =
0

Knapsack FPTAS. Round up all values: v, =

- Vpox = largest value in original instance
- ¢ = precision parameter
-0 = scaling factor =g v,/ n

Observation. Optimal solution to problems with V or V are equivalent.

Intuition. V close to v so optimal solution using V is nearly optimal;
V small and integral so dynamic programming algorithm is fast.

Running time. O(n3/ ¢).
. Dynamic program running time is O(n°V,.), where

v

max

0

b=

max

n
e

53

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v,

D=

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then (1+¢)X v. > X v,

ieS i € S*

Pf. Let S* be any feasible solution satisfying weight constraint.

— always round up
2V, <X
ie S* ie S*
_ solve rounded instance optimall
< X P Y
ieS
< ¥ (v, + 0) never round up by more than 6
ieS
< Y.+ nb ISl <n
ieS DP alg can take v,
S (1 +8) Z Vl n 9 =& Vmax: Vmax < 2ies Vi

54

