
1. (a) Show the following
2n2 = (n2),
2n2  O(n). (10)

(b) Let a > 1 and b > 1 be constants. Let f(n) be a function,
and. Let T(n) be defined on nonnegative integers by the
recurrence T(n) = aT(n/b) + f(n), where we can replace n/b
by n/b or n/b.

Show that if f(n) = (nlogba-) for some constant  > 0, then
T(n) = (nlogba). (10)

1. (a) Show the following
2n2 = (n2),
2n2  O(n). (10)

• We can find c1 = 1, c2 = 3, and n0 = 0 such that when n > n0 we
have

c1n2 < 2n2 < c2n2.

Thus, 2n2 = (n2) holds.

• Assume that we have 2n2 = O(n), which implies that there exist c
and n0 such that when n > n0, we have

2n2  cn,
which shows

n  c2/2.
This is contradicting to the assumption that we have the
inequality for any n > n0.

(b) Let a > 1 and b > 1 be constants. Let f(n) be a function, and.
Let T(n) be defined on nonnegative integers by the
recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by
n/b or n/b.

Show that if f(n) = (nlogba-) for some constant  > 0, then
T(n) = (nlogba). (10)

By using the recursion tree method, we will get

T(n) = 








=

i

n

i

i

b

n
fa

blog

0

If f(n) = (nlogba-), we have

T(n) = σ𝑖=0
log𝑏 𝑛 𝑎𝑖 𝑓

𝑛

𝑏𝑖
= ෍

𝑖=0

log𝑏 𝑛

𝑎𝑖 (
𝑛

𝑏𝑖
)𝑙𝑜𝑔𝑏𝑎−𝜀

T(n) = σ
𝑖=0
log𝑏 𝑛 𝑎𝑖 𝑓

𝑛

𝑏𝑖
= ෍

𝑖=0

log𝑏 𝑛

𝑎𝑖 (
𝑛

𝑏𝑖
)𝑙𝑜𝑔𝑏𝑎−𝜀

= 𝑛𝑙𝑜𝑔𝑏𝑎−𝜀 ෍

𝑖=0

𝑙𝑜𝑔𝑏𝑛
𝑎𝑏𝜀

𝑏𝑙𝑜𝑔𝑎𝑎

𝑖

= 𝑛𝑙𝑜𝑔𝑏𝑎−𝜀 ෍

𝑖=0

𝑙𝑜𝑔𝑏𝑛
𝑎𝑏𝜀

𝑎

𝑖

= 𝑛𝑙𝑜𝑔𝑏𝑎−𝜀 ෍

𝑖=0

𝑙𝑜𝑔𝑏𝑛

𝑏𝜖 𝑖

= 𝑛𝑙𝑜𝑔𝑏𝑎−𝜀
𝑏𝜀𝑙𝑜𝑔𝑏𝑛 − 1

𝑏𝜖 − 1

= 𝑛𝑙𝑜𝑔𝑏𝑎−𝜀
𝑛𝜖 − 1

𝑏𝜖 − 1

= 𝑛𝑙𝑜𝑔𝑏𝑎

2. The following algorithm is used by the Merge sort to merge two
sorted subsequences.

Merge(A, p, q, r)
1 n1  q – p + 1
2 n2  r – q
3 for i  1 to n1

4 do L[i]  A[p + i – 1]
5 for j  1 to n2

6 do R[j]  A[q + j]
7 L[n1+1] 

8 R[n2+1] 

9 i  1
10 j  1
11 for k  p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Show its correctness by establishing the loop invariant.

Merge(A, p, q, r)
1 n1  q – p + 1
2 n2  r – q
3 for i  1 to n1
4 do L[i]  A[p + i – 1]
5 for j  1 to n2
6 do R[j]  A[q + j]
7 L[n1+1] 
8 R[n2+1] 
9 i  1
10 j  1
11 for k  p to r
12 do if L[i]  R[j]
13 then A[k]  L[i]
14 i  i + 1
15 else A[k]  R[j]
16 j  j + 1

Loop Invariant for the for loop

• At the start of each iteration of the

for loop:

subarray A[p . . k – 1]

contains the k – p smallest elements

of L and R in sorted order.

• L[i] and R[j] are the smallest elements of

L and R that have not been copied back into

A.

Initialization:

Before the first iteration:

• A[p .. k – 1] is empty.

• i = j = 1.

• L[1] and R[1] are the smallest

elements of L and R not copied to A.

Merge(A, p, q, r)

1 n1  q – p + 1

2 n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Maintenance:

Case 1: L[i]  R[j]

•By Loop Invariant (LI), A contains k – p

smallest elements of L and R in sorted order.

•By LI, L[i] and R[j] are the smallest

elements of L and R not yet copied into A.

•Line 13 results in A containing k – p + 1

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI

for the next iteration.

Similarly for Case 2: L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r – p + 1 smallest

elements of L and R in sorted order.

•L and R together contain r – p + 3 = 2

elements.

All but the two sentinels have been copied

back into A.

3. The following is a heap, but not a max heap. Show the whole
process to transform it to a max heap by using MaxHeapify.

(10)

23

69 51

45 67 32 26

33 40 36 50

MaxHeapify(A, i)

1. l  left(i)

2. r  right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest  l

5. else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest  r

8. if largest i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

23

69 51

45 67 32 26

33 40 36 50

23

69 51

45 67 32 26

33 40 36 50

23

69 51

45 67 32 26

33 40 36 50

23

69 51

45 67 32 26

33 40 36 50

23

69 51

45 67 32 26

33 40 36 50

69

23 51

45 67 32 26

33 40 36 50

69

67 51

45 23 32 26

33 40 36 50

69

67 51

45 50 32 26

33 40 36 23

4. The predecessor of a node x in a binary search tree is a node y such
that key(y) is the largest key less than key(x). Please give an
algorithm to find the predecessor of a node x. (12)

Tree-Predecessor(x)

1. if left[x]  NIL

2. then return Tree-Maximum(left[x])

3. y  p[x]

4. while y  NIL and x = left[y]

5. do x  y

6. y  p[y]

7. return y

56

26 200

18 28 190 213

12 24 29

NIL

5. Regarding the algorithm to delete a node from a red-black tree,
answer the following three questions:

a) Why the fix-up is not needed if the deleted node is colored
red? (3)

b) In Fig. 2(a), x is the child of the deleted node. If the right
sibling w of x is black and both of its children are also black, how
the tree will be changed? Also, show the reason. (6)

c) If the right sibling w of x is black, w’s left child is red, and w’s
right child is black, as shown in Fig. 2(b), how the tree will be
changed? (6)

A

C E
 

   

x w

p[x]B must be black. B’s color is unknown.B

A D

C E
 

   

x w

c

B

D

• If the deleted node is red, the red-black properties are still kept not violated.

x is a left child here.

Similar steps if x is

a right child.

B

A D

C E
 

   

x w

c B’s color is unknown. B

A C

D  



 

c

E

new wx

A

C E
 

   

x w

p[x]
B must be black.

B

D A

C E
 

   

x

w

p[x]
B must be black.

B

D

6. The transpose of a DAG G is a graph GT obtained by reversing the
direction of each edge in G. Assume that G is stored in a linked list.
Give an algorithm which is able to transform the linked list to
another one representing GT. (13)

a

dc

b a

b

c

d

b

c

d

d c

Transformation(G)

1. Let A be an array containing all nodes

2. Copy A to B

3. For i = 1 to n {

4. Scan the linked list C associated with A[i]

5. for each node j in C add node i to the end of
the linked list associated with B[j]

6. }

7. Give the improved merge procedure and show its correctness.
(10)

Algorithm: 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟 (𝐴, 𝑝, 𝑞, 𝑟)
Input: Both 𝐴[𝑝 .. 𝑞] and 𝐴[𝑞 + 1 .. 𝑟] are sorted; but 𝐴 as a whole is not
sorted
Output : sorted 𝐴
1. 𝑛1 := 𝑞 - 𝑝 + 1; 𝑛2 := 𝑟 – 𝑞; k := p;
2. let 𝐿[1 .. 𝑛1] be a new array;
3. for i = 1 to 𝑛1 do
4. 𝐿[𝑖] := 𝐴[𝑝 + 𝑖 - 1]
5. i := p; 𝑗 := 𝑞 + 1;
6. while 𝑖 ≤ 𝑛1 and 𝑗 ≤ 𝑛2 do
7. if 𝐿[𝑖] ≤ 𝐴[𝑗] then {𝐴[𝑘] := 𝐿 [𝑖]; 𝑖 := 𝑖 + 1;}
8. else {𝐴[𝑘] := 𝐴[𝑗]; 𝑗 := 𝑗 + 1;}

9. 𝑘 := 𝑘 + 1;
10. if j > 𝑛2 then
11. copy the remaining elements in 𝐿 into 𝐴[𝑘 .. 𝑟];

j

6 8 26 32

i

j

6 8 26 32L

1 9 42 43… …A

p r

merge

result to be sent to

j

6 8 26 32

i

j

6 8 26 32L

1 9 42 43… …A

merge

result to be sent to

42 43… …1

42 43… …1 6 9

42 43… …1 6 9 8

42 43… …1 6 9 8

9

Why does it work?

• A is divided to sorted parts: A[p .. q], A[q + 1 .. r].
A[p .. q] will be copied to array L and A[q + 1 .. r]
stay in A.

• Denote by 𝐴′ the sorted version of 𝐴. Denote by 𝐴′(𝑖,
𝑗) a prefix of 𝐴′ which contains the first 𝑖 elements
from 𝐿 and first 𝑗 elements from 𝐴[𝑞 + 1 .. 𝑟].

• Obviously, we can store 𝐴′(𝑖, 𝑗) in 𝐴 itself since after
the 𝑗th element (from 𝐴[𝑞 + 1 .. 𝑟]) has been
inserted into 𝐴′, the first 𝑞 - 𝑝 + 𝑗 + 1 entries in 𝐴 are
empty and 𝑞 - 𝑝 + 1  i (thus, 𝑞 - 𝑝 + 𝑗 + 1  i + j).

