1. (a) Show the following

$$2n^2 = \Theta(n^2),$$

$$2n^2 \neq O(n).$$
 (10)

(b) Let a > 1 and b > 1 be constants. Let f(n) be a function, and. Let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Show that if $f(n) = \Omega(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$. (10)

1. (a) Show the following

$$2n^2 = \Theta(n^2),$$

$$2n^2 \neq O(n).$$

(10)

• We can find $c_1 = 1$, $c_2 = 3$, and $n_0 = 0$ such that when $n > n_0$ we have

$$c_1 n^2 < 2n^2 < c_2 n^2$$
.

Thus, $2n^2 = \Theta(n^2)$ holds.

• Assume that we have $2n^2 = O(n)$, which implies that there exist c and n_0 such that when $n > n_0$, we have

$$2n^2 \leq cn$$
,

which shows

$$n \le c_2/2$$
.

This is contradicting to the assumption that we have the inequality for any $n > n_0$.

(b) Let a > 1 and b > 1 be constants. Let f(n) be a function, and. Let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Show that if $f(n) = \Omega(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$. (10)

By using the recursion tree method, we will get

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right)$$

If $f(n) = \Omega(n^{\log_b a - \varepsilon})$, we have

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\log_b n} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}$$

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\log_b n} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}$$

$$= n^{\log_b a - \varepsilon} \sum_{i=0}^{\log_b n} \left(\frac{ab^{\varepsilon}}{b^{\log_a a}}\right)^i$$

$$= n^{\log_b a - \varepsilon} \sum_{i=0}^{\log_b n} \left(\frac{ab^{\varepsilon}}{a}\right)^i = n^{\log_b a - \varepsilon} \sum_{i=0}^{\log_b n} (b^{\varepsilon})^i$$

$$= n^{\log_b a - \varepsilon} \left(\frac{b^{\varepsilon \log_b n} - 1}{b^{\varepsilon} - 1}\right)$$

$$= n^{\log_b a}$$

$$= n^{\log_b a}$$

2. The following algorithm is used by the Merge sort to merge two sorted subsequences.

```
Merge(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
3 for i \leftarrow 1 to n_1
       do L[i] \leftarrow A[p+i-1]
4
5
     for j \leftarrow 1 to n_2
6 do R[j] \leftarrow A[q+j]
7 L[n_1+1] \leftarrow \infty
8 R[n_2+1] \leftarrow \infty
9 \quad i \leftarrow 1
10 j \leftarrow 1
11
       for k \leftarrow p to r
           do if L[i] \leq R[j]
12
13
                then A[k] \leftarrow L[i]
                        i \leftarrow i + 1
14
                else A[k] \leftarrow R[j]
15
                        j \leftarrow j + 1
16
```

Show its correctness by establishing the loop invariant.

```
Merge(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
         for i \leftarrow 1 to n_1
             do L[i] \leftarrow A[p+i-1]
      for j \leftarrow 1 to n_2
           \operatorname{do} R[j] \leftarrow A[q+j]
     L[n_1+1] \leftarrow \infty
      R[n_2+1] \leftarrow \infty
         i \leftarrow 1
10
       j \leftarrow 1
         for k \leftarrow p to r
11
             do if L[i] \leq R[j]
12
                 then A[k] \leftarrow /L[i]
13
                         i \leftarrow i + 1
14
                 else A[k] \leftarrow R[j]
15
16
                        i \leftarrow i + 1
```

Loop Invariant for the *for* **loop**

• At the start of each iteration of the for loop:

subarray A[p ... k-1] contains the k-p smallest elements of L and R in sorted order.

• L[i] and R[j] are the smallest elements of L and R that have not been copied back into A.

Initialization:

Before the first iteration:

- A[p ... k-1] is empty.
- i = j = 1.
- *L*[1] and *R*[1] are the smallest elements of *L* and *R* not copied to *A*.

```
Merge(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
         for i \leftarrow 1 to n_1
             \operatorname{do} L[i] \leftarrow A[p+i-1]
         for j \leftarrow 1 to n_2
             \operatorname{do} R[j] \leftarrow A[q+j]
       L[n_1+1] \leftarrow \infty
         R[n_2+1] \leftarrow \infty
         i \leftarrow 1
10
       j \leftarrow 1
11
         for k \leftarrow p to r
             do if L[i] \leq R[j]
12
13
                  then A[k] \leftarrow L[i]
14
                           i \leftarrow i + 1
                  else A[k] \leftarrow R[j]
15
                          j \leftarrow j + 1
16
```

Maintenance:

Case 1: $L[i] \leq R[j]$

- •By Loop Invariant (LI), A contains k p smallest elements of L and R in *sorted order*.
- •By LI, L[i] and R[j] are the smallest elements of L and R not yet copied into A.
- •Line 13 results in A containing k-p+1 smallest elements (again in sorted order). Incrementing i and k reestablishes the LI for the next iteration.

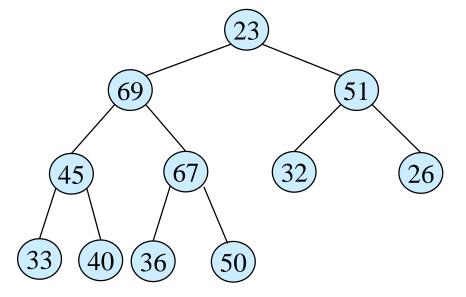
Similarly for Case 2: L[i] > R[j].

Termination:

- •On termination, k = r + 1.
- •By LI, A contains r p + 1 smallest elements of L and R in sorted order.
- •*L* and *R* together contain r p + 3 = 2 elements.

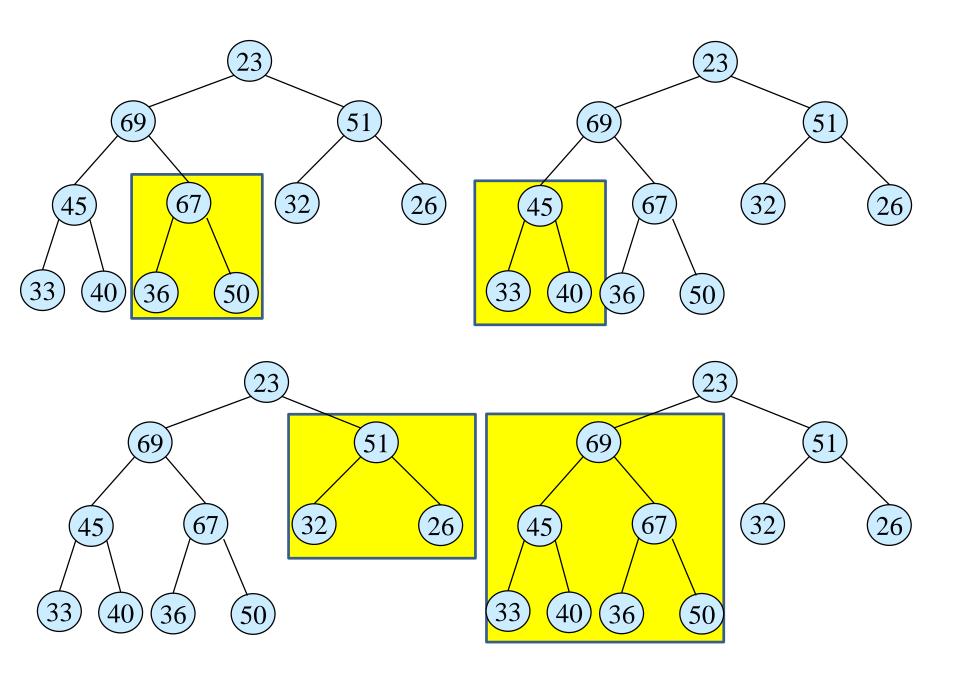
All but the two sentinels have been copied back into *A*.

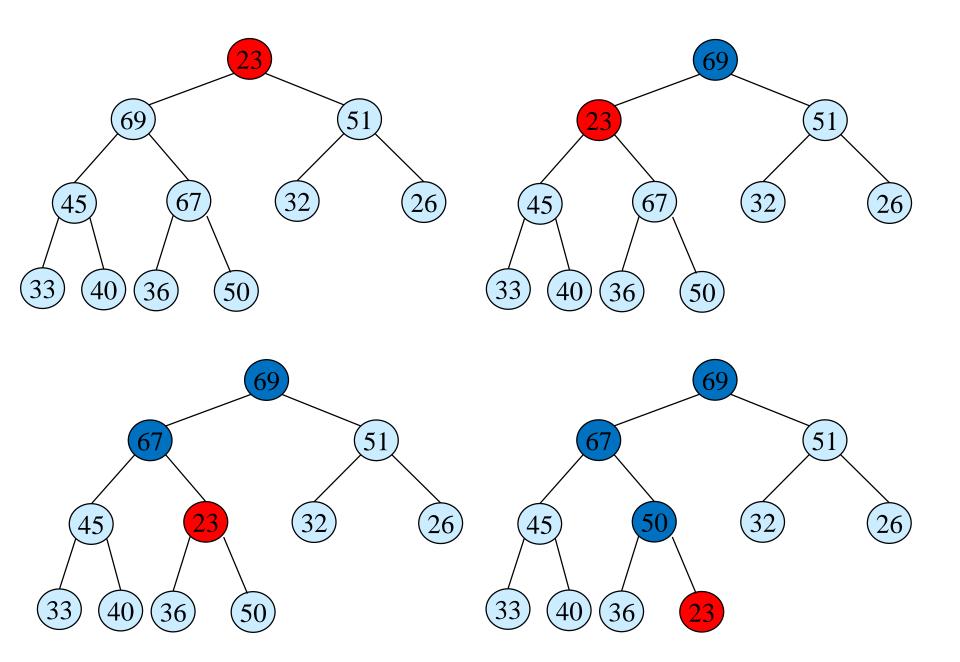
3. The following is a heap, but not a max heap. Show the whole process to transform it to a max heap by using *MaxHeapify*. (10)



MaxHeapify(A, i)

- 1. $I \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. **if** $l \le heap$ -size[A] and A[l] > A[i]
- 4. **then** $largest \leftarrow l$
- 5. **else** *largest* \leftarrow *i*
- 6. **if** $r \le heap\text{-size}[A]$ **and** A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. *MaxHeapify(A, largest)*

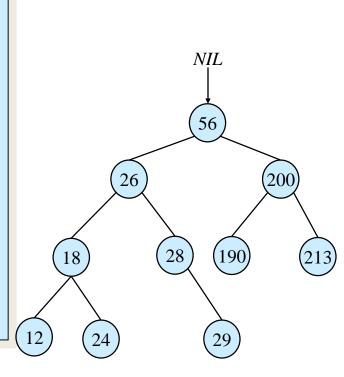




4. The predecessor of a node x in a binary search tree is a node y such that key(y) is the largest key less than key(x). Please give an algorithm to find the predecessor of a node x. (12)

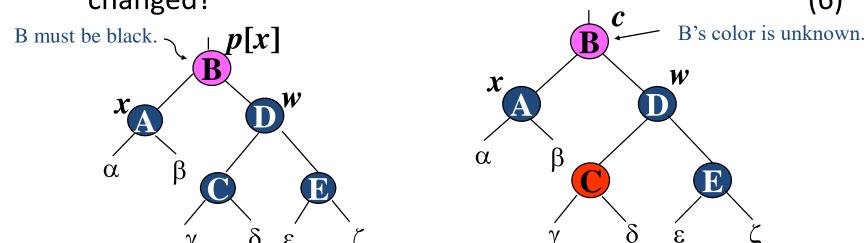
Tree-Predecessor(x)

- 1. **if** $left[x] \neq NIL$
- 2. **then** return Tree-Maximum(left[x])
- 3. $y \leftarrow p[x]$
- 4. while $y \neq NIL$ and x = left[y]
- 5. do $x \leftarrow y$
- 6. $y \leftarrow p[y]$
- 7. **return** *y*

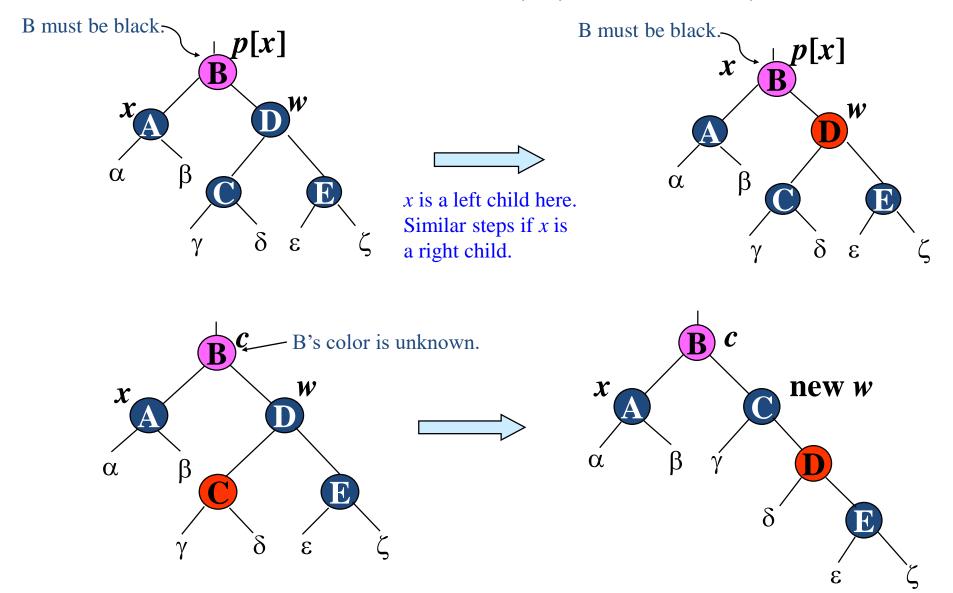


- 5. Regarding the algorithm to delete a node from a red-black tree, answer the following three questions:
 - a) Why the fix-up is not needed if the deleted node is colored red? (3)
 - b) In Fig. 2(a), x is the child of the deleted node. If the right sibling w of x is black and both of its children are also black, how the tree will be changed? Also, show the reason. (6)
 - c) If the right sibling w of x is black, w's left child is red, and w's right child is black, as shown in Fig. 2(b), how the tree will be changed?

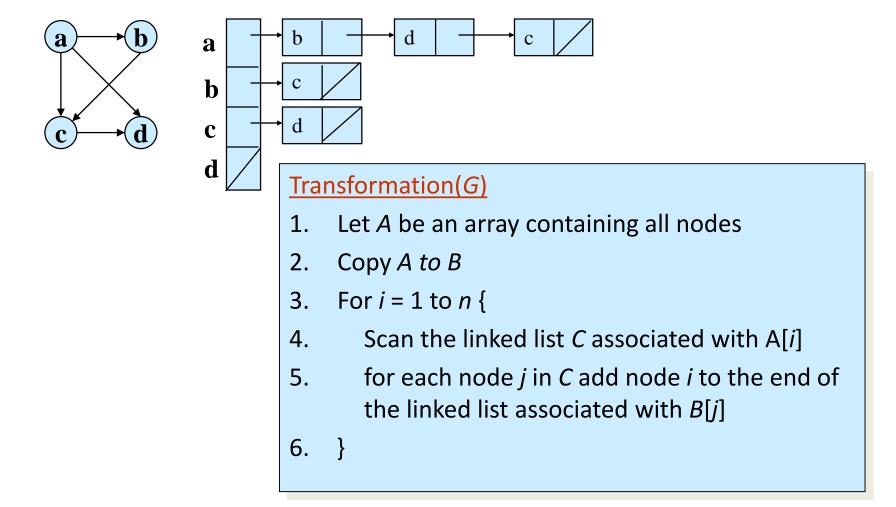
 (6)



• If the deleted node is red, the red-black properties are still kept not violated.

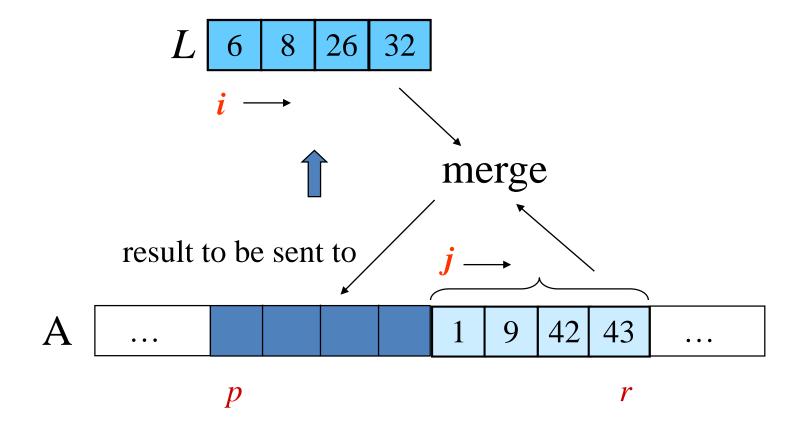


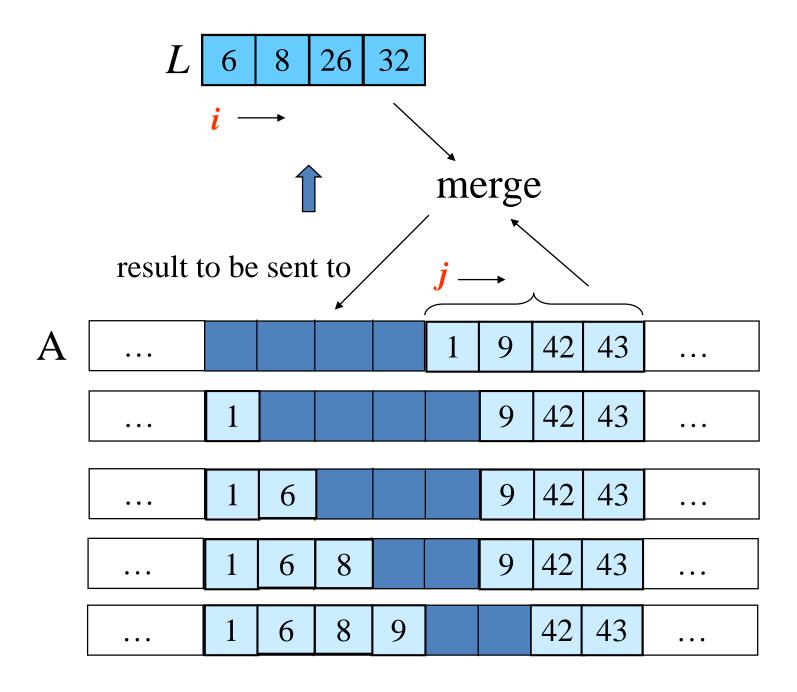
6. The transpose of a DAG G is a graph G^T obtained by reversing the direction of each edge in G. Assume that G is stored in a linked list. Give an algorithm which is able to transform the linked list to another one representing G^T . (13)



7. Give the improved merge procedure and show its correctness. (10)

```
Algorithm: mergeImpr(A, p, q, r)
Input: Both A[p .. q] and A[q + 1 .. r] are sorted; but A as a whole is not
sorted
Output: sorted A
        n_1 := q - p + 1; n_2 := r - q; k := p;
1.
2. let L[1 ... n_1] be a new array;
3. for i = 1 to n_1 do
4. L[i] := A[p + i - 1]
5. i := p; j := q + 1;
6.
  while i \leq n_1 and j \leq n_2 do
          if L[i] \le A[j] then \{A[k] := L[i]; i := i + 1;\}
7.
          else \{A[k] := A[j]; j := j + 1; \}
8.
9.
          k := k + 1;
10. if j > n_2 then
        copy the remaining elements in L into A[k ... r];
11.
```





Why does it work?

- A is divided to sorted parts: A[p ... q], A[q + 1 ... r]. A[p ... q] will be copied to array L and A[q + 1 ... r] stay in A.
- Denote by A' the sorted version of A. Denote by A'(i, j) a prefix of A' which contains the first i elements from L and first j elements from A[q+1..r].
- Obviously, we can store A'(i, j) in A itself since after the jth element (from A[q+1..r]) has been inserted into A', the first q p + j + 1 entries in A are empty and $q p + 1 \ge i$ (thus, $q p + j + 1 \ge i + j$).