1. (a) Show the following
2n? = O(n?),
2n?% # O(n). (10)

(b) Let a > 1 and b > 1 be constants. Let f(n) be a function,
and. Let T(n) be defined on nonnegative integers by the
recurrence T(n) = aT(n/b) + f(n), where we can replace n/b

by Ln/blor| n/b].

Show that if f(n) = QQ(n'°8:2¢) for some constant € > 0, then
T(n) = ©(n'e.), (10)

1. (a) Show the following
2n? = O(n?),
2n? # O(n). (10)

* Wecanfindc, =1, c,=3, and ny =0 such that when n >n, we

have
c,n?*< 2n*< c,n?.

Thus, 2n? = ®(n?) holds.

* Assume that we have 2n? = O(n), which implies that there exist c
and ng such that when n > n,, we have

2n?< cn,

which shows
n<c,/2.

This is contradicting to the assumption that we have the
inequality for any n > n,,.

(b) Let a > 1 and b > 1 be constants. Let f(n) be a function, and.
Let T(n) be defined on nonnegative integers by the
recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by

Ln/blorln/bl.

Show that if f(n) = Q(n'e&:2€) for some constant € > 0, then
T(n) = ©(n'e&.9). (10)

By using the recursion tree method, we will get

log, n . n
)= 2 a'f(—ij
i=0 b

If f(n) = Q(n'°e:2€), we have
logp n

T(n) = Zlii%b "l f (%)) z 4 (%)logba—s

=0

I logy n
T(n) = Z Ogbn lf (bl) - z ()logba €
=0
logpn

ab® \'
— nlogba—e
plogaa

i=0

2. The following algorithm is used by the Merge sort to merge two
sorted subsequences.

Merge(A, p, q, r)
n<q-p+1
n,<«r—q
fori< 1ton,

do L[i] « A[p +i—1]
forj<1ton,
do R[j] < Alg +/]

L[n,+1] -0

R[n,+1] «— o

<1

10 j<«1

11 fork<«ptor

12 do if L[i] < R[j]

OO NGOV A WNR

13 then A[k] < L]i]
14 i<—i+1
15 else A[k] < R[]
16 je—j+1

Show its correctness by establishing the loop invariant.

'I"izg(e_('%f})q;? Loop Invariant for the for loop

2 n,<r-gq At the start of each iteration of the

3 fori<1ton, for loop:

4 do L[i] < Alp +i—1] subarray A[p . . k—1]

5 forj<1ton, contains the k — p smallest elements

g L[:?rf][’t—oo"‘[q el of L and R in sorted order.

3 R[n12+1] o * L[i] and R[j] are the smallest elements of
9 i1 L and R that have not been copied back into
10 j<«1 A.

11 fork<ptor
12 do if L[i] < R[j]
13 then Alk] «</L[i] Initialization:
14 i< i¥#1 — . .
15 else Alk] < R[] .Befgre thi flrlst |_terat|otn.
16 jej+1 Alp .. .] is empty.

e 1=)=1.
e L[1] and R[1] are the smallest
elements of L and R not copied to A.

Merge(A, p, q,)

1 n<«<q-p+1

2 N,<r—g

3 fori«1ton

4 do L[i] « Afp +1-1]
5 forj«1ton,

6 do R[j] « Al[q +]]
7 L[n,+1] - o

8 R[N,+1] < o

9 <1

10 j<«1

11 fork<«ptor

12 do if L[i] < R[j]

13 then A[K] < L[i]
14 l«<—i1+1
15 else A[K] < RJ[j]
16 j<—j+1

Maintenance:

Case 17 L[i] £ R[j]

*By Loop Invariant (LI), A containsk—p
smallest elements of L and R in sorted order.
By LI, L[i] and R[j] are the smallest
elements of L and R not yet copied into A.
Line 13 results in A containingk —p + 1
smallest elements (again in sorted order).
Incrementing i and k reestablishes the LI
for the next iteration.

Similarly for Case 2: L[i] > R[j].

Termination:

*On termination, k = r + 1.

By LI, A contains r — p + 1 smallest
elements of L and R in sorted order.

L and R together containr—p +3 =2

elements.

All but the two sentinels have been copied
back into A.

3. The following is a heap, but not a max heap. Show the whole
process to transform it to a max heap by using MaxHeapify.
(10)

@ MaxHeapify(A, i)

@ a . |« left(i)
(15 (67) (2 (28

() @G &0

. r < right(/)
. if | < heap-size[A] and A[l] > A[i]
then largest < |

1

2

3

4

5. elselargest < i

6. if r < heap-size[A] and A[r] > A[largest]
7. thenlargest < r
8. if largest= i

9. then exchange A[i] <> Allargest]

10. MaxHeapify(A, largest)

@@@) @® C @®® @@ o
®@®® @ ®®@®® x)

4. The predecessor of a node x in a binary search tree is a node y such
that key(y) is the largest key less than key(x). Please give an
algorithm to find the predecessor of a node x. (12)

Tree-Predecessor(x)
if left[x] = NIL

then return Tree-Maximum(/eft[x]) e

y < plx] (56)

1

2

3

4. whiley = NIL and x = left[y] @ @
5. dox ¢y

6

7

y «ply] (8) (28) @9 (3

return y

5. Regarding the algorithm to delete a node from a red-black tree,
answer the following three questions:

a) Why the fix-up is not needed if the deleted node is colored
red? (3)
b) In Fig. 2(a), x is the child of the deleted node. If the right

sibling w of x is black and both of its children are also black, how
the tree will be changed? Also, show the reason. (6)

c) If the right sibling w of x is black, w’s left child is red, and w's
right child is black, as shown in Fig. 2(b), how the tree will be
changed? c (6)

B must be black. L p[X] @ — B’s color is unknown.

* |f the deleted node is red, the red-black properties are still kept not violated.

p[X] B must be black. |
B, X\p[x]

W
A
“ AN
©\ > x is a left child here. “ B@\ >
/ Similar steps if x is / AN
y o0& G

a right child.

B must be black:
\ |

Q/ B’s color 1s unknown.

6. The transpose of a DAG G is a graph G” obtained by reversing the
direction of each edge in G. Assume that G is stored in a linked list.
Give an algorithm which is able to transform the linked list to
another one representing G'. (13)

@—® af Ho[FH{a] 1
d

Transformation(G)

1. Let A be an array containing all nodes

2. CopyAtoB

3. Fori=1ton{

4. Scan the linked list C associated with A[i]
5

for each nodej in C add node j to the end of
the linked list associated with BJ[/]

7. Give the improved merge procedure and show its correctness.
(10)

Algorithm: mergelmpr (A, p, q, 1)
Input: Both A[p..qland A[g +1 .. 7] are sorted; but A as a whole is not
sorted
Output : sorted A
n:=q-p+L,n,:=r—q;k:=p;
let L[1 .. n,] be a new array;
fori=1ton, do
Lli] =A[p+i-1]
i=p;j=q+]l;
whilei < n;,andj < n, do
if L[i] < A[j] then {A[k] :=L [i];i:=i+1;}
else {A[k] := Alj]; j =j + 1;}
k=k+1;
if j >n, then
copy the remaining elements in L into A[k .. r];

O OoNSIUTHEWNE

.
=&

TN

result to be sent t/

merge

J—>

9

42

43

-

merge

result to be sent t/ j—

Why does it work?

« Alisdivided to sorted parts: A[p..q], A[g+1..r].
Alp .. q] will be copied to array L and Alg+1.. 1]
stay in A

« Denote by A’ the sorted version of A. Denote by A (i,
j) a prefix of A" which contains the first i elements
from L and first j elements from A[g + 1 .. r].

 Obviously, we can store A'(i, j) in A itself since after
the jth element (from A[qg + 1 .. r]) has been
inserted into A, the first g - p + j + 1 entries in A are
empty and q - p+1>|(thus g-ptj+t1=1+]).

