Projects for the course of Advanced Algorithm Design (Sept., 2023)
For all the projects, the students are required to give a 20 minutes presentation.
Deadline for the final report: Dec. 11, 2023
Time schedule for presentation:

1. Maximum flow (Chapter 26)
(a)
Implementation of the algorithm in C++.

(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results.
2.
Finding strongly-connected components in a directed graph by using the Tarjan’s algorithm (R. Tarjan, “Depth-First Search and Linear Graph Algorithm,” SIAM J. Computing, vol. 1, no. 2, pp. 146-160, June 1972).

(a) Implementation of the algorithm in C++.
(b) Experiment
(c) Report: algorithm description, time analysis, implementation details, C++-code, test results.

References:
R. Tarjan, “Depth-First Search and Linear Graph Algorithm,” SIAM J. Computing, vol. 1, no. 2, pp. 146-160, June 1972.
3.
Reachability query evaluation
(a) Implementation of the algorithm described in the following paper in C++ by using the method discussed in (H. Yildirim, V. Chaoji, and M. J. Zaki, “GRAIL: scalable reachability index for large graphs,” Proceedings of the VLDB Endowment, vol. 3, p. 276–284, Sep. 2010).
i) Find a spanning tree of a DAG (directed acyclic graph) with less forward arcs.

ii) Construct a new graph which contains only cross arcs and some tree arcs to keep information on reachability.
iii)
Evaluate reachability queries based on tree encoding and anchor nodes.

(b) Experiment

(c) Report: algorithm description, implementation details, C++-code, test results.
References:
Y. Chen, DAG Deduction and Decomposition: A New Way to Evaluate Reachability Queries, manuscript.
H. Yildirim, V. Chaoji, and M. J. Zaki, “GRAIL: scalable reachability index for large graphs,” Proceedings of the VLDB Endowment, vol. 3, p. 276–284, Sep. 2010.
4.
Finding all-pairs shortest paths algorithm (Chapter 25, section 3) (chosen by Ahir, presentation: Nov. 29, 1st)
(a)
Implementation of the algorithm in C++.

(b)
Experiment

(d)
Report: algorithm description, time analysis, implementation details, C++-code, test results.

5.
Indexes in search engines

(a) Construction of an index on the words in web pages based on the concept of tries and tree encoding.

(b) Experiment

(c) Report: algorithm description, implementation details, C++-code, test results.

References:

Weixin Shen, Comparison of Inverted Files and Signature Trees for Text Indexing, Master thesis, (2012).
Willett. P. (2006) The Porter stemming algorithm: then and now. Program: electronic library and information systems. 40(3). pp. 219 – 233.

6. Heap sorting (Chapter 6) and external sorting (see below) (chosen by Kodam, presentation: Nov. 29, 2nd)
(a)
Implementation of the algorithms in C++.

(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results.

External sorting method: (*for topic 1)

Several parameters:

nR - number of initial runs

b - number of file blocks

nB - available buffer space

nR = (b/ nB(
Example: nB = 5 blocks, b = 80 blocks,

nR = 16 initial runs

set
i (1;

j (b;
/*size of the file in blocks*/

k (nB;
/*size of buffer in blocks*/

m ((j/k(;
 /*number of runs*/

/*sort phase*/

while (i (m) do

{read next k blocks of the file into the buffer or if there are less than k

blocks remaining then read in the remaining blocks;

sort the records in the buffer and write as a temporary subfile;

i (i +1;

}

/*merge phase: merge subfiles until only 1 remains*/

set
i (1;

p ((logk-1 m(;
/*p is the number of passes for the merging phase*/

j (m;

/*number of runs*/

while (i (p) do

{n (1;

q ((j /k-1(;
 /*q is the number of subfiles to write in this pass*/

while (n (q) do

{read next k-1 subfiles or remaining subfiles (from previous pass) one

block at a time;

merge and write as new subfile;

n (n+1;

}

j (q; i (i + 1;

}
7. Establish an electronic dictionary of English based on the optimal search trees
 (Chapter 15, Section 5)

(a)
Implementation of the algorithm in C++.

(b)
Experiment on a set of English words

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results.
8. Signature trees

(b) Implementation of the algorithm described in the following paper in C++.

Y. Chen and Y.B. Chen, On the Signature Tree Construction and Analysis, IEEE Transaction on Knowledge and Data Engineering, Vol. 18, No. 9, 2006, pp. 1207-1224.

(b) Experiment

(c) Report: algorithm description, implementation details, C++-code, test results.

References:

Y. Chen and Y.B. Chen, On the Signature Tree Construction and Analysis, IEEE Transaction on Knowledge and Data Engineering, Vol. 18, No. 9, 2006, pp. 1207-1224.
9. Red-Black trees (Chapter 13)
(a)
Implementation of the algorithm in C++.

(b)
Experiment

(c)

Report: algorithm description, time analysis, implementation details, C++-code, test results
10. String matching – Knuth-Morris-Pratt algorithm (Chapter 32, section 4)
(a)
Implementation of the Knuth-Morris-Pratt algorithm in C++.
(b)
Experiment
(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

11. String matching – Rabin-Karp algorithm (Chapter 32, section 2) (chosen by Zia, Abul Molz, presentation: 04, 1st)
(a)
Implementation of the Rabin-Karp algorithm in C++.

(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

12. String matching – Boyer-Moore algorithm

(a)
Implementation of the Boyer-Moore algorithm in C++.

(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

References:

R.S. Boyer and J.S. Moore, A fast string searching algorithm, Communication of the ACM, Vol. 20, No. 10, pp. 762 -772, Oct. 1977.
13. Massive read matching based on BWT transformation

(a)
Implementation of the massive read (short DNA sequence) matching algorithm in C++.

(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

References:

Y. Chen and Y. Wu, An Efficient Algorithm for Read Matching in DNA Databases, in Proc. Int. Conf. DBKDA’2016, Lisbon, Portugal, June 26 – 30, 2016, pp. 23 – 34.
14. Find shortest paths in a directed graph (Chapter 24)
(a)
Implementation of the algorithm for finding shortest paths in C++.

(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

15. Implementation of an Arc-consistency algorithm called AC-4.

(a) Implementation of the algorithm in C++.
(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results.
References:

R. Mohr, T.C. Henderson, Arc and path consistency revisited, Artiﬁcial Intelligence 28 (1986) 225–233.
16. Implementing RRR data structure to support the rank operation. By the rank operation, we will find the number of the appearances of a certain character up to a specific position in a string.

(a) Implementation of the algorithm in C++.
(b) Experiment
(c) Report: algorithm description, time analysis, implementation details, C++-code, test results.

References:

A, Bowe, Multiary Wavelet Trees in Practice, Master thesis, School of Computer Science and Information Technology, RMIT University, Melbourne, Australia, 2010. (http://alexbowe.com/rrr/)
17. Implementing Wavelet trees to support the rank operation.
(a) Implementation of the algorithm in C++.
(b) Experiment

(c) Report: algorithm description, time analysis, implementation details, C++-code, test results.

References:

https://en.wikipedia.org/wiki/Wavelet_Tree
A, Bowe, Multiary Wavelet Trees in Practice, Master thesis, School of Computer Science and Information Technology, RMIT University, Melbourne, Australia, 2010. (http://alexbowe.com/rrr/)
18. Data mining

(a) Implementation of the algorithm for finding a single package which can satisfy a maximum group of customers in terms of a given query log in C++.
(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

References:

Wei Shi, Desining Popular Package, Master thesis, (2014).
19. String matching with k-mismatches

(a) Implementation of the algorithm for finding all the matched substrings with k mismatches in C++.
(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

References:

G.M. Landau and U. Vishkin, Efficient string matching with k mismatches, Theoretical Computer Science, Vol. 43, pp. 239 – 249, 1986.
20.
FP- growth Algorithm for mining frequent pattern in transaction database

(a) Implementation of the algorithm for finding a single package which can satisfy a maximum group of customers in terms of a given query log in C++.
(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results

References:

Han et al, Mining frequent pattern without candidate generation. Data mining and knowledge discovery, 8 ,53-87, 2004.
21. Improved merge-sorting algorithm. (?)
(By the improved algorithm, by each recursive call, we generate only array L and array R will not be created. Then, the merging operation will be performed over L and A[q + 1 .. r - q]) and the result will be stored in A. In addition, the recursive algorithm should be changed to non-recursive algorithm.)
(a) Implementation of the algorithm in C++.
(b)
Experiment

(c)
Report: algorithm description, time analysis, implementation details, C++-code, test results
22. Topic chosen by student himself (Gregoryanz, Philipp, Dec. 04, 2nd)
Guidance to project reports:

1. Introduction (including the problem description, motivation – its significance and application in the computer engineering and industry)

2. Related work (describe some important techniques related to the problem to be addressed)

3. Main thrust (detailed description of the method, formal algorithm, analysis of computational complexities: time and space overhead, your design: data structure)

4. Future work (discussion on the possible improvements, or possible extension)

5. Experiments (main data structures used for implementation, description of the data used for tests, test results: charts, histogram, or tables)

6. References
Project evaluation criteria:

Presentation: 30%

Technical report: 30%

Test and experiment: 30%

Participation of seminar: 10%.
