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BWT-Transformation 

• What is BWT-transformation? 

• BWT string compression 

• BWT string matching 

 - RankAll 

 - BWT array construction 
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BWT transformation 

We use s to denote a string that we would like to 

transform. 

Assume that s terminates with a special 

character $, which does not appear elsewhere in 

s and is alphabetically prior to all other 

characters. 

In the case of DNA sequences, we have $ < A < 

C < G < T. 
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BWT transformation 

As an example, consider s = acagaca$. We can 

rotate s consecutively to create eight different 

strings as shown in Fig. 1(a). 

Fig. 1: Rotation of a string 

$ a c a g a c a  

a c a g a c a $ 

   c a g a c a $ a 

   a g a c a $ a c  

g a c a $ a c a  

a c a $ a c a g  

c a $ a c a g a  

a $ a c a g a c  

$ a c a g a c a  

a $ a c a g a c 

  

c a $ a c a g a  

a c a $ a c a g  

g a c a $ a c a  

a g a c a $ a c  

c a g a c a $ a  

a c a g a c a $ 

a1  $  

c1  a1  

c2 a3  

a2 c1  

$ a4  

a3 g1  

a4 c2  

g1 a2  

F L 
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Last column 
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BWT transformation 

By writing all these strings stacked vertically, 

we generate an n  n matrix, where n = |s| (see 

Fig. 1(a).) Here, special attention should be paid 

to the first column, denoted as F, and the last 

column, denoted as L. For them, the following 

equation, called the LF mapping, can be 

immediately observed: 

 F[i] = L[i]’s predecessor,   (1) 

 where F[i] (L[i]) is the ith element of F (resp. L). 
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BWT transformation 

 Now we sort the rows of the matrix alphabetically. We will get 

another matrix, called the Burrow-Wheeler Matrix and denoted 

as BWM(s). 

 Especially, the last column of BWM(s), read from top to bottom, 

is called the BWT-transformation (or the BWT-array) and 

denoted as BWT(s). So for s = acagaca$, we have BWT(s) = 

acg$caaa. 

Fig. 2: Sorting the rows of the matrix 

$ a c a g a c a  

a $ a c a g a c 

  

c a $ a c a g a  

a c a $ a c a g  

g a c a $ a c a  

a g a c a $ a c  

c a g a c a $ a  

a c a g a c a $ 
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BWT transformation 

 By the BWM matrix, the LF-mapping is obviously not changed. 

 Surprisingly, the rank correspondence also remains. Even though 

the ranks of different appearances of a certain character (in F or 

in L) may be different from before, their rank correspondences 

are not changed as shown in Fig. 2(b), in which a2 now appears 

in both F and L as the third element among all the a-characters, 

and c1 the second element among all the c-characters.  

Fig. 3: LF-mapping and tank-correspondence 

$  a4  
a4  c2  

c2  a3  

a3  g1  

g1  a2  

a2  c1  

c1  a1  

a1  $  

F  L 
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By ranking the 

elements in F, each 

element in L is also 

ranked with the same 

number. 

rkL 

 
F$ = <$; 1, 1> 

Fa = <a; 2, 5> 

Fc = <c; 6, 7> 

Fg = <g; 8, 8> 
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BWT string compression 

 The first purpose of BWT(s) is for the string compression since 

same characters with similar right-contexts in s tend to be 

clustered together in BWT(s), as shown by the following 

example: 

 BWT(tomorrow and tomorrow and tomorrow) 

 = wwwdd  nnoooaatttmmmrrrrrrooo  $ooo 
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BWT string matching 

 For the purpose of the string search, the character clustering in F 

has to be used. Especially, for any DNA sequence, the whole F 

can be divided into five or less segments: $-segment, A-segment, 

C-segment, G-segment, and T-segment, denoted as F$, FA, FC, 

FG, FT, respectively. 

 In addition, for each segment in F, we will rank all its elements 

from top to bottom, as illustrated in Fig. 2(a). $ is not ranked 

since it appears only once. 

F$ = <$; 1, 1> 

Fa = <a; 2, 5> 

Fc = <c; 6, 7> 

Fg = <g; 8, 8> 



Yangjun Chen 9 

BWT string matching 

 From Fig. 2(a), we can see that the rank of a4, denoted as 

rkF(a4), is 1 since it is the first element in FA. For the same 

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) = 1, 

rkF(c1) = 2, and rkF(g1) = 1. 

 It can also be seen that each segment in F can be effectively 

represented as a triplet of the form: <; x, y>, where     

{$}, and x, y are the positions of the first and last appearance 

of  in F, respectively. 

 Now we consider j (the jth appearance of  in s). Assume that 

rkF(j) = i. Then, the position where j appears in F can be 

easily determined: 

  F[x + i - 1] = j.    (2) 
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BWT string matching 

 In addition, if we rank all the elements in L top-down in such a 

way that an j is assigned i if it is the ith appearance among all 

the appearances of  in L. Then, we will have 

  rkF(j) = rkL(j),    (3) 

 where rkL(j) is the rank assigned to j in L. 

 
 With the ranks established, a string matching can be very 

efficiently conducted by using the formulas (2) and (3).  
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BWT string matching 

 To see this, let’s consider a pattern string p = aca and try to find 

all its occurrences in s = acagaca$.  

 First, we check p[3] = a in the pattern string p, and then figure 

out a segment in L, denoted as L, corresponding to Fa = <a; 2, 

5>. So L = L[2 .. 5], as illustrated in Fig. 3(a), where we still use 

the non-compact F for ease of explanation. 

 In the second step, we check p[2] = c, and then search within L 

to find the first and last c in L. We will find rkL(c2) = 1 and 

rkL(c1) = 2. By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2. 

Then, by using (2), we will figure out a sub-segment F in F: 

F[xc + 1 - 1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7]. 

(Note that xc = 6. See Fig. 3(b).)  
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BWT string matching 

 In the third step, we check p[1] = a, and find L  = L[6 .. 7] 

corresponding to F = F[6 .. 7]. Repeating the above operation, 

we will find rkL(a3) = 2 and rkL(a1) = 3. See Fig. 3(c). 

 Since now we have exhausted all the characters in p and F[xa + 2 

– 1, xa + 3 – 1] = F[3, 4] contains only two elements, two 

occurrences of p in s are found, corresponding to a1 and a3 in s, 

respectively. 
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BWT string matching 

Fig. 3: Sample trace 

$  a4  1  

a4  c2  1  

c2  a3  2  

a3  g1  1  

g1  a2  4  

a2  c1  2  

c1  a1  3  

a1  $  - 

  

F  L 

 
$  a4  1  

a4  c2  1  

c2  a3  2  

a3  g1  1  

g1  a2  4  

a2  c1  2  

c1  a1  3  

a1  $  - 

  

F  L 

 
$  a4  1  

a4  c2  1  

c2  a3  2  

a3  g1  1  

g1  a2  4  

a2  c1  2  

c1  a1  3  

a1  $  - 

  

F  L 

 

To find 

the first c 

to find the 

last c 
to find the 

first a 

to find 

the last a 

rkL 

 

rkL 

 

rkL 
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RankAll 

 The dominant cost of the above process is the searching of L in 

each step. 

 However, this can be dramatically reduced by arranging || 

arrays each for a character    such that [i] (the ith entry in 

the array for ) is the number of appearances of  within L[1 .. 

i]. See Fig. 4(a) for illustration.respectively. 

Fig. 4: LF-mapping and rank-correspondence 
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RankAll 

 Now, instead of scanning a certain segment L[x .. y] (x  y) to 

find a subrange for a certain   , we can simply look up the 

array for  to see whether [x - 1] = [y]. If it is the case, then  

does not occur in L[x .. y]. 

 Otherwise, [[x - 1] + 1, [y]] should be the found range. For 

example, to find the first and the last appearance of c in L[2 .. 5], 

we only need to find c[2 – 1] = c[1] = 0 and c[5] = 2. So the 

corresponding range is [c[2 - 1] + 1,  c[4]] = [1, 2]. 
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RankAll 

 The problem of this method is the high space requirement, 

which can be mitigated by storing a compact array A for each  

 , in which, rather than for each L[i], only for some elements 

in L the number of their appearances will be stored.  

 For example, we can divide L into a set of buckets of the same 

size and only for each bucket a value will be stored in A.  
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RankAll 

 Obviously, doing so, more search will be required. In practice, 

the size  of a bucket (referred to as a compact factor) can be set 

to different values. 

 For example, we can set  = 4, indicating that for each four 

contiguous elements in L a group of || integers (each in an A) 

will be stored. However, each [j] for    can be easily 

derived from A by using the following formulas: 

  [j] = A[i] + r,    (4) 

 where i = j/ and r is the number of ’s appearances within 

L[i .. j], and 

  [j] = A[i] - r,    (5) 

 where i = j/ and r is the number of ’s appearances within 

L[j .. i]. 
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Construction of Arrays 

 As mentioned above, a string s = c0c1 ... cn−1 is always ended 

with $ (i.e., ci   for i = 0, …, n – 2, and cn−1 = $). Let s[i] = ci, 

i =0,1, …, n − 1, be the ith character of s, s[i.. j] = ci ... cj 

substring and si = s[i .. n − 1] a suffix of s. Suffix array A of s is 

a permutation of the integers 0, ..., n − 1 such that A[i] is the 

start position of the ith smallest suffix. The relationship between 

A and the BWT array L can be determined by the following 

formulas: 

L[i] = $, 

(6) 

if A[i] = 0; 

L[i] = s[A[i] – 1], otherwise. 

 Once L is determined. F can be created immediately by using 

formula (1). 


