BWT-Transformation

- What is BWT-transformation?
- BWT string compression
- BWT string matching
 - RankAll
 - BWT array construction

- We use *s* to denote a string that we would like to transform.
- Assume that *s* terminates with a special character \$, which does not appear elsewhere in *s* and is alphabetically prior to all other characters.
- In the case of DNA sequences, we have \$ < A < C < G < T.

As an example, consider s = acagaca. We can rotate *s* consecutively to create eight different strings as shown in Fig. 1(a).

First colı	ımn / La.	st column	
	$FL^{\not\!$		
acagaca\$	a ₁ \$	<mark>\$асо</mark>	a g a c a
cagaca\$a	$c_1 a_1$	a\$ao	c a g a c
agaca\$ac	$a_2 c_1$	a c a S	\$ a c a g
gaca\$aca	$g_1 a_2$	acag	gaca\$
aca\$acag	$a_3 g_1$	agao	ca\$ac
ca\$acaga	$c_2 a_3$	c a \$ a	acaga 🛛
a\$acagac	$a_4 c_2$	c a g a	aca\$a
\$acagaca	a_{4}	gaco	a\$aca

Fig. 1: Rotation of a string

By writing all these strings stacked vertically, we generate an $n \times n$ matrix, where n = |s| (see Fig. 1(a).) Here, special attention should be paid to the first column, denoted as *F*, and the last column, denoted as *L*. For them, the following equation, called the *LF* mapping, can be immediately observed:

F[i] = L[i]'s predecessor, (1)

where F[i] (L[i]) is the *i*th element of F (resp. L).

- Now we sort the rows of the matrix alphabetically. We will get another matrix, called the *Burrow-Wheeler Matrix* and denoted as *BWM*(*s*).
- Especially, the last column of BWM(s), read from top to bottom, is called the BWT-transformation (or the BWT-array) and denoted as BWT(s). So for s = acagaca\$, we have BWT(s) = acg\$caaa.

Fig. 2: Sorting the rows of the matrix

By the *BWM* matrix, the *LF*-mapping is obviously not changed.

Surprisingly, the rank correspondence also remains. Even though the ranks of different appearances of a certain character (in *F* or in *L*) may be different from before, their rank correspondences are not changed as shown in Fig. 2(b), in which *a*₂ now appears in both *F* and *L* as the third element among all the *a*-characters, and *c*₁ the second element among all the *c*-characters.

 rk_F F L rk_L \$ a, 1 $a_{4} c_{2} 1$ 1 2 $a_{3} g_{1} 1$ 3 2 4 1 $c_2 a_3$ 2 2 3 $c_1 a_1$ 4 $g_1 a_2$

By ranking the elements in F, each element in L is also ranked with the same number.

$$\begin{split} F_{\$} &= <\$; \, 1, \, 1 > \\ F_{a} &= <a; \, 2, \, 5 > \\ F_{c} &= <c; \, 6, \, 7 > \\ F_{g} &= <g; \, 8, \, 8 > \end{split}$$

Fig. 3: LF-mapping and tank-correspondence

Yangjun Chen

BWT string compression

- The first purpose of BWT(s) is for the string compression since same characters with similar right-contexts in s tend to be clustered together in BWT(s), as shown by the following example:
 - *BWT*(tomorrow and tomorrow) and tomorrow)
 - = wwwdd nnoooaatttmmmrrrrrooo \$000

- For the purpose of the string search, the character clustering in F has to be used. Especially, for any DNA sequence, the whole F can be divided into five or less segments: \$-segment, A-segment, C-segment, G-segment, and T-segment, denoted as $F_{\$}$, F_A , F_C , F_G , F_T , respectively.
- In addition, for each segment in *F*, we will rank all its elements from top to bottom, as illustrated in Fig. 2(a). \$ is not ranked since it appears only once.

$$\begin{split} F_{\$} &= <\$; \, 1, \, 1 > \\ F_{a} &= \\ F_{c} &= \\ F_{g} &= \end{split}$$

- From Fig. 2(a), we can see that the rank of a_4 , denoted as $rk_F(a_4)$, is 1 since it is the first element in F_A . For the same reason, we have $rk_F(a_3) = 2$, $rk_F(a_1) = 3$, $rk_F(a_2) = 4$, $rk_F(c_2) = 1$, $rk_F(c_1) = 2$, and $rk_F(g_1) = 1$.
- It can also be seen that each segment in *F* can be effectively represented as a triplet of the form: $\langle \alpha; x_{\alpha}, y_{\alpha} \rangle$, where $\alpha \in \Sigma \cup$ {\$}, and x_{α}, y_{α} are the positions of the first and last appearance of α in *F*, respectively.
- Now we consider α_j (the *j*th appearance of α in *s*). Assume that $rk_F(\alpha_j) = i$. Then, the position where α_j appears in *F* can be easily determined:

$$F[x_{\alpha} + i - 1] = \alpha_j. \tag{2}$$

In addition, if we rank all the elements in *L* top-down in such a way that an α_j is assigned *i* if it is the *i*th appearance among all the appearances of α in *L*. Then, we will have

 $rk_F(\alpha_j) = rk_L(\alpha_j), \tag{3}$

where $rk_L(\alpha_j)$ is the rank assigned to α_j in L.

• With the ranks established, a string matching can be very efficiently conducted by using the formulas (2) and (3).

- To see this, let's consider a pattern string p = aca and try to find all its occurrences in s = acagaca.
- First, we check p[3] = a in the pattern string p, and then figure out a segment in L, denoted as L', corresponding to F_a = <a; 2, 5>. So L' = L[2 .. 5], as illustrated in Fig. 3(a), where we still use the non-compact F for ease of explanation.
- In the second step, we check p[2] = c, and then search within L' to find the first and last c in L'. We will find $rk_L(c_2) = 1$ and $rk_L(c_1) = 2$. By using (3), we will get $rk_F(c_2) = 1$ and $rk_F(c_1) = 2$. Then, by using (2), we will figure out a sub-segment F' in F: $F[x_c + 1 - 1 ... x_c + 2 - 1] = F[6 + 1 - 1 ... 6 + 2 - 1] = F[6 ... 7].$ (Note that $x_c = 6$. See Fig. 3(b).)

- In the third step, we check p[1] = a, and find L'' = L[6 ... 7]corresponding to F' = F[6 ... 7]. Repeating the above operation, we will find $rk_L(a_3) = 2$ and $rk_L(a_1) = 3$. See Fig. 3(c).
- Since now we have exhausted all the characters in p and $F[x_a + 2 1, x_a + 3 1] = F[3, 4]$ contains only two elements, two occurrences of p in s are found, corresponding to a_1 and a_3 in s, respectively.

$F L rk_L$	F L rk _L	$F L rk_L$
a_4 1	\$ a ₄ 1	\$ a ₄ 1
$a_4 c_2 1$ To find the first c	<i>a</i> ₄ <i>c</i> ₂ 1	$a_4 \ c_2 \ 1$
$a_{3} g_{1} 1$	$a_{3} g_{1} 1$	$a_{3} g_{1} 1$
$a_1 \ \$ \ -$	a ₁ \$ -	a ₁ \$ -
$a_2 c_1 2$ to find the last c	$a_2 c_1 2$ to find the	$a_2 \ c_1 \ 2$
$c_2 a_3 2$	$c_2 a_3 2$ first a	$c_2 \ a_3 \ 2$
$c_1 \ a_1 \ 3$	$c_1 a_1 3$ to find the last a	$c_1 \ a_1 \ 3$
$g_1 a_2 4$	$g_1 \ a_2 \ 4$ the last a	$g_1 a_2 4$

Fig. 3: Sample trace

- The dominant cost of the above process is the searching of L in each step.
- However, this can be dramatically reduced by arranging |Σ| arrays each for a character α ∈ Σ such that α[i] (the ith entry in the array for α) is the number of appearances of α within L[1 .. i]. See Fig. 4(a) for illustration.respectively.

Fig. 4: LF-mapping and rank-correspondence

- Now, instead of scanning a certain segment L[x ... y] ($x \le y$) to find a subrange for a certain $\alpha \in \Sigma$, we can simply look up the array for α to see whether $\alpha[x - 1] = \alpha[y]$. If it is the case, then α does not occur in L[x ... y].
- Otherwise, $[\alpha[x 1] + 1, \alpha[y]]$ should be the found range. For example, to find the first and the last appearance of *c* in *L*[2 .. 5], we only need to find c[2 - 1] = c[1] = 0 and c[5] = 2. So the corresponding range is [c[2 - 1] + 1, c[4]] = [1, 2].

- The problem of this method is the high space requirement, which can be mitigated by storing a compact array A_α for each α ∈ Σ, in which, rather than for each L[i], only for some elements in L the number of their appearances will be stored.
- For example, we can divide *L* into a set of buckets of the same size and only for each bucket a value will be stored in A_{α} .

$$i \quad A_a \quad A_c \quad A_g \quad A_t$$

For each $\beta = 4$
values in *L*, a
rankAll value is
stored.
2 4 2 1 0

- Obviously, doing so, more search will be required. In practice, the size β of a bucket (referred to as a *compact factor*) can be set to different values.
- For example, we can set $\beta = 4$, indicating that for each four contiguous elements in *L* a group of $|\Sigma|$ integers (each in an A_{α}) will be stored. However, each $\alpha[j]$ for $\alpha \in \Sigma$ can be easily derived from A_{α} by using the following formulas:

 $\alpha[j] = A_{\alpha}[i] + r, \qquad (4)$ where $i = \lfloor j/\beta \rfloor$ and *r* is the number of α 's appearances within $L[i \cdot \beta ... j]$, and

 $\alpha[j] = A_{\alpha}[i'] - r', \qquad (5)$ where $i' = \lceil j/\beta \rceil$ and r' is the number of α 's appearances within $L[j \dots i' \cdot \beta].$

Construction of Arrays

As mentioned above, a string $s = c_0c_1 \dots c_{n-1}$ is always ended with \$ (i.e., $c_i \in \Sigma$ for $i = 0, \dots, n-2$, and $c_{n-1} =$ \$). Let $s[i] = c_i$, $i = 0, 1, \dots, n-1$, be the *i*th character of *s*, $s[i...j] = c_i \dots c_j$ substring and $s_i = s[i \dots n-1]$ a suffix of *s*. Suffix array *A* of *s* is a permutation of the integers 0, ..., n - 1 such that A[i] is the start position of the *i*th smallest suffix. The relationship between *A* and the BWT array *L* can be determined by the following formulas:

$$\begin{cases} L[i] = \$, & \text{if } A[i] = 0; \\ L[i] = s[A[i] - 1], & \text{otherwise.} \end{cases}$$
(6)

Once L is determined. F can be created immediately by using formula (1).

Yangjun Chen