
Yangjun Chen 1

BWT-Transformation

• What is BWT-transformation?

• BWT string compression

• BWT string matching

 - RankAll

 - BWT array construction

Yangjun Chen 2

BWT transformation

We use s to denote a string that we would like to

transform.

Assume that s terminates with a special

character $, which does not appear elsewhere in

s and is alphabetically prior to all other

characters.

In the case of DNA sequences, we have $ < A <

C < G < T.

Yangjun Chen 3

BWT transformation

As an example, consider s = acagaca$. We can

rotate s consecutively to create eight different

strings as shown in Fig. 1(a).

Fig. 1: Rotation of a string

$ a c a g a c a

a c a g a c a $

 c a g a c a $ a

 a g a c a $ a c

g a c a $ a c a

a c a $ a c a g

c a $ a c a g a

a $ a c a g a c

$ a c a g a c a

a $ a c a g a c

c a $ a c a g a

a c a $ a c a g

g a c a $ a c a

a g a c a $ a c

c a g a c a $ a

a c a g a c a $

a1 $

c1 a1

c2 a3

a2 c1

$ a4

a3 g1

a4 c2

g1 a2

F L

First column

Last column

Yangjun Chen 4

BWT transformation

By writing all these strings stacked vertically,

we generate an n n matrix, where n = |s| (see

Fig. 1(a).) Here, special attention should be paid

to the first column, denoted as F, and the last

column, denoted as L. For them, the following

equation, called the LF mapping, can be

immediately observed:

 F[i] = L[i]’s predecessor, (1)

 where F[i] (L[i]) is the ith element of F (resp. L).

Yangjun Chen 5

BWT transformation

 Now we sort the rows of the matrix alphabetically. We will get

another matrix, called the Burrow-Wheeler Matrix and denoted

as BWM(s).

 Especially, the last column of BWM(s), read from top to bottom,

is called the BWT-transformation (or the BWT-array) and

denoted as BWT(s). So for s = acagaca$, we have BWT(s) =

acg$caaa.

Fig. 2: Sorting the rows of the matrix

$ a c a g a c a

a $ a c a g a c

c a $ a c a g a

a c a $ a c a g

g a c a $ a c a

a g a c a $ a c

c a g a c a $ a

a c a g a c a $

Yangjun Chen 6

BWT transformation

 By the BWM matrix, the LF-mapping is obviously not changed.

 Surprisingly, the rank correspondence also remains. Even though

the ranks of different appearances of a certain character (in F or

in L) may be different from before, their rank correspondences

are not changed as shown in Fig. 2(b), in which a2 now appears

in both F and L as the third element among all the a-characters,

and c1 the second element among all the c-characters.

Fig. 3: LF-mapping and tank-correspondence

$ a4
a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L

 -
1

1

2

1

4

2

3

rkF

1
1

2

1

4

2

3

-

By ranking the

elements in F, each

element in L is also

ranked with the same

number.

rkL

F$ = <$; 1, 1>

Fa = <a; 2, 5>

Fc = <c; 6, 7>

Fg = <g; 8, 8>

Yangjun Chen 7

BWT string compression

 The first purpose of BWT(s) is for the string compression since

same characters with similar right-contexts in s tend to be

clustered together in BWT(s), as shown by the following

example:

 BWT(tomorrow and tomorrow and tomorrow)

 = wwwdd nnoooaatttmmmrrrrrrooo $ooo

Yangjun Chen 8

BWT string matching

 For the purpose of the string search, the character clustering in F

has to be used. Especially, for any DNA sequence, the whole F

can be divided into five or less segments: $-segment, A-segment,

C-segment, G-segment, and T-segment, denoted as F$, FA, FC,

FG, FT, respectively.

 In addition, for each segment in F, we will rank all its elements

from top to bottom, as illustrated in Fig. 2(a). $ is not ranked

since it appears only once.

F$ = <$; 1, 1>

Fa = <a; 2, 5>

Fc = <c; 6, 7>

Fg = <g; 8, 8>

Yangjun Chen 9

BWT string matching

 From Fig. 2(a), we can see that the rank of a4, denoted as

rkF(a4), is 1 since it is the first element in FA. For the same

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) = 1,

rkF(c1) = 2, and rkF(g1) = 1.

 It can also be seen that each segment in F can be effectively

represented as a triplet of the form: <; x, y>, where

{$}, and x, y are the positions of the first and last appearance

of in F, respectively.

 Now we consider j (the jth appearance of in s). Assume that

rkF(j) = i. Then, the position where j appears in F can be

easily determined:

 F[x + i - 1] = j. (2)

Yangjun Chen 10

BWT string matching

 In addition, if we rank all the elements in L top-down in such a

way that an j is assigned i if it is the ith appearance among all

the appearances of in L. Then, we will have

 rkF(j) = rkL(j), (3)

 where rkL(j) is the rank assigned to j in L.

 With the ranks established, a string matching can be very

efficiently conducted by using the formulas (2) and (3).

Yangjun Chen 11

BWT string matching

 To see this, let’s consider a pattern string p = aca and try to find

all its occurrences in s = acagaca$.

 First, we check p[3] = a in the pattern string p, and then figure

out a segment in L, denoted as L, corresponding to Fa = <a; 2,

5>. So L = L[2 .. 5], as illustrated in Fig. 3(a), where we still use

the non-compact F for ease of explanation.

 In the second step, we check p[2] = c, and then search within L

to find the first and last c in L. We will find rkL(c2) = 1 and

rkL(c1) = 2. By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2.

Then, by using (2), we will figure out a sub-segment F in F:

F[xc + 1 - 1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7].

(Note that xc = 6. See Fig. 3(b).)

Yangjun Chen 12

BWT string matching

 In the third step, we check p[1] = a, and find L = L[6 .. 7]

corresponding to F = F[6 .. 7]. Repeating the above operation,

we will find rkL(a3) = 2 and rkL(a1) = 3. See Fig. 3(c).

 Since now we have exhausted all the characters in p and F[xa + 2

– 1, xa + 3 – 1] = F[3, 4] contains only two elements, two

occurrences of p in s are found, corresponding to a1 and a3 in s,

respectively.

Yangjun Chen 13

BWT string matching

Fig. 3: Sample trace

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $ -

F L

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $ -

F L

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $ -

F L

To find

the first c

to find the

last c
to find the

first a

to find

the last a

rkL

rkL

rkL

Yangjun Chen 14

RankAll

 The dominant cost of the above process is the searching of L in

each step.

 However, this can be dramatically reduced by arranging ||

arrays each for a character such that [i] (the ith entry in

the array for) is the number of appearances of within L[1 ..

i]. See Fig. 4(a) for illustration.respectively.

Fig. 4: LF-mapping and rank-correspondence

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L

0

0

1

0

1

1

1

1

$

1

1

2

1

4

1

3

1

a

0

1

2

1

2

2

2

1

c

0

0

1

1

1

1

1

1

g

0

0

0

0

0

0

0

0

t

4

1

Aa

2

1

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0 1

2

6

3

8

5

7

4

j

For each = 4

values in L, a

rankAll value is

stored.

Yangjun Chen 15

RankAll

 Now, instead of scanning a certain segment L[x .. y] (x y) to

find a subrange for a certain , we can simply look up the

array for to see whether [x - 1] = [y]. If it is the case, then

does not occur in L[x .. y].

 Otherwise, [[x - 1] + 1, [y]] should be the found range. For

example, to find the first and the last appearance of c in L[2 .. 5],

we only need to find c[2 – 1] = c[1] = 0 and c[5] = 2. So the

corresponding range is [c[2 - 1] + 1, c[4]] = [1, 2].

Yangjun Chen 16

RankAll

 The problem of this method is the high space requirement,

which can be mitigated by storing a compact array A for each

 , in which, rather than for each L[i], only for some elements

in L the number of their appearances will be stored.

 For example, we can divide L into a set of buckets of the same

size and only for each bucket a value will be stored in A.

4

1

Aa

2

1

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0

For each = 4

values in L, a

rankAll value is

stored.

Yangjun Chen 17

RankAll

 Obviously, doing so, more search will be required. In practice,

the size of a bucket (referred to as a compact factor) can be set

to different values.

 For example, we can set = 4, indicating that for each four

contiguous elements in L a group of || integers (each in an A)

will be stored. However, each [j] for can be easily

derived from A by using the following formulas:

 [j] = A[i] + r, (4)

 where i = j/ and r is the number of ’s appearances within

L[i .. j], and

 [j] = A[i] - r, (5)

 where i = j/ and r is the number of ’s appearances within

L[j .. i].

Yangjun Chen 18

Construction of Arrays

 As mentioned above, a string s = c0c1 ... cn−1 is always ended

with $ (i.e., ci for i = 0, …, n – 2, and cn−1 = $). Let s[i] = ci,

i =0,1, …, n − 1, be the ith character of s, s[i.. j] = ci ... cj

substring and si = s[i .. n − 1] a suffix of s. Suffix array A of s is

a permutation of the integers 0, ..., n − 1 such that A[i] is the

start position of the ith smallest suffix. The relationship between

A and the BWT array L can be determined by the following

formulas:

L[i] = $,

(6)

if A[i] = 0;

L[i] = s[A[i] – 1], otherwise.

 Once L is determined. F can be created immediately by using

formula (1).

