BWT-Transformation

- What is BWT-transformation?
- BWT string compression
- BWT string matching
- RankAll
- BWT array construction

BWT transformation

\square We use s to denote a string that we would like to transform.
\square Assume that s terminates with a special character \$, which does not appear elsewhere in s and is alphabetically prior to all other characters.
\square In the case of DNA sequences, we have $\$<A<$ $C<G<T$.

BWT transformation

- As an example, consider $s=$ acagaca\$. We can rotate s consecutively to create eight different strings as shown in Fig. 1(a).

	Last column	
$a c a g a c a \$$	a_{1} \$	\$ $a c a g a c a$
$c a g a c a \$ a$	$c_{1} a_{1}$	$a \$ a c a g a$
$a g a c a \$ a c$	$a_{2} c_{1}$	$a c a \$$ acag
$g a c a \$ a c a$	$g_{1} a_{2}$	$a c a l a c a \$$
$\begin{array}{lccl}a & \text { W a c a }\end{array}$	$a_{3} g_{1}$	$a g a c a \$$ ac
c a \$ a c a ga	$c_{2} a_{3}$	c a \$ a c a ga
$a \$ a c a g a c$		$c a g a c a \$$
	\$ a_{4}	$g a c a \$ a c a$

Fig. 1: Rotation of a string

BWT transformation

- By writing all these strings stacked vertically, we generate an $n \times n$ matrix, where $n=|s|$ (see Fig. 1(a).) Here, special attention should be paid to the first column, denoted as F, and the last column, denoted as L. For them, the following equation, called the $L F$ mapping, can be immediately observed:

$$
\begin{equation*}
F[i]=L[i] \text { 's predecessor, } \tag{1}
\end{equation*}
$$

where $F[i](L[i])$ is the $i^{\text {th }}$ element of F (resp. L).

BWT transformation

- Now we sort the rows of the matrix alphabetically. We will get another matrix, called the Burrow-Wheeler Matrix and denoted as $B W M(s)$.
■ Especially, the last column of $B W M(s)$, read from top to bottom, is called the $B W T$-transformation (or the $B W T$-array) and denoted as $B W T(s)$. So for $s=$ acagaca $\$$, we have $B W T(s)=$ acg\$caaa.

$$
\begin{array}{llllllll}
\$ & a & c & a & g & a & c & a \\
a & \$ & a & c & a & g & a & c \\
a & c & a & \$ & a & c & a & g \\
a & c & a & g & a & c & a & \$ \\
a & g & a & c & a & \$ & a & c \\
c & a & \$ & a & c & a & g & a \\
c & a & g & a & c & a & \$ & a \\
g & a & c & a & \$ & a & c & a
\end{array}
$$

Fig. 2: Sorting the rows of the matrix

BWT transformation

- By the $B W M$ matrix, the $L F$-mapping is obviously not changed.
- Surprisingly, the rank correspondence also remains. Even though the ranks of different appearances of a certain character (in F or in L) may be different from before, their rank correspondences are not changed as shown in Fig. 2(b), in which a_{2} now appears in both F and L as the third element among all the a-characters, and c_{1} the second element among all the c-characters.

$r k_{F}$	$F \quad L$	$r k_{L}$	By ranking the	
-	\$ a_{1}	1	elements in F, each	$F_{\$}=\langle \$; 1,1\rangle$
1	$a_{4} \quad c_{7}$	1	element in L is also	
2	$a_{3} g_{1}$	1	ranked with the same	a
3	a_{1} \$	-	number.	$F_{c}=\langle c ; 6,7\rangle$
4	$a_{2} \quad c_{1}$	2		$F_{g}=\langle g ; 8,8\rangle$
1	$c_{2} a_{3}$	2		
2	$c_{1} a_{1}$	3		
1	$g_{1} a_{2}$	4		

Fig. 3: LF-mapping and tank-correspondence

BWT string compression

- The first purpose of $B W T(s)$ is for the string compression since same characters with similar right-contexts in s tend to be clustered together in $B W T(s)$, as shown by the following example:
$B W T$ (tomorrow and tomorrow and tomorrow)
= wwwdd nnoooaatttmmmrrrrrooo \$ooo

BWT string matching

- For the purpose of the string search, the character clustering in F has to be used. Especially, for any DNA sequence, the whole F can be divided into five or less segments: $\$$-segment, A-segment, C-segment, G-segment, and T-segment, denoted as $F_{\$}, F_{A}, F_{C}$, F_{G}, F_{T}, respectively.
■ In addition, for each segment in F, we will rank all its elements from top to bottom, as illustrated in Fig. 2(a). \$ is not ranked since it appears only once.

$$
\begin{aligned}
& F_{\$}=\langle \$; 1,1\rangle \\
& F_{a}=\langle a ; 2,5\rangle \\
& F_{c}=\langle c ; 6,7\rangle \\
& F_{g}=\langle g ; 8,8\rangle
\end{aligned}
$$

BWT string matching

■ From Fig. 2(a), we can see that the rank of a_{4}, denoted as $r k_{F}\left(a_{4}\right)$, is 1 since it is the first element in F_{A}. For the same reason, we have $r k_{F}\left(a_{3}\right)=2, r k_{F}\left(a_{1}\right)=3, r k_{F}\left(a_{2}\right)=4, r k_{F}\left(c_{2}\right)=1$, $r k_{F}\left(c_{1}\right)=2$, and $r k_{F}\left(g_{1}\right)=1$.

- It can also be seen that each segment in F can be effectively represented as a triplet of the form: $\left\langle\alpha ; x_{\alpha}, y_{\alpha}\right\rangle$, where $\alpha \in \Sigma \cup$ $\{\$\}$, and x_{α}, y_{α} are the positions of the first and last appearance of α in F, respectively.
■ Now we consider α_{j} (the $j^{\text {th }}$ appearance of α in s). Assume that $r k_{F}\left(\alpha_{j}\right)=i$. Then, the position where α_{j} appears in F can be easily determined:

$$
\begin{equation*}
F\left[x_{\alpha}+i-1\right]=\alpha_{j} . \tag{2}
\end{equation*}
$$

BWT string matching

- In addition, if we rank all the elements in L top-down in such a way that an α_{j} is assigned i if it is the $i^{\text {th }}$ appearance among all the appearances of α in L. Then, we will have

$$
\begin{equation*}
r k_{F}\left(\alpha_{j}\right)=r k_{L}\left(\alpha_{j}\right) \tag{3}
\end{equation*}
$$

where $r k_{L}\left(\alpha_{j}\right)$ is the rank assigned to α_{j} in L.

- With the ranks established, a string matching can be very efficiently conducted by using the formulas (2) and (3).

BWT string matching

- To see this, let's consider a pattern string $p=a c a$ and try to find all its occurrences in $s=$ acagaca $\$$.

■ First, we check $p[3]=a$ in the pattern string p, and then figure out a segment in L, denoted as L^{\prime}, corresponding to $F_{a}=<a ; 2$, 5>. So $L^{\prime}=L[2$.. 5], as illustrated in Fig. 3(a), where we still use the non-compact F for ease of explanation.
■ In the second step, we check $p[2]=c$, and then search within L^{\prime} to find the first and last c in L^{\prime}. We will find $r k_{L}\left(c_{2}\right)=1$ and $r k_{L}\left(c_{1}\right)=2$. By using (3), we will get $r k_{F}\left(c_{2}\right)=1$ and $r k_{F}\left(c_{1}\right)=2$. Then, by using (2), we will figure out a sub-segment F^{\prime} in F : $F\left[x_{c}+1-1 . . x_{c}+2-1\right]=F[6+1-1 . .6+2-1]=F[6 . .7]$. (Note that $x_{c}=6$. See Fig. 3(b).)

BWT string matching

■ In the third step, we check $p[1]=a$, and find $L^{\prime \prime}=L[6$.. 7] corresponding to $F^{\prime}=F[6$.. 7]. Repeating the above operation, we will find $r k_{L}\left(a_{3}\right)=2$ and $r k_{L}\left(a_{1}\right)=3$. See Fig. 3(c).

- Since now we have exhausted all the characters in p and $F\left[x_{a}+2\right.$ $\left.-1, x_{a}+3-1\right]=F[3,4]$ contains only two elements, two occurrences of p in s are found, corresponding to a_{1} and a_{3} in s, respectively.

BWT string matching

$F \quad L$	$r k_{L}$
\$ a_{4}	
$a_{4} c_{2}$	1To find the first c
$a_{3} g_{1}$	1
a_{1} \$	-
$a_{2} c_{1}$	$2 \wedge$ to find the
$c_{2} a_{3}$	2
$c_{1} a_{1}$	3
$g_{1} a_{2}$	4

$F \quad L$	$r k_{L}$		$F \quad L$	$r k_{L}$
\$ a_{4}	1		\$ a_{4}	1
$a_{4} c_{2}$	1		$a_{4} c_{2}$	1
$a_{3} g_{1}$	1		$a_{3} g_{1}$	1
a_{1} \$	-		a_{1} \$	-
$a_{2} c_{1}$	2	to find the	$a_{2} c_{1}$	2
$c_{2} a_{3}$	2	first a	$c_{2} a_{3}$	2
$c_{1} a_{1}$	3	to find	$c_{1} a_{1}$	3
$g_{1} a_{2}$	4		$g_{1} a_{2}$	4

Fig. 3: Sample trace

RankAll

\square The dominant cost of the above process is the searching of L in each step.

- However, this can be dramatically reduced by arranging $|\Sigma|$ arrays each for a character $\alpha \in \Sigma$ such that $\alpha[i]$ (the $i^{\text {th }}$ entry in the array for α) is the number of appearances of α within $L[1$.. i]. See Fig. 4(a) for illustration.respectively.

j	$F \quad L$	\$	a	c	g	t	i	A	A_{c}	A_{g}	A_{t}	For each $\beta=4$ values in L, a rankAll value is stored.
1	\$ a_{4}	0	1	0	0	0	0	0	0	0	0	
2	$a_{4} c_{\text {, }}$	0	1	1	0	0						
3	$a_{2} g_{1}$	0	1	1	1	0						
4	a_{1} \$	1	1	1	1	0	1	1	1	1	0	
5	$a_{2} c_{1}$	1	1	2	1	0	1	1		1		
6	$c_{2} a_{3}$	1	2	2	1	0						
7	$c_{1} a_{1}$	1	3	2	1	0						
8	$g_{1} a_{2}$	1	4	2	1	0	2	4	2	1	0	

Fig. 4: $L F$-mapping and rank-correspondence

RankAll

■ Now, instead of scanning a certain segment $L[x . . y](x \leq y)$ to find a subrange for a certain $\alpha \in \Sigma$, we can simply look up the array for α to see whether $\alpha[x-1]=\alpha[y]$. If it is the case, then α does not occur in $L[x . . y]$.
■ Otherwise, $[\alpha[x-1]+1, \alpha[y]]$ should be the found range. For example, to find the first and the last appearance of c in $L[2$.. 5], we only need to find $c[2-1]=c[1]=0$ and $c[5]=2$. So the corresponding range is $[c[2-1]+1, c[4]]=[1,2]$.

RankAll

- The problem of this method is the high space requirement, which can be mitigated by storing a compact array A_{α} for each α $\in \Sigma$, in which, rather than for each $L[i]$, only for some elements in L the number of their appearances will be stored.
- For example, we can divide L into a set of buckets of the same size and only for each bucket a value will be stored in A_{α}.

i	A_{a}	A_{c}	$A_{g} A_{t}$	For each $\beta=4$ values in L, a		
0	0	0	0	0		
1	1	1	1	0	\quad	rankAll value is
:---						
stored.						

RankAll

■ Obviously, doing so, more search will be required. In practice, the size β of a bucket (referred to as a compact factor) can be set to different values.
■ For example, we can set $\beta=4$, indicating that for each four contiguous elements in L a group of $|\Sigma|$ integers (each in an A_{α}) will be stored. However, each $\alpha[j]$ for $\alpha \in \Sigma$ can be easily derived from A_{α} by using the following formulas:

$$
\begin{equation*}
\alpha[j]=A_{\alpha}[i]+r, \tag{4}
\end{equation*}
$$

where $i=\lfloor j / \beta\rfloor$ and r is the number of α 's appearances within $L[i \cdot \beta . . j]$, and

$$
\begin{equation*}
\alpha[j]=A_{\alpha}\left[i^{\prime}\right]-r^{\prime}, \tag{5}
\end{equation*}
$$

where $i^{\prime}=\lceil j / \beta\rceil$ and r^{\prime} is the number of α 's appearances within $L\left[j . . i^{\prime} \beta\right]$.

Construction of Arrays

■ As mentioned above, a string $s=c_{0} c_{1} \ldots c_{n-1}$ is always ended with $\$$ (i.e., $c_{i} \in \Sigma$ for $i=0, \ldots, n-2$, and $c_{n-1}=\$$). Let $s[i]=c_{i}$, $i=0,1, \ldots, n-1$, be the $i^{\text {th }}$ character of $s, s[i . . j]=c_{i} \ldots c_{j}$ substring and $s_{i}=s[i . . n-1]$ a suffix of s. Suffix array A of s is a permutation of the integers $0, \ldots, n-1$ such that $A[i]$ is the start position of the $i^{\text {th }}$ smallest suffix. The relationship between A and the BWT array L can be determined by the following formulas:

$$
\begin{array}{ll}
L[i]=\$, & \text { if } A[i]=0 ; \tag{6}\\
L[i]=s[A[i]-1], & \text { otherwise }
\end{array}
$$

- Once L is determined. F can be created immediately by using formula (1).

