Quantum Computation

Dr. Yangjun Chen

-What is a qubit?

- Bloch sphere interpretation
- About $e^{i \theta}$
- Qubit operators and circuits
- Quantum Fourier Transformation

What is a qubit?

- In classical compuation, the fundamental concept is bit. A bit b can take one of two values 0 or 1.
- In quantom computation, the fundamental concept is quantom bit, called qubit, whose superposition is

$$
\begin{equation*}
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \tag{1}
\end{equation*}
$$

where $|0\rangle$ represents the 0 -state and $|1\rangle 1$-state of a quantom bit. α and β are two complex numbers, satisfying $|\alpha|^{2}+|\beta|^{2}$.

- Assume that $\alpha=a+i b$. Then, $|a|=\sqrt{a^{2}+b^{2}}$
called the absolute value (or modulus, or magnitude) of α.

What is a qubit?

Interpretation of superposition:

When the qubit is measured, the probability that its value is $|0\rangle$ is $|\alpha|^{2}$ and the probability that its value is $|1\rangle$ is $|\beta|^{2}$.

Qubit Visualization

Bloch Sphere

- We can write $\alpha=r e^{i \gamma}$ and $\beta=p e^{i \omega}$. Then, we have

$$
\begin{equation*}
|\psi\rangle=r e^{i v}|0\rangle+p e^{i \omega}|\mathbf{1}\rangle . \tag{2}
\end{equation*}
$$

- Mupltiplying either side of the above equation by $e^{-i \gamma}$, we get

$$
\begin{equation*}
e^{-i \gamma}|\psi\rangle=r|0\rangle+p e^{i(\omega-\gamma)}|1\rangle . \tag{3}
\end{equation*}
$$

- Denote $e^{-i \gamma}|\psi\rangle$ by $\left|\psi^{\eta}\right\rangle$, and $(\omega-\gamma)$ by φ. We can rewrite (3) as

$$
\begin{equation*}
\left|\psi^{\prime}\right\rangle=r|0\rangle+p e^{i \varphi}|1\rangle \tag{4}
\end{equation*}
$$

Qubit Visualization

Bloch Sphere

- Rewriting $p e^{i \varphi}|1\rangle$ as $(x+i y)|1\rangle$ and renaming r as z, we have

$$
\begin{equation*}
|\psi\rangle=z|0\rangle+(x+i y)|1\rangle \tag{5}
\end{equation*}
$$

satisfying $x^{2}+y^{2}+z^{2}=1$.
From (5), we can see that the state of $\left|\psi^{\prime}\right\rangle$ is completely determined by three values, x, y, and z.

Qubit Visualization

Cartesian coordinates are related to polar coordinates by the following equations:

$$
\begin{align*}
x & =r \sin (\theta) \sin (\varphi) \tag{6}\\
y & =r \sin (\theta) \cos (\varphi) \\
z & =r \cos (\theta) \\
r & =\sqrt{x^{2}+y^{2}+z^{2}}
\end{align*}
$$

For $r=1$, we have

$$
\begin{align*}
& x=\sin (\theta) \sin (\varphi) \tag{7}\\
& y=\sin (\theta) \cos (\varphi) \\
& z=\cos (\theta)
\end{align*}
$$

Qubit Visualization

- In terms of (5) and (7), $|\psi\rangle$ can be rewritten as follows:

$$
\begin{aligned}
& |\psi\rangle=\cos (\theta)|0\rangle+\sin (\theta)(\cos (\varphi)+i \sin (\varphi))|1\rangle . \\
& |\psi\rangle=\cos (\theta)|0\rangle+\sin (\theta) e^{i \varphi}|1\rangle .
\end{aligned}
$$

- Note that $\theta=0 \Rightarrow\left|\psi^{\prime}\right\rangle=|0\rangle, \theta=\pi / 2 \Rightarrow\left|\psi^{\prime}\right\rangle=|1\rangle$. This suggests that $0 \leq \theta \leq \pi / 2$.
- We can map points on the upper hemisphere onto points on a sphere by defining

$$
\theta=\theta^{\prime} / 2 \Rightarrow \theta^{\prime}=2 \theta
$$

- Then, we now have

$$
\begin{equation*}
\left|\psi^{\prime}\right\rangle=\cos \left(\theta^{\prime} / 2\right)|0\rangle+\sin \left(\theta^{\prime} / 2\right) e^{i \varphi}|1\rangle . \tag{9}
\end{equation*}
$$

with $0 \leq \theta^{\prime} \leq \pi, 0 \leq \varphi \leq 2 \pi$, which are the coordinates of points on the Bloch sphere.

Qubit Visualization

- | $\left.\psi^{\wedge}\right\rangle$ can be considered as a vector in a twodimentional space V, in which two vectors

$$
|0\rangle=\binom{1}{0} \text { and }|1\rangle=\binom{0}{1}
$$

make up an orthonomal.

$$
\left|\psi^{\prime}\right\rangle=\binom{\cos \left(\frac{\theta^{\prime}}{2}\right)}{\sin \left(\frac{\theta^{\prime}}{2}\right) e^{i \varphi}}
$$

Qubit Visualization

a vector representing an qubit

Qubit Visualization

$$
\left|\psi^{\prime}\right\rangle=\cos \left(\theta^{\prime} / 2\right)|0\rangle+\sin \left(\theta^{\prime} / 2\right) e^{i \varphi}|1\rangle
$$

$\cos (\pi / 4)|0\rangle+\sin (\pi / 4) e^{i 0}|1\rangle$

$$
|0\rangle=\cos (0)|0\rangle+\sin (0) e^{i 0}|1\rangle
$$

$=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

$|1\rangle=\cos (\pi)|0\rangle+\sin (\pi) e^{i 0}|1\rangle$

$\underline{\text { About } e^{i \varphi}}$

- $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$
$-e^{i \varphi}=\lim _{n \rightarrow \infty}\left(1+i \frac{\varphi}{m}\right)^{m}$
- $\quad e^{i \varphi}=\cos (\varphi)+i \sin (\varphi)$

$$
\begin{aligned}
e^{i \varphi} & =1+i \varphi-\frac{\varphi^{2}}{2!}-i \frac{\varphi^{3}}{3!}+\frac{\varphi^{4}}{4!}+i \frac{\varphi^{5}}{5!} \cdots \cdots \\
& =\left(1-\frac{\varphi^{2}}{2!}+\frac{\varphi^{4}}{4!} \cdots\right)+i\left(\varphi-\frac{\varphi^{3}}{3!}+\frac{\varphi^{5}}{5!} \cdots\right) \\
& =\cos (\varphi)+i \sin (\varphi)
\end{aligned}
$$

$\underline{\text { About } e^{i \varphi}}$

- Intuitive expalanation

Consider $(1+i \varphi / 5)^{5}$.

From the figure, we can see that as m increases,
$\left(1+i \frac{\varphi}{m}\right)^{m}$ gets closer to $\cos (\varphi)+i \sin (\varphi)$.

Notations for basic operations

notation	description
z^{*}	Complex conjugate of the complex number z. $(1+i)^{*}=1-i$
$\|\psi\rangle$	Vector. Also known as a ket. $\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle=(\alpha, \beta)^{T}$
$\langle\psi\|$	Vector dual to $\|\psi\rangle$. Also known as a bra. $\langle\psi\|=\left(\alpha^{*}, \beta^{*}\right)$
$\langle\psi \mid \varphi\rangle$	Inner product between $\|\varphi\rangle$ and $\langle \| \psi$. Also known as braket. So $\langle\psi\|$ is called bra and $\|\varphi\rangle$ is called ket. For $\|\varphi\rangle=\alpha\|0\rangle+\beta\|1\rangle$ and $\langle\psi\|$ $=\left(\alpha^{*}, \beta^{*}\right),\langle\psi \mid \varphi\rangle=\left(\alpha^{*}, \beta^{*}\right)(\alpha, \beta)^{T}=\alpha^{*} \alpha+\beta^{*} \beta$.
$\|\varphi\rangle\langle\psi\|$	Cartisian product between $\|\varphi\rangle$ and $\langle\psi\|$.
$\|\varphi\rangle \otimes\|\psi\rangle$	Tensor product between $\|\varphi\rangle$ and $\langle\psi\|$.
$\|\varphi\rangle\|\psi\rangle$	Abreviated notation for $\|\varphi\rangle \otimes\|\psi\rangle$, as also be written as $\|\varphi \psi\rangle$.
A^{*}	Complex conjugate of the matrix A.
A^{T}	Transpose of the matrix A.

$\underline{\text { Notations for basic operations }}$

notation description

$A \dagger \quad$ Hermitian conjugate or adjoint of the matrix $A, A \dagger=\left(A^{T}\right)^{*}$.
$\langle\varphi| A|\psi\rangle \quad$ Inner product between $|\varphi\rangle$ and $A|\psi\rangle$.
Equivalently, inner product between $\mathrm{A} \dagger|\varphi\rangle$ and $|\psi\rangle$.
For $|\varphi\rangle=\alpha|0\rangle+\beta|1\rangle$ and $|\psi\rangle=\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle$, we have

$$
\begin{aligned}
& |\varphi\rangle\langle\psi|=\binom{a}{\beta}\left(a^{\prime}, \beta^{\prime}\right)^{*}=\left(\begin{array}{ll}
\alpha \alpha^{*} & \alpha \beta^{\prime *} \\
\beta \alpha^{\prime *} & \beta \beta^{\prime *}
\end{array}\right) \quad|\varphi\rangle \otimes\langle\psi|=\binom{\alpha\binom{\alpha^{\prime}}{\beta^{\prime}}}{\beta\binom{\alpha^{\prime}}{\beta^{\prime}}}=\left(\begin{array}{l}
\alpha \alpha^{\prime} \\
\alpha \beta^{\prime} \\
\beta \alpha^{\prime} \\
\beta \beta^{\prime}
\end{array}\right) \\
& \text { For } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \text { we have } A \dagger=\left[\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right] .
\end{aligned}
$$

- Single qubits can be realized in many ways:
- as the two different polarizations of a photon,
- as the alignment of a nuclear spin in a uniform magnetic field,
- as two states of an electron orbiting a single atom. The electron can exist in either the so-called 'ground' or 'excited' states, which we'll call $|0\rangle$ and $|1\rangle$, respectively. By shining light on the atom, with appropriate energy and for an appropriate length of time, it is possible to move the electron from the $|0\rangle$ state to the $|1\rangle$ state and vice versa.
- Quantum wires are extremely narrow structures where electron transport is possible only in a very few transverse modes.

Single qubit operators

- A matrix U is called a unitary matrix if $U \dagger U=I$. (I is an identity matrix.)
- Any (valid) single qubit operator is represented as a 2 $\times 2$ unitary matrix.

$$
\begin{aligned}
& \binom{\alpha^{\prime}}{\beta^{\prime}}=U\binom{\alpha}{\beta} \quad X \equiv\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y \equiv\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z \equiv\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad S \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad T \equiv\left[\begin{array}{cc}
1 & 0 \\
0 & \exp (i \pi / 4)
\end{array}\right]
\end{aligned}
$$

Single qubit operators

$$
\begin{aligned}
& \alpha|0\rangle+\beta|1\rangle-X-\beta|0\rangle+\alpha|1\rangle \\
& \alpha|0\rangle+\beta|1\rangle-Y--i \beta|0\rangle+i \alpha|1\rangle \\
& \alpha|0\rangle+\beta|1\rangle-Z-\alpha|0\rangle-\beta|1\rangle \\
& \alpha|0\rangle+\beta|1\rangle-H-\alpha \frac{|0\rangle+|1\rangle}{\sqrt{2}}+\beta \frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

$$
\alpha|0\rangle+\beta|1\rangle-S-\alpha|0\rangle+i \beta|1\rangle
$$

$$
\alpha|0\rangle+\beta|1\rangle-T-\alpha|0\rangle+e^{i \pi / 4} \beta|1\rangle
$$

Single qubit operators

- Any 2×2 unitary matrix represents a single qubit operator
- An arbitrary 2×2 unitary matrix may be decomposed as
$U=e^{i \alpha}\left[\begin{array}{cc}e^{-i \beta} & 0 \\ 0 & e^{i \beta}\end{array}\right]\left[\begin{array}{cc}\cos \frac{\gamma}{2} & -\sin \frac{\gamma}{2} \\ \sin \frac{\gamma}{2} & \cos \frac{\gamma}{2}\end{array}\right]\left[\begin{array}{cc}e^{-i \delta / 2} & 0 \\ 0 & e^{i \delta / 2}\end{array}\right]$

Multiple qubits

- A pair of qubits can also exist in superpositions of four states, so the quantum state of two qubits involves associating a complex coefficient sometimes called an amplitude - with each computational basis state, such that the state vector describing the two qubits is

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

where the normalization condition is satisfied, that is

$$
\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}=1
$$

Multiple qubit

- For a two qubit system, we could measure just a subset of the qubits, say the first qubit, and you can probably guess how this works: measuring the first qubit alone gives 0 with probability $\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}$, leaving the post-measurement state

$$
\left|\psi^{\prime}\right\rangle=\frac{\alpha_{00}|00\rangle+\alpha_{01}|01\rangle}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}
$$

- Mmeasuring the first qubit alone gives 1 with probability $\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}$, leaving the post-measurement state

$$
\left|\psi^{\prime}\right\rangle=\frac{\alpha_{10}|10\rangle+\alpha_{11}|11\rangle}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}}
$$

Multiple qubit

Example: Bell state or EPR pair (Enstain-PodolskyRosen)

$$
|\varphi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- The Bell state has the propertythat upon measuring the first qubit, one obtains two possible results: 0 with probability $1 / 2$, leaving the post-measurement state $|\varphi\rangle=$ $|00\rangle$, and 1 with probability $1 / 2$, leaving $|\varphi\rangle=|11\rangle$.
- As a result, a measurement of the second qubit always gives the same result as the measurement of the first qubit. That is, the measurement outcomes are correlated.
- Quantom teleportation, superdense coding, entanglement.

Multiple qubit gates

- CNOT gate (or controlled-not gate)

This gate has two input qubits, known as the control qubit and the target qubit, respectively. If the control qubit is set to 0 , then the target qubit is left unchanged. If the control qubit is set to 1 , then the target qubit is flipped. In equations:

$$
|00\rangle \rightarrow|00\rangle ;|01\rangle \rightarrow|01\rangle ;|10\rangle \rightarrow|11\rangle ;|11\rangle \rightarrow|10\rangle .
$$

Circuit representation of a CNOT gate:

control qubit: target qubit:	$\|\mathrm{A}\|$$\|B\rangle$	$U_{C N}=$			
		$\|\mathrm{A}\rangle$			1
			1		1
		$\|\mathrm{B} \oplus \mathrm{A}\rangle$	1		1
			0		1

Quantom circuits

- A quantom circuit contains several gates connected through wires.wire does not necessarily
- A wire does not necessarilycorrespond to a physical wire; it may correspond instead to the passage of time, or perhaps to a physical particle such as a photon - a particle of light - moving from one location to another through space.

Quantum circuits

- The function of this circuit is to swaps the states of the two qubits.
- To see this, consider input $|a, b\rangle$

control qubit
- The effect of the circut on input $|a, b|\rangle$

$$
\begin{aligned}
|a, b\rangle & \longrightarrow|a, b \oplus a\rangle \\
& \longrightarrow|a \oplus(b \oplus a), b \oplus a\rangle=|b, b \oplus a\rangle \\
& \longrightarrow|b,(b \oplus a) \oplus b\rangle=|b, a\rangle
\end{aligned}
$$

Quantum circuits

- A convention
- Suppose U is any unitary matrix acting on some number \boldsymbol{n} of qubits, so \boldsymbol{U} can be regarded as a quantum gate on those qubits. Then we can define a controlled- U gate which is a natural extension of the controlled- gate.
- If the control qubit is set to 0 then nothing happens to the target qubits. If the control qubit is set to 1 then the gate U is applied to the target qubits.

Quantum circuits

This circuit maps $|0\rangle|y\rangle$ to $|0\rangle|y\rangle$, and $|1\rangle|y\rangle$ to $|1\rangle(U|y\rangle)$. That is, for input $|x\rangle|y\rangle$, the output is $|x\rangle\left(U^{x}|y\rangle\right)$. (Note that $U^{0}=I, U^{1}=\boldsymbol{U}$.)

For quantom Fourier Transformation, a kind of matrices of the following form is used:

$$
U=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i / 2^{k}}
\end{array}\right]
$$

Quantum Fourier Transformation

- Discrete Fourier transform

In the usual mathematical notation, the discrete Fourier transform takes as input a vector of complex numbers, x_{0}, \ldots, x_{N-1} where the length \mathbf{N} of the vector is a fixed parameter. It outputs the transformed data, a vector of complex numbers y_{0}, \ldots, y_{N-1}, defined by

$$
\begin{gathered}
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{n-1} x_{j} e^{2 \pi i j k / N} \\
|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2 \pi j j / N}|k\rangle \quad \sum_{j=0}^{N-1} x_{j}|j\rangle=\sum_{k=0}^{N-1} y_{k}|k\rangle
\end{gathered}
$$

Quantum Fourier Transformation

- The quantum Fourier transform is exactly the same transformation, although the conventional notation for the quantum Fourier transform is somewhat different. The quantum Fourier transform on an orthonormal basis $|0\rangle, \ldots$, $|N-1\rangle$ is defined to be a linear operator with the following action on the basis states:

$$
|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2 \pi i j k / N}|k\rangle
$$

- Equivalently, the action on an arbitrary state may be written

$$
\sum_{j=0}^{N-1} x_{j}|j\rangle=\sum_{k=0}^{N-1} y_{k}|k\rangle
$$

where the amplitudes y_{k} are the discrete Fourier transform of the amplitudes x_{j}.

Quantum Fourier Transformation

- We take $N=2^{n}$, where n is some integer, and the basis $|0\rangle, \ldots,\left|2^{n-1}\right\rangle$ is the computational basis for an n quit quantum computer. It is helpful to write the state $\langle j\rangle$ using the binary representation $j=j_{1} j_{2} \ldots j_{n}\left(j_{i}\right.$ $\in\{0,1\}$). More formally, $j=j_{1} 2^{n-1}+j_{2} 2^{n-2}+\cdots+j_{n} 2^{0}$. It is also convenient to adopt the notation $0 . \dot{j}_{l+1} \ldots j_{m}$ to represent the binary fraction $j_{1} / 2+j_{l+1} / 4+\cdots+$ $j_{m} / 2^{m-l+1}$.

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow
$$

$\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n-1} j_{n}}\right.$
1))...(|0>+e $2 \pi i 0 . j_{1} \ldots j_{n-1} j_{n}$

$$
2^{n-1}
$$

Quantum Fourier Transformation

$$
\left.|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2 \pi i j k / N} k\right\rangle
$$

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow \frac{1}{2^{n / 2}} \sum_{k_{1}=0}^{1} \ldots \sum_{k_{n}=0}^{1} e^{2 \pi i\left(\sum_{l=1}^{n} k_{l} 2^{-l}\right)}\left|k_{1} \ldots k_{n}\right\rangle
$$

$$
\begin{aligned}
& =\frac{1}{2^{n / 2}} \sum_{k_{1}=0}^{1} \ldots \sum_{k_{n}=0}^{1} e^{2 \pi i j k_{1} / 2^{1}}\left|k_{1}\right\rangle \otimes e^{2 \pi i j k_{2} / 2^{2}}\left|k_{n}\right\rangle \otimes \ldots \otimes e^{2 \pi i j k_{n} / 2^{n}}\left|k_{n}\right\rangle \\
& =\frac{1}{2^{n / 2}}\left(\sum_{k_{1}=0}^{1} e^{2 \pi i j k_{1} / 2^{1}}\left|k_{1}\right\rangle\right) \otimes \ldots \otimes\left(\sum_{k_{n}=0}^{1} e^{2 \pi i j k_{n} / 2^{n}}\left|k_{n}\right\rangle\right)
\end{aligned}
$$

$$
=\frac{1}{2^{n / 2}} \otimes_{l=1}^{n}\left(|0\rangle+e^{2 \pi i j 2^{-l}}|1\rangle\right)
$$

Quantum Fourier Transformation

- In terms of the above formula, an quantom algorithm for Fourier transformation is proposed, in which a Hadamard gate

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

a series of gates of the following form

$$
R_{j}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i / 2^{j}}
\end{array}\right] \quad \text { for } j=1, \ldots, n
$$

and a series of controlled-R circuits are used.

Quantum Fourier Transformation

Quantum Fourier Transformation

- The circuit operates as follows. We start with an n-qubit input state $\left\langle j_{1} j_{2} \ldots j_{n}\right\rangle$.

1. After the first Hadamard gate on qubit 1 , the state is transformed from the input state to

$$
\left|j_{1} j_{2} \ldots j_{n}\right\rangle \rightarrow \frac{1}{2^{1 / 2}}\left[|0\rangle+e^{2 \pi i 0 \cdot j_{1}}|1\rangle\right] \otimes\left|j_{2} \ldots j_{n}\right\rangle
$$

since $e^{2 \pi i 0 \cdot j_{1}}=-1$ when $j_{1}=|1\rangle$, and is +1 otherwise.

$$
\begin{aligned}
& H|0\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& H|1\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

Quantum Fourier Transformation

2. After the $\boldsymbol{R}_{\mathbf{2}}$ gate on qubit 1 controlled by qubit $\mathbf{2}$, the state is transformed to

$$
\frac{1}{2^{1 / 2}}\left[|0\rangle+e^{2 \pi i 0 . j_{1} j_{2}}|1\rangle\right] \otimes\left|j_{2} \ldots j_{n}\right\rangle
$$

3. We continue applying the controlled $-R_{3}, R_{4}$ through R_{n} gates, each of which adds an extra bit to the phase of the co-efficient of the first $|1\rangle$. At the end of this procedure we have the state

$$
\frac{1}{2^{1 / 2}}\left[|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right] \otimes\left|j_{2} \ldots j_{n}\right\rangle
$$

Quantum Fourier Transformation

4. Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us in the state

$$
\frac{1}{2^{2 / 2}}\left[|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 . j_{2}}|1\rangle\right] \otimes\left|j_{3} \ldots j_{n}\right\rangle
$$

5. Continually, the controlled $-R_{2}$ through R_{n-1} gates yield the state

$$
\frac{1}{2^{2 / 2}}\left[|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 . j_{2} \ldots j_{n}}|1\rangle\right] \otimes\left|j_{3} \ldots j_{n}\right\rangle
$$

Quantum Fourier Transformation

6. Continually, the controlled- $\boldsymbol{R}_{\mathbf{2}}$ through $\boldsymbol{R}_{\boldsymbol{n}-1}$ gates yield the state

$$
\frac{1}{2^{n / 2}}\left[|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 . j_{2} \ldots j_{n}}|1\rangle\right] \ldots\left[|0\rangle+e^{2 \pi i 0 . j_{n}}|1\rangle\right]
$$

7. Awap gates.

$$
\frac{1}{2^{n / 2}}\left[|0\rangle+e^{2 \pi i 0 . j_{n}}|1\rangle\right] \ldots\left[|0\rangle+e^{2 \pi i 0 . j_{2} \ldots j_{n}}|1\rangle\right]\left[|0\rangle+e^{2 \pi i 0 . j_{1} j_{2} \ldots j_{n}}|1\rangle\right]
$$

Quantum Fourier Transformation

- How many gates does this circuit use? We start by doing a Hadamard gate and $n-1$ conditional rotations on the first qubit - a total of \boldsymbol{n} gates. This is followed by a Hadamard gate and $n-2$ conditional rotations on the second qubit, for a total of $n+(n-1)$ gates.
- Continuing in this way, we see that $n+(n-1)+\cdots+1=n(n+$ 1)/2 gates are required.
- Finally, the number of the gates involved in the swaps is $\mathbf{3 n / 2}$.
- At most $\boldsymbol{n} / 2$ swaps are required, and
- each swap can be accomplished using three controlledgates.
- Therefore, this circuit provides a $\Theta\left(n^{\mathbf{2}}\right)$ algorithm for performing the quantum Fourier transform.

Quantum Fourier Transformation

- In contrast, the best classical algorithms for computing the discrete Fourier transform on 2^{n} elements are algorithms such as the Fast Fourier Transform (FFT), which compute the discrete Fourier transform using $\Theta\left(n 2^{n}\right)$ gates. That is, it requires exponentially more operations to compute the Fourier transform on a classical computer than it does to implement the quantum Fourier transform on a quantum computer.

Phase Estimation

Problem: Suppose an unitary operator (matrix) has an eigen vector $|u\rangle$ with eigen value $e^{2 \pi i \varphi}$, where φ is unknown.

Goal: Estimate φ. Note that φ is a real number. We intend to eastimate it to a t-bits value, that is

$$
\varphi \approx Q_{0} Q_{1} \ldots Q_{t-1}=\widetilde{\varphi}
$$

Input: The eigen vector $|u\rangle$ and controlled $-U^{k}$ operator, where $k=$ 2^{j} for some non-negative integer j.
controlled- U^{k} operator:

Phase Estimation

Suppose there is a black-box that applies U^{J} where the control state is $|j\rangle$ and j is a t-bit number.

$$
\left.|j\rangle|u\rangle \xrightarrow{U^{\prime}} \ngtr j\right\rangle U^{J}|u\rangle=e^{2 \pi i \varphi}|j| u
$$

Then, schematic of the phase estimation can be show as

Phase Estimation

procedure:

(1) $\left|0^{t}\right\rangle|u\rangle$
initialization
(2) $-\frac{H^{\ominus t}}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1}|j\rangle|u\rangle$
superposition
(3) - controlled $-\frac{-U^{J}}{} \rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1}|j\rangle U^{J}|u\rangle$
apply black box

$$
=\frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{2^{t}-1} e^{2 \pi i J \varphi}|j\rangle|u\rangle \text { box }
$$

Phase Estimation

(4) $-\frac{Q F T}{}{ }^{R} \rightarrow|\tilde{\varphi}\rangle|u\rangle \quad$ apply inverse $Q F T$
(5) $\xrightarrow{\wedge}|\tilde{\varphi}\rangle \quad$ measure

Note that $|\tilde{\varphi}| \underset{Q F T^{R}}{\stackrel{Q F T}{\rightleftarrows}} \sum_{j=0}^{2^{t}-1} e^{2 \pi i j \tilde{\varphi}}|j\rangle$

Phase Estimation

How do we imolement the black box?
We want to black box apply U^{J} on $|u\rangle$ when the control qubits are $|j\rangle$ where $j=j_{0} j_{1} \ldots j_{t-1}$.

This can be otained if j_{l} controls $\|$ indipendantly, and the output of $\|$ is the input of $U^{2^{l+1}}$.

Phase Estimation

