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Deterministic Turing Machine 

• In order to formalize the notion of an algorithm, we will 

need to fix a particular model for computation. 

• One of them is the deterministic one-tape Turing 

machine (DTM for short). It consists of 

 - a finite state control, 

 - a read-write head, and 

 - a tape made up of a two-way infinite sequence of table 

square, labeled …, -2, -1, 0, 1, 2, 3, … 

… … 

Finite state 

control 
Read-write head Tape 

-3 -2 -1 0 1 2 3 4 
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A Program for a DTM 

A program for a DTM specifies the 

following information: 

(1) A finite set  of tape symbols, including a subset    

of input symbols and a distinguished blank b   - ; 

(2) State set Q, initial state q0, halt states qy and qn ; and 

(3) Transition function : (Q  - {qy , qn})   Q    {l, r }. 

The operation of such a program is straihtforward. The 

input  to the DTM is a string x  *. The string x is 

placed in tape squares 1 through |x|, one symbol per 

square. 
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DTM 

• All other squares initially contain the blank symbol. 

• The program starts its operation in state q0, with the 

read-write head  scanning tape square 1. 

• The computation then proceeds in a step-by-step 

manner. 

• If the current state q is either qy or qn , then the 

computation has ended, with the answer  being 

‘yes’ if q = qy  and ‘no’ if q = qn. 

• Otherwise, the current state q belongs to Q – {qy , 
qn}, some symbol s   is in the tape square being 

scanned, the value if (q, s) is defined.  



dc - 6 

DTM  

Example 

 Q = {q0, q1, q2, q3, qr, qN} 

   = {0, 1, b},  = {0, 1} 

: (q0, 0)  (q0, r); (q0, 1)  (q0, r); (q0, b)  (q1, l); 

(q1, 0)  (q2, b); (q1, 1)  (q3, b); (q1, b)  (qn, b); 

(q2, 0)  (qy, b); (q2, 1)  (qn, b); (q2, b)  (q2, l); 

(q3, 0)  (qn, b); (q3, 1)  (qn, b); (q3, b)  (q3, l). 
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DTM 

On the input x = 10100, we have the following 

computation:   

b 1 0 1 0 0 b q0: 

(q0, 1)  (q0, r) 

 

b 1 0 1 0 0 b q0: 

(q0, 0)  (q0, r) 

 

b 1 0 1 0 0 b q0: 

(q0, b)  (q1, l) 

 

a configuration 
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DTM 

b 1 0 1 0 0 b q1: 

(q1, 0)  (q2, b) 

 

b 1 0 1 0 b b q2: 

(q2, b)  (qy, b) 

 

b 1 0 1 0 b b qy: 

 
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DTM 

  • The above example illustrates the computation of a 

simple DTM M on an input x = 10100, giving the state, 

head position, and the contents of the non-blank 

portion of the tape before and after each step. 

• Note that this computation halts after six steps, in state 

qy, so the answer for 10100 is ‘yes’. 

• In general, we say that a DTM program M with input 

alphabet  accepts x  * if and only if M halts in state 

qy when applied to input x. The language LM is given by 

 LM = {x  *: M accepts x}. 
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DTM 

  
For an input x  *, there are three possibilities: 

(1) M accepts x, halting at state qy. 

(2) M does not accept x, halting at state qn. 

(3) M continues forever without halting. 

For a DTM program to correspond to the concept of an 

algorithm, it must halt on all possible strings over its 

input alphabet. 

P-class of problem: 

P  {L  {0, 1}*| L can be accepted by a M in

 polynomial time. } 
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NDTM 

A program for a NDTM specifies the 

following information: 

(1) A finite set  of tape symbols, including a subset    

of input symbols and a distinguished blank b   - ; 

(2) State set Q, initial state q0, halt states qr and qN ; and 

(3) Transition function : (Q  - {qy , qn})   Q    {l, r }. 

(4) At any state, the machine can be transferred from a 

configuration to multiple successor configurations. 

Nondeterministic Turing Machin - NDTM  
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NDTM 

q0 

qi q1 qn … … … … 

q11 q1i … … … 

… … … … 

qy NDTM is accepting an input x  

iff some sequence of choices 

goes to qy. 

The computation of NDTM on an input x can be illustrated as an tree 

of size exponential in |x|.  
Each node represents a 

configuration. 
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NDTM 

NP-class of problem: 

NP  {L  {0, 1}*| L can be accepted by an NDTM 

 in polynomial time. } 


