Turing Machine

Dr. Yangjun Chen

- Deterministic Turing Machine
- Nondeterministic Turing Machine

Deterministic Turing Machine

- In order to formalize the notion of an algorithm, we will need to fix a particular model for computation.
- One of them is the deterministic one-tape Turing machine (DTM for short). It consists of
- a finite state control,
- a read-write head, and
- a tape made up of a two-way infinite sequence of table square, labeled ..., -2, -1, $0,1,2,3, \ldots$
Finite state

Tape

...										\ldots
	-			-1	0	1	2	3	4	

A Program for a DTM

A program for a DTM specifies the following information:

(1) A finite set Γ of tape symbols, including a subset $\Sigma \subset \Gamma$ of input symbols and a distinguished blank $b \in \Gamma^{-} \Sigma$;
(2) State set Q, initial state q_{0}, halt states q_{y} and q_{n}; and (3) Transition function $\delta:\left(Q-\left\{q_{y}, q_{n}\right\}\right) \rightarrow Q \times \Gamma \times\{1, r\}$.

The operation of such a program is straihtforward. The input to the DTM is a string $x \in \Sigma^{*}$. The string x is placed in tape squares 1 through $|x|$, one symbol per square.

DTM

- All other squares initially contain the blank symbol.
- The program starts its operation in state q_{0}, with the read-write head scanning tape square 1.
- The computation then proceeds in a step-by-step manner.
- If the current state q is either q_{y} or q_{n}, then the computation has ended, with the answer being 'yes' if $q=q_{y}$ and 'no' if $q=q_{n}$.
- Otherwise, the current state q belongs to $Q-\left\{q_{y}\right.$, $\left.q_{n}\right\}$, some symbol $s \in \Gamma$ is in the tape square being scanned, the value if $\delta(q, s)$ is defined.

DTM

Example

$$
\begin{aligned}
Q & =\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{r}, q_{N}\right\}^{\prime} \\
\Gamma & =\{0,1, b\}, \Sigma=\{0,1\}
\end{aligned}
$$

$\delta:\left(q_{0}, 0\right) \rightarrow\left(q_{0}, r\right) ;\left(q_{0}, 1\right) \rightarrow\left(q_{0}, r\right) ;\left(q_{0}, b\right) \rightarrow\left(q_{1}, D\right) ;$ $\left(q_{1}, 0\right) \rightarrow\left(q_{2}, b\right) ;\left(q_{1}, 1\right) \rightarrow\left(q_{3}, b\right) ;\left(q_{1}, b\right) \rightarrow\left(q_{n}, b\right) ;$
$\left(q_{2}, 0\right) \rightarrow\left(q_{7}, b\right) ;\left(q_{2}, 1\right) \rightarrow\left(q_{n}, b\right) ;\left(q_{2}, b\right) \rightarrow\left(q_{2}, D\right) ;$
$\left(q_{3}, 0\right) \rightarrow\left(q_{n}, b\right) ;\left(q_{3}, 1\right) \rightarrow\left(q_{n}, b\right) ;\left(q_{3}, b\right) \rightarrow\left(q_{3}, D\right)$.

DTM

On the input $x=10100$, we have the following computation:

DTM

DTM

- The above example illustrates the computation of a simple DTM M on an input $x=10100$, giving the state, head position, and the contents of the non-blank portion of the tape before and after each step.
- Note that this computation halts after six steps, in state q_{y}, so the answer for 10100 is 'yes'.
- In general, we say that a DTM program M with input alphabet Σ accepts $x \in \Sigma^{*}$ if and only if M halts in state q_{y} when applied to input x. The language L_{M} is given by

$$
L_{M}=\left\{x \in \Sigma^{*}: M \text { accepts } x\right\} .
$$

DTM

For an input $x \in \Sigma^{*}$, there are three possibilities:
(1) M accepts x, halting at state q_{y}.
(2) M does not accept x, halting at state q_{n}.
(3) M continues forever without halting.

For a DTM program to correspond to the concept of an algorithm, it must halt on all possible strings over its input alphabet.
P-class of problem:
$P \equiv\left\{L \subset\{0,1\}^{*} \mid L\right.$ can be accepted by a M in polynomial time. \}

NDTM

Nondeterministic Turing Machin - NDTM

A program for a NDTM specifies the following information:
(1) A finite set Γ of tape symbols, including a subset $\Sigma \subset \Gamma$ of input symbols and a distinguished blank $b \in \Gamma^{-} \Sigma$;
(2) State set Q, initial state q_{0}, halt states q_{r} and q_{N}; and (3) Transition function $\delta:\left(Q-\left\{q_{y}, q_{n}\right\}\right) \rightarrow Q \times \Gamma \times\{1, r\}$.
(4) At any state, the machine can be transferred from a configuration to multiple successor configurations.

NDTM

The computation of NDTM on an input x can be illustrated as an tree of size exponential in $|x|$.

Each node represents a

NDTM is accepting an input x q_{7} iff some sequence of choices goes to q_{y}.

NDTM

NP-class of problem:
$N P \equiv\left\{L \subset\{0,1\}^{*} \mid L\right.$ can be accepted by an NDTM in polynomial time. $\}$

