
Sept. 2021

Turing Machine

Dr. Yangjun Chen

•Deterministic Turing Machine

•Nondeterministic Turing Machine

dc - 2

Deterministic Turing Machine

• In order to formalize the notion of an algorithm, we will

need to fix a particular model for computation.

• One of them is the deterministic one-tape Turing

machine (DTM for short). It consists of

 - a finite state control,

 - a read-write head, and

 - a tape made up of a two-way infinite sequence of table

square, labeled …, -2, -1, 0, 1, 2, 3, …

… …

Finite state

control
Read-write head Tape

-3 -2 -1 0 1 2 3 4

dc - 3

A Program for a DTM

A program for a DTM specifies the

following information:

(1) A finite set  of tape symbols, including a subset   

of input symbols and a distinguished blank b   - ;

(2) State set Q, initial state q0, halt states qy and qn ; and

(3) Transition function : (Q - {qy , qn})  Q    {l, r }.

The operation of such a program is straihtforward. The

input to the DTM is a string x  *. The string x is

placed in tape squares 1 through |x|, one symbol per

square.

dc - 4

DTM

• All other squares initially contain the blank symbol.

• The program starts its operation in state q0, with the

read-write head scanning tape square 1.

• The computation then proceeds in a step-by-step

manner.

• If the current state q is either qy or qn , then the

computation has ended, with the answer being

‘yes’ if q = qy and ‘no’ if q = qn.

• Otherwise, the current state q belongs to Q – {qy ,
qn}, some symbol s   is in the tape square being

scanned, the value if (q, s) is defined.

dc - 6

DTM

Example

 Q = {q0, q1, q2, q3, qr, qN}

  = {0, 1, b},  = {0, 1}

: (q0, 0)  (q0, r); (q0, 1)  (q0, r); (q0, b)  (q1, l);

(q1, 0)  (q2, b); (q1, 1)  (q3, b); (q1, b)  (qn, b);

(q2, 0)  (qy, b); (q2, 1)  (qn, b); (q2, b)  (q2, l);

(q3, 0)  (qn, b); (q3, 1)  (qn, b); (q3, b)  (q3, l).

dc - 7

DTM

On the input x = 10100, we have the following

computation:

b 1 0 1 0 0 b q0:

(q0, 1)  (q0, r)



b 1 0 1 0 0 b q0:

(q0, 0)  (q0, r)



b 1 0 1 0 0 b q0:

(q0, b)  (q1, l)



a configuration

dc - 8

DTM

b 1 0 1 0 0 b q1:

(q1, 0)  (q2, b)



b 1 0 1 0 b b q2:

(q2, b)  (qy, b)



b 1 0 1 0 b b qy:



dc - 9

DTM

 • The above example illustrates the computation of a

simple DTM M on an input x = 10100, giving the state,

head position, and the contents of the non-blank

portion of the tape before and after each step.

• Note that this computation halts after six steps, in state

qy, so the answer for 10100 is ‘yes’.

• In general, we say that a DTM program M with input

alphabet  accepts x  * if and only if M halts in state

qy when applied to input x. The language LM is given by

 LM = {x  *: M accepts x}.

dc - 10

DTM

For an input x  *, there are three possibilities:

(1) M accepts x, halting at state qy.

(2) M does not accept x, halting at state qn.

(3) M continues forever without halting.

For a DTM program to correspond to the concept of an

algorithm, it must halt on all possible strings over its

input alphabet.

P-class of problem:

P  {L  {0, 1}*| L can be accepted by a M in

 polynomial time. }

dc - 11

NDTM

A program for a NDTM specifies the

following information:

(1) A finite set  of tape symbols, including a subset   

of input symbols and a distinguished blank b   - ;

(2) State set Q, initial state q0, halt states qr and qN ; and

(3) Transition function : (Q - {qy , qn})  Q    {l, r }.

(4) At any state, the machine can be transferred from a

configuration to multiple successor configurations.

Nondeterministic Turing Machin - NDTM

dc - 12

NDTM

q0

qi q1 qn … … … …

q11 q1i … … …

… … … …

qy NDTM is accepting an input x

iff some sequence of choices

goes to qy.

The computation of NDTM on an input x can be illustrated as an tree

of size exponential in |x|.
Each node represents a

configuration.

dc - 13

NDTM

NP-class of problem:

NP  {L  {0, 1}*| L can be accepted by an NDTM

 in polynomial time. }

