Turing Machine

Dr. Yangjun Chen

* Deterministic Turing Machine
* Nondeterministic Turing Machine

Sept. 2021

Deterministic Turing Machine

In order to formalize the notion of an algorithm, we will
need to fix a particular model for computation.

One of them is the deterministic one-tape Turing
machine (DTM for short). It consists of

- a finite state control,

- a read-write head, and

- a tape made up of a two-way infinite sequence of table
square, labeled ...,-2,-1,0,1, 2, 3, ... —
Finite state

control
Tape Read-write head

-3 -2 -1 01 2 3 4

A Program fora DTM

A program for a DTM specifies the
following information:

(1) A finite set 7" of tape symbols, including a subset = c I
of input symbols and a distinguished blank b e I'- X;

(2) State set @, initial state g, halt states g, and g¢,,; and
(3) Transition function &: (@ - {g,, ¢})) »> @x I'x 1 r}.

The operation of such a program is straihtforward. The
input to the DTM is a string x € X*. The string xis

placed in tape squares 1 through | x|, one symbol per
square.

dc-3

dc -

4

DIM

All other squares initially contain the blank symbol.

The program starts its operation in state g,, with the
read-write head scanning tape square 1.

The computation then proceeds in a step-by-step
manner.

If the current state g is either g, or g, , then the
computation has ended, with the answer being
‘yes’if g= g, and ‘no’ if g= g,

Otherwise, the current state g belongs to ¢ — {qy :

g5, some symbol s € I'is in the tape square being
scanned, the value if 8(q, s) is defined.

DIM

Example

Q: {qu qv QZa QS’ q19 QN}
r=10, 1, b, =10, 1}

5 (gy, 0) = (qo, D (qo, 1) = (qo, D (qy, B — (qy, D
(g1, 0) = (g, D); (g1, 1) > (gs, b); (g1, B) - (g, D);

(g2, 0) = (g,,); (g2, 1) — (g, B (g, B) — (g, D5

(g5, 0) > (g, B); (g5, 1) > (g, D); (g5, B) - (gs, D.

DIM

On the input x= 10100, we have the following

computation: . - aconfiguration

do: b|1{0]1]0|0]|Db
l (Ao, 1) = (G0, 1)
Vv

do: b|1({0]1]0|0]|Db
l (Ao, 0) = (Go: 1)

Vv

Jo: b|1/0]212]0]0]|D

(Ao, P) = (A,)

dc-7

DIM

;. b| 1|01

l (01, 0) — (0, b)

Q. b| 1|01

l (q21 b) — (qy’ b)

dc-8

dc -

9

DITM

The above example illustrates the computation of a
simple DTM M on an input x = 10100, giving the state,
head position, and the contents of the non-blank
portion of the tape before and after each step.

Note that this computation halts after six steps, in state
gy, so the answer for 10100 1s “yes’.

In general, we say that a DTM program M with input
alphabet X accepts x € X* if and only if M halts in state
g, when applied to input x. The language L, Is given by

Ly = {X € X*: M accepts x}.

DIM

For an input x € X*, there are three possibilities:

(1) M accepts x, halting at state g,.

(2) M does not accept x, halting at state q...

(3) M continues forever without halting.

For a DTM program to correspond to the concept of an

algorithm, it must halt on all possible strings over its

Input alphabet.

P-class of problem:

P={L < {0, 1}*| L can be accepted by a M In
polynomial time. }

dc-10

NDTM

Nondeterministic Turing Machin - NDTM

A program for a NDTM specifies the
following information:

(1) A finite set 7" of tape symbols, including a subset = c I
of input symbols and a distinguished blank b € - ;

(2) State set @, initial state g,, halt states ¢, and g, ; and
(3) Transition function &: (@ - g, , ¢})) > @xI'x 1l r}.

(4) At any state, the machine can be transferred from a
configuration to multiple successor configurations.

dc-11

NDTM

The computation of NDTM on an input x can be illustrated as an tree
of size exponential in |x|.

|

Each node represents a
configuration.

NDTM is accepting an input x /,7

iff some sequence of choices -~
goes to q,.

dc-12

NDTM

NP-class of problem:

NP = {L < {0, 1}*| L can be accepted by an NDTM
In polynomial time. }

dc - 13

