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What is a qubit? 

• In classical compuation, the fundamental concept is 
bit. A bit b can take one of two values 0 or 1. 

• In quantum computation, the fundamental concept is 

quantum bit, called qubit, whose superposition is   

 | = |0 + |1    (1) 

where |0 represents the 0-state and |1 1-state of a 

quantum bit.  and  are two complex numbers, 

satisfying ||2 + ||2 = 1. 

• Assume that  = a + ib. Then,   

called the absolute value (or modulus, or magnitude) 

of . 

 

22|α| ba 
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What is a qubit? 

Interpretation of superposition: 

 

When the qubit is measured, the probability 

that its value is |0 is ||2 and the 

probability that its value is |1 is ||2. 
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Qubit Visualization 

Bloch Sphere  

• We can write  = rei and  = pei. Then, we 

have 

 | = rei|0 + pei|1.   (2) 

• Mupltiplying either side of the above equation 

by e-i, we get 

 e-i| = r|0 + pei( - )|1.   (3) 

• Denote e-i| by |ꞌ, and ( - ) by. We can 

rewrite (3) as 

 |ꞌ = r|0 + pei|1    (4) 
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Qubit Visualization  

 

z 

y 

x 

(x, y, z) 

Cartesian coordinates are 

related to polar coordinates 

by the following equations: 

 x = rsin()sin() (6) 

 y = rsin()cos() 
 z = rcos()  

 

 

r 

222 zyxr 

For r = 1, we have 

 x = sin()sin() (7)  

 y = sin()cos() 
 z = cos()  

 
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Qubit Visualization 

• In terms of the above discussion, |ꞌ can be 

rewritten as follows, 

|ꞌ = cos()|0 + sin()(cos() + isin())|1.  (8) 

|ꞌ = cos()|0 + sin()ei|1.    

   • Note that  = 0 ⇒  |ꞌ = |0,  = /2 ⇒  |ꞌ = |1. 

This suggests that 0    /2. 

• We can map points on the upper hemisphere onto 

points on a sphere by defining 

  = ꞌ/2 ⇒ ꞌ = 2 

• Then, we now have 

 |ꞌ = cos(ꞌ/2)|0 + sin(ꞌ/2)ei|1.  (9)  

with 0 ≤ θ ꞌ ≤ , 0 ≤ φ ≤ 2, which are the 

coordinates of points on the Bloch sphere. 
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Qubit Visualization 
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Qubit Visualization 
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(x, y, z) r 
|ꞌ    

two-dimentional space    

a vector representing a qubit    
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Qubit Visualization 

  

 

z 

y 

x 

r 

|0 = cos(0)|0 + sin(0)e i0 |1 

|ꞌ = cos(ꞌ/2)|0 + sin(ꞌ/2)ei|1 

cos(/4)|0 + sin( /4)ei0|1 

|1 = cos()|0 + sin()e i0 |1 

= 
|𝟎⟩+|𝟏⟩

𝟐
 

 
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About ei 

- e = lim (1 + 1/n)n 

         n 

- ei= lim (1  
            m 

- ei = cos() + isin() 

ei = 1 + i  
 !3

3
i

!2

2


!4

4


!5

5
i ... ...  

 

= (1  
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4
 ... ) + i(  
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!5
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= cos() + isin()  
 

m

m
i )



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About ei 

(1 + i/5) 

• Intuitive expalanation 

 Consider (1 + i/5)5. 

(1 + i/5)2 

(1 + i/5)5 

... ... 

 

cos() 

sin() 

m

m
i )1(




From the figure, we can see that as m increases, 
 

gets closer to cos() + isin(). 
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Notations for basic operations 










β

α

notation description 

z* Complex conjugate of the complex number z. (a + i b)∗ = a − i b 

| Vector. Also known as a ket. | = |0 + |1 = (, )T  

| Vector dual to |ψ. Also known as a bra. | = (*, *) 

| Inner product between | and |ψ. Also known as braket. So | 

is called bra and ψ is called ket. For | = |0 + |1 and | = 

ꞌ|0 + ꞌ|1, | = (*, *)(ꞌ, ꞌ)T = *ꞌ + *ꞌ. 

|| Cartesian product between | and |. 

|| Tensor product between | and |. 

|| Abreviated notation for ||, as also be written as |. 

A* Complex conjugate of the matrix A.  

AT Transpose of the matrix A. 
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Notations for basic operations 

notation description 

A† Hermitian conjugate or adjoint of the matrix A, A† = (AT )∗. 

|A| Inner product between | and A|ψ. 
Equivalently, inner product between A†| and |ψ. 

For | = |0 + |1 and | = ꞌ|0 + ꞌ|1,  we have  

|| = 
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• Single qubits can be realized in many ways: 

 - as the two different polarizations of a photon, 

 - as the alignment of a nuclear spin in a uniform 

 magnetic field, 

 -  as two states of an electron orbiting a single atom. The 

 electron can exist in either the so-called ‘ground’ or 

 ‘excited’ states, which we’ll  call |0 and |1, respectively. 

 By shining light on the atom, with appropriate energy 

 and for an appropriate length of time, it is possible to 

 move the electron from the |0 state to the |1 state and 

 vice versa. 

 - Quantum wires are extremely narrow structures where 

 electron transport is possible only in a very few 

 transverse modes. 
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Single qubit operators 

• A matrix U is called a unitary matrix if U†U = I. (I is 
an identity matrix.) 

• Any (valid) single qubit operator is represented as a 2 
 2 unitary matrix. 
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
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Single qubit operators 

x 
  

 

  

x

classical NOT gate  

  

Z 
  

|0 + |1  |0 - |1  

Y 
  

|0 + |1  -i|0 + i|1  

  H 
  

|0 + |1  
2

1|0|
β

2

1|0|
α






X 
  

|0 + |1  |0 + |1  

S 
  

|0 + |1  |0 + i|1  

Z 
  

|0 + |1  |0 + ei/4 |1  
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Single qubit operators 

• Any 2  2 unitary matrix represents a single qubit 

operator 

• An arbitrary 2  2 unitary matrix may be decomposed 

as 

  
 
  
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
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
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















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Multiple qubits 

• A pair of qubits can also exist in superpositions of 

four states, so the quantum state of two qubits 

involves associating a complex coefficient  – 

sometimes called an amplitude – with each 

computational basis state, such that the state 

vector describing the two qubits is 

 |ψ = α00|00 + α01|01 + α10|10 + α11|11, 

 where the normalization condition is satisfied, that 

is 
  

1|α||α||α||α| 2
11

2
10

2
01

2
00 
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Multiple qubit  

• For a two qubit system, we could measure just a 

subset of the qubits, say the first qubit, and you can 

probably guess how this works: measuring the first 

qubit alone gives 0 with probability |α00|
2 +|α01|

2, 

leaving the post-measurement state 

2
01

2
00

0100

|α||α|

01|α00|α
|






 

  

• Measuring the first qubit alone gives 1 with proba- 

bility |α10|
2 +|α11|

2, leaving the post-measurement 

state 

2
11

2
10

1110

|α||α|

11|α10|α
|








dc - 21 

Multiple qubit 

Example: Bell state or EPR pair (Enstain-Podolsky-

Rosen)  
|00⟩ + |11⟩

2
  

  

| = 

  
• The Bell state has the propertythat upon measuring  the 

first qubit, one obtains two possible results: 0 with 

probability 1/2, leaving the post-measurement state | = 

|00, and 1 with probability 1/2, leaving | = |11. 

• As a result, a measurement of the second qubit always 

gives the same result as the measurement of the first 

qubit. That is, the measurement outcomes are correlated. 

• Quantom teleportation, superdense coding, 

entanglement. 
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Multiple qubit gates 

• CNOT gate (or controlled-not gate) 

 
This gate has two input qubits, known as the control qubit 

and the target qubit, respectively. If the control qubit is set to 

0, then the target qubit is left unchanged. If the control qubit 

is set to 1, then the target qubit is flipped. In equations: 

|00 → |00; |01 → |01; |10 → |11; |11 → |10. 

Circuit representation of a CNOT gate: 

|A  |A  

|B  |BA  

control 

qubit:  

target 

qubit:  




















0100

1000

0010

0001

UCN = 

XOR 
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Quantum circuits 

• A quantum circuit contains several gates 

connected through wires.  

• A wire does not necessarily correspond to a 

physical wire; it may correspond instead to the 

passage of time, or perhaps to a physical particle 

such as a photon – a particle of light – moving 

from one location to another through space. 

 

 
 
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Quantum circuits 

• The function of this circuit is to swaps the states of the 

two qubits. 

• To see this, consider input |a, b 

 

• The effect of the circut on input |a, b|  

|a  

|b  

|a, b  |a, ba  

|a(ba), ba = |b, ba  

|b, (ba)b = |b, a  

control qubit  
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Quantum circuits 

• A convention 

 - Suppose U is any unitary matrix acting on some 

 number n of qubits, so U can be regarded as a 

 quantum gate on those qubits. Then we can define 

a controlled-U gate which is a natural  extension of 

the controlled- gate. 

 -  If the control qubit is set to 0 then nothing happens 

to the target qubits. If the control qubit is set to 1 

then the gate U is applied to the target qubits. 
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Quantum circuits 

= 

U 

  

X 

  
For quantum Fourier Transformation, a kind of unitary 

matrices of the following form is used: 









 kie

U 2/π20

01

This circuit maps |0|y to |0|y, and 

|1|y to |1(U|y). That is, for input 

|x|y, the output is|x(Ux|y). (Note 

that U0 = I, U1 = U.)   

|x  

|y  
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Quantum Fourier Transformation 

• Discrete Fourier transform 

 In the usual mathematical notation, the discrete 

 Fourier transform takes as input a vector of complex 

 numbers, x0, ..., xN−1 where the length N of the vector 

 is a fixed parameter. It outputs the transformed data, 

 a vector of complex numbers y0, ..., yN−1, defined by 

  






1

0

/21
n

j

Nijk
jk ex

N
y 






ke
N

N

k

Nijk |
1

1

0

/2|j   








kyjx

N

k

k

N

j

j ||

1

0

1

0
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Quantum Fourier Transformation 

• The quantum Fourier transform is exactly the same 

transformation, although the conventional  notation for the 

quantum Fourier transform is somewhat different. The 

quantum Fourier transform on an orthonormal basis |0, ..., 

|N − 1 is defined to be a linear operator with the following 

action on the basis states: 






ke
N

N

k

Nijk |
1

1

0

/2

• Equivalently, the action on an arbitrary state may be written 

where the amplitudes yk are the discrete Fourier transform of 

the amplitudes xj. 

 








kyjx

N

k

k

N

j

j ||

1

0

1

0

|j  
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Quantum Fourier Transformation 

• We take N = 2n, where n is some integer, and the 

basis |0,..., |2n−1 is the computational basis for an n 

qubit quantum computer. It is helpful to write the 

state |j using the binary representation j = j1j2 ... jn (ji 

 {0, 1}). More formally, j = j12
n−1 + j22

n−2 +···+jn20. 

• It is also convenient to adopt the notation 0.jl jl+1 ... jm 

to represent the binary fraction jl/2 + jl+1/4 + ··· + 

jm/2m−l+1. 

 |j1....jn  

  
|0⟩+𝑒2𝜋𝑖0.𝑗𝑛|1 |0⟩+𝑒2𝜋𝑖0.𝑗𝑛−1𝑗𝑛 |1 …(|0⟩+𝑒2𝜋𝑖0.𝑗1…𝑗𝑛|1⟩)

2𝑛/2  
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Quantum Fourier Transformation 
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


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 
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Quantum Fourier Transformation 

a series of gates of the following form  

and a series of controlled-R circuits are used.  













11

11

2

1
H

• In terms of the above formula, an quantum algorithm for 

Fourier transformation is proposed, in which a Hadamard 

gate 









 jij

e
R 2/π20

01
for j = 1, ..., n.  

Rj 
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Quantum Fourier Transformation 

R2  Rn-1  H  Rn  

H  Rn-2  Rn-1  

H  

R2  H  

.  .  .  
.  .  .  

|j1  

|j2  

|jn-1  

|jn  

 1|0|
....0π2 2 njji

e

 1|0|
....0π2 1 njji

e

  1|0| 1.0π2 nn jji
e

 1|0|
.0π2 nji

e
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Quantum Fourier Transformation 

• The circuit operates as follows. We start with an n-qubit 

input state |j1j2 … jn.  

1. After the first Hadamard gate on qubit 1, the state is 

transformed from the input state to  

|j1j2 … jn   n
ji

jje ...|]1|0[|
2

1
2

.02

2/1
1

since e2πi0.j1 = −1 when j1 = |1, and is +1 otherwise. 

H|0 = 
2

1

1

1

2

1

0
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11

11

2

1




























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H|1 = 
2

1

1

1

2

1
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0
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2

1






























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Quantum Fourier Transformation 

2. After the  R2 gate on qubit 1 controlled by qubit 2, the state 

is transformed to 

 n
jji

jje ...|]1|0[|
2

1
2

.02

2/1
21

3. We continue applying the controlled-R3, R4 through Rn 

gates, each of which adds an extra bit to the phase of the 

co-efficient of the first |1. At the end of this procedure we 

have the state 

 n
jjji

jje n ...|]1|0[|
2

1
2

....02

2/1
21
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Quantum Fourier Transformation 

4. Next, we perform a similar procedure on the second qubit. 

The Hadamard gate puts us in the state 

 n
jijjji

jjee n ...|]1|0][|1|0[|
2

1
3

.02....02

2/2
221 

5. Continually, the controlled-R2 through Rn−1 gates yield the 

state 

 n
jjijjji

jjee nn ...|]1|0][|1|0[|
2

1
3

....02....02

2/2
221 
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Quantum Fourier Transformation 

6. Continually, the controlled-R2 through Rn−1 gates yield 

the state 

]1|0]...[|1|0][|1|0[|
2

1 .02....02....02

2/
221  nnn jijjijjji

n
eee



7. Awap gates. 

.  .  .  
.  .  .  

 

 

 

 

]1|0][|1|0]...[|1|0[|
2

1 ....02....02.02

2/
212  nnn jjjijjiji

n
eee


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Quantum Fourier Transformation 

• How many gates does this circuit use? We start by doing a 

Hadamard gate and n − 1 conditional rotations on the first 

qubit – a total of n gates. This is followed by a Hadamard 

gate and n − 2 conditional rotations on the second qubit, for a 

total of n + (n − 1) gates. 

• Continuing in this way, we see that n + (n − 1) +···+ 1 = n(n+ 

1)/2 gates are required. 

• Finally, the number of the gates involved in the swaps is 3n/2. 

 - At most n/2 swaps are required, and  

 - each swap can be accomplished using three controlled- 

 gates. 

• Therefore, this circuit provides a Θ(n2) algorithm for 

performing the quantum Fourier transform. 
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Quantum Fourier Transformation 

• In contrast, the best classical algorithms for computing the 

discrete Fourier transform on 2n elements are algorithms 

such as the Fast Fourier Transform (FFT), which compute 

the discrete Fourier transform using Θ(n2n) gates. That is, 

it requires exponentially more operations to compute the 

Fourier transform on a classical computer than it does to 

implement the quantum Fourier transform on a quantum 

computer. 
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Phase Estimation 

.~... 110   tQQQ

Problem: Suppose an unitary operator (matrix) has an eigen 

vector |u with eigen value e 2i , where  is unknown.  
 

Goal: Estimate . Note that  is a real number. We intend to 

eastimate it to a t-bits value, that is 

 

  

|v 

|u 
j

U 2

Input: The eigen vector |u and controlled-Uk operator, where k = 

2 j for some non-negative integer j. 

controlled-Uk operator: 

  
 

ve
jiv |2π2 

|u  v  {0, 1} 
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Phase Estimation 

Suppose there is a black-box that applies U J where the control 

state is |j and j is a t-bit number. 
 

Then, schematic of the phase estimation can be show as 

ujeuUjuj JiJUJ

|||||| π2 

t0|  

  

tH  

  

 

  

RQFT
measure |j 

 

  

JU|u |u 

1 2 3 4 5 

inverse QFT 
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Phase Estimation 






 


12

0

||

2

1
t

t

j
t

H
uj

procedure:  
 

|0t|u initialization 







 

12

0

controlled
||

2

1
t

J

j

J

t

U
uUj

superposition 

apply black box  








12

0

π2 ||

2

1
t

j

iJ

t
uje 

result of black 

box  

1 

2 

3 
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Phase Estimation 

  u
RQFT

|~|  apply inverse QFT  4 

 

  ~| measure  5 

Note that  ~|
QFT  

QFTR  







12

0

~2π |

t

j

ij je 
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Phase Estimation 

How do we imolement the black box?  

We want to black box apply UJ on |u when the control 

qubits are |j where j = j0j1 ... jt-1. 
 

 This can be otained if jl controls  indipendantly,  
l

U 2and the output of  is the input of  .
12 l

U

l

U 2
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Phase Estimation 

H |0 

H |0 

H |0 

02U
12U

12 t

U

... 

... 

... 

|u ... 

|j0 

|j1 

|jt-1 

|u 

 1|0| )2(π2 0ie

 1|0| )2(π2 1ie




1|0| )2(π2 1tie


