Bipartite Graphs

- What is a bipartite graph?
- Properties of bipartite graphs
- Matching and maximum matching
- alternative paths
- augmenting paths
- Hopcroft-Karp algorithm

Bipartite Graph

1. A graph G is bipartite if the node set V can be partitioned into two sets V_{1} and V_{2} in such a way that no nodes from the same set are adjacent.
2. The sets V_{1} and V_{2} are called the color classes of G and $\left(V_{1}, V_{2}\right)$ is a bipartition of G. In fact, a graph being bipartite means that the nodes of G can be colored with at most two colors, so that no two adjacent nodes have the same color.

Bipartite Graph

3. We will depict bipartite graphs with their nodes colored black and white to show one possible bipartition.
4. We will call a graph m by n bipartite, if $\left|V_{1}\right|=$ m and $\left|V_{2}\right|=n$, and a graph a balanced bipartite graph when $\left|V_{1}\right|=\left|V_{2}\right|$.

(a)

Fig. 1

Properties

Property 3.1 A connected bipartite graph has a unique bipartition.
Property 3.2 A bipartite graph with no isolated nodes and p connected components has 2^{p-1} bipartitions.
For example, the bipartite graph in the above figure has two bipartitions. One is shown in the figure and the other has $V_{1}=\left\{v_{1}, v_{3}, v_{5}, v_{8}\right\}$ and V_{2} $=\left\{v_{2}, v_{4}, v_{6}, v_{7}\right\}$.

Properties

The following theorem belongs to König (1916). Theorem 3.3 A graph G is bipartite if and only if G has no cycle of odd length.
Corollary 3.4 A connected graph is bipartite if and only if for every node v there is no edge (x, y) such that $\operatorname{distance}(v, x)=\operatorname{distance}(v, y)$.
Corollary 3.5 A graph G is bipartite if and only if it contains no closed walk of odd length.

Matching and Maximum Matching

Maximum matching

- A set of edges in a bipartite graph G is called a matching if no two edges have a common end node.
- A matching with the largest possible number of edges is called a maximum matching.

Example. A maximum matching for the bipartite graph in Fig. 1(b) is shown below.

Maximum Matching

■ Maximum matching

- Many discrete problems can be formulated as problems about maximum matchings. Consider, for example, probably the most famous:
A set of boys each know several girls, is it possible for the boys each to marry a girl that he knows?
This situation has a natural representation as a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$, where V_{1} is the set of boys, V_{2} the set of girls, and an edge between a boy and a girl represents that they know one another. The marriage problem is then the problem: does a maximum matching of G have $\left|V_{1}\right|$ edges?

Alternative and Augmenting Path

- Maximum matching

Let M be a matching of a graph G.

- A node v is said to be covered, or saturated by M, if some edge of M is incident with v. We will also call an unsaturated node free.
- A path or cycle is alternative, relative to M, if its edges are alternatively in M and $E \backslash M$.
- A path is an augmenting path if it is an alternating path with free origin and terminus.
- P - a path. C - a cycle.
$|P|$ - the number of edges in P
$|C|$ - the number of edges in C.

Properties of Matching

Property 3.3 Let M be a matching and P an augmenting path relative to M. Then the symmetric difference of M and P, denoted $M \Delta P$, is also a matching of G and $\mid M \Delta$ $P|=|M|+1$.
$M \Delta P=(M \backslash) \cup(P \backslash M)$

(c)

$M \Delta P$
$(\mathrm{~d})$

Yangjun Chen

Properties of Matchings

Property 3.4 Let M and M^{\prime} be matchings in G. Then, each connected component of $M \Delta M^{\prime}$ is one of the following:
(1) an even cycle with edges alternatively in $M M$ ' and $M \backslash M$, or
(2) a path whose edges are alternatively in $M M$ ' and $M \backslash M$.

This edge is considered to be an augmenting path relative to M_{1}, also to M_{2}.

Properties of Matchings

Proposition 3.5 Let M and M^{\prime} be matchings in G. If $|M|=r,\left|M^{\prime}\right|=$ s and $s>r$, then $M \Delta M^{\prime}$ contains at least $s-r$ node-disjoint augmenting paths relative to M.
Proof. Let the components of $M \Delta M^{\prime}$ be $C_{1}, C_{2}, \ldots, C_{k}$. Let $f\left(C_{i}\right)=$ $\left|C_{i} \cap M^{\prime}\right|-\left|C_{i} \cap M\right|(1 \leq i \leq k)$. Then it follows from Property 3.4 that $f\left(C_{i}\right) \in\{-1,0,1\}$ for each $1 \leq i \leq k . f\left(C_{i}\right)=1$ if and only if C_{i} is an augmenting path relative to M. To complete the proof, we need only observe that

$$
\sum_{j=1}^{k} f\left(C_{i}\right)=|M \backslash M|-\left|M M^{\prime}\right|=\left|M^{\prime}\right|-|M|=s-r .
$$

Thus, there are at least $s-r$ components with $f\left(C_{i}\right)=1$, and at least $s-r$ node-disjoint augmenting paths relative to M.
C_{i} contains one more edge from M^{\prime} or from M.

$M \Delta M^{\prime}$

$$
C_{1}=\left|M^{\prime}{ }_{1}\right|-\left|M_{1}\right| \quad C_{i}=\left|M^{\prime}{ }_{i}\right|-\left|M_{i}\right| \quad C_{k}=\left|M^{\prime}{ }_{k}\right|-\left|M_{k}\right|
$$

If C_{i} is a cycle or an even path, $f\left(C_{i}\right)=0$.
If C_{i} is an augmenting path relative to $M^{\prime}, f\left(C_{i}\right)=-1$. If C_{i} is an augmenting path relative to $M, f\left(C_{i}\right)=1$.

$$
\sum_{j=1}^{k} f\left(C_{i}\right)=s-r
$$

Properties of Matchings

Combining Proposition 3.5 with Property 3.3 , we can deduce the following theorem (Berge, 1957).
Theorem 3.6 M is a maximum matching if and only if there is no augmenting path relative to M.
Proof. If-part. If there is no augmenting path, M must be a maximum matching. Otherwise, let M^{\prime} be a maximum matching. According to Proposition 3.5, $M \Delta M^{\prime}$ contains at least $\left|M^{\prime}\right|-|M|$ node-disjoint augmenting paths relative to M. Contradiction.
Only-if-part. If M is a maximum matching, there is definitely no augmenting path relative to M. Otherwise, let P be an augmenting path relative to M. Then, $M \Delta P$ is a larger matching than M.

Properties of Matchings

The above theorem implies the following property.
Property 3.7 If M is a matching of G, then there exists a maximum matching M of G such that the set of nodes covered by M is also covered by M.
Proof. If M is a maximum matching, the property trivially holds. Otherwise, consider an augmenting path P relative to M. Then, according to Property $3.1, M \Delta P$ is also a matching of G with

$$
|M \Delta P|=|M|+1 .
$$

Moreover, the nodes covered by M are also covered by $M \Delta P$. Repeating the above process will prove the property.

Properties of Matchings

The following theorem was obtained by Dulmage and Mendelsohn (1958).

Theorem 3.8 Let G be a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$. Let M_{1} and M_{2} be matchings in G. Then, there is a matching $M \subseteq M_{1} \cup M_{2}$ such that M covers all the nodes of V_{1} covered by M_{1} and all the nodes of V_{2} covered by M_{2}.
Proof. Let U_{i} be the nodes of V_{1} covered by $M_{i}(i=1,2)$. Let W_{i} be the nodes of V_{2} covered by $M_{i}(i=1,2)$. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of $M_{1} \Delta M_{2}$. By Property 3.4, each $G_{i}(1 \leq i \leq k)$ is an even cycle or a path. Let $M_{1 i}=G_{i} \cap M_{1}$ and $M_{2 i}=G_{i} \cap M_{2}$. Define in each G_{i} a matching π_{i} :

$$
\pi_{i}= \begin{cases}M_{1 i} & \text { if } G_{i} \text { is a cycle } \\ M_{1 i} & \text { if there is a node } v \in V \cap\left(U_{1} \backslash U_{2}\right) \text { in } G_{i} \\ M_{2 i} & \text { if there is a node } v \in V \cap\left(W_{2} \backslash W_{1}\right) \text { in } G_{i}\end{cases}
$$

Then, it is not difficult to check that $M=\left(M_{1} \cap M_{2}\right) \cup \pi_{1} \cup \pi_{2} \ldots \cup \pi_{k}$ is the required matching.

$$
\pi_{1}=M_{11}=G_{1} \cap M_{1}
$$

$$
\pi_{2}=M_{12}=G_{2} \cap M_{1}
$$

$$
\pi_{3}=M_{23}=G_{3} \cap M_{2}
$$

$$
M=\left(M_{1} \cap M_{2}\right) \cup \pi_{1} \cup \pi_{2} \cup \pi_{3}
$$

Properties of Matchings

Theorem 3.9 A maximum matching M of a bipartite graph G can be obtained from any other maximum matching M^{\prime} by a sequence of transfers along alternating cycles and paths of even length.
Proof. By Property 3.4, every component of $M \Delta M^{\prime}$ is an alternating even cycle or an alternating path relative to M^{\prime}. By Property 3.3 and Theorem 3.6, a component of $M \Delta M^{\prime}$, if it is a path, must be of even length. (Otherwise, if it is an odd path, it must be an augmenting path relative to M or to M^{\prime}, contradicting the fact that both M and M^{\prime} are maximum.) Then, changing M^{\prime} in each component in turn will transform M^{\prime} into M.

Properties of Matchings

A perfecting matching of a graph G is a matching which covers every node of G. Clearly, if a graph has two perfect matchings M and M^{\prime}, all components of $M \Delta M^{\prime}$ are even cycles. Therefore, according to Theorem 3.9, we can deduce the following result.

Corollary 3.10 Assume that bipartite graph G has a perfect matching M. Then, any other perfect matching can be obtained from M by a sequence of transfers along alternating cycles relative to M.

Maximum, but not perfect matching

$\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}$

Algorithm

■ Algorithms - finding a maximum matching

Lemma 3.11 Let M be a matching with $|M|=r$ and suppose that the cardinality of a maximum matching is s. Then, there exists an augmenting path relative to M of length at most $2\lfloor r /(s-r)\rfloor_{+}$ 1.

Proof. Let M ' be a maximum matching. Then, by Proposition 3.5, $M \Delta M^{\prime}$ contains $s-r$ node-disjoint augmenting paths relative to M. It is easy to see that these paths contain at most r edges from M. So one of these augmenting paths must contain at most $\lfloor r /(s-r)\rfloor$ edges from M and so at most $2\lfloor r /(s-r)\rfloor+1$ edges altogether.

Proof. Let M^{\prime} be a maximum matching. Then, by Proposition 3.5, $M \Delta M^{\prime}$ contains $s-r$ node-disjoint augmenting paths relative to M. It is easy to see that these paths contain at most r edges from M. So one of these augmenting paths must contain at most $\lfloor r /(s-r)\rfloor$ edges from M and so at most $2\lfloor r /(s-r)\rfloor+1$ edges altogether.
Since $s>r$, there is at lease $s-r$ augmenting paths in $M \Delta M^{\prime}$. On each of them the number of edges in M^{\prime} is one larger than the number of edges in M.
Consider these augmenting paths:

If each P_{i} contains more than $\lfloor r /(s-r)\rfloor$ edges, then M will have more than r edges. Contradiction.

Algorithm

Lemma 3.12 Let M be a matching and P be a shortest augmenting path relative to M. Let Q be an augmenting path relative to $M \Delta P$. Then, $|Q| \geq|P|+2|P \cap Q|$.
Proof. Consider $M^{\prime}=M \Delta P \Delta Q$. Then, M^{\prime} is a matching. By Property 3.3, $\left|M^{\prime}\right|=|M \Delta P|+1=(|M|+1)+1=|M|+2$. According to Proposition 3.5, $M \Delta M^{\prime}$ contains at least two nodedisjoint augmenting paths relative to M. Let $P_{1}, \ldots, P_{k}(k \geq 2)$ be such paths. Since P is a shortest augmenting path relative to M, we have

$$
\begin{aligned}
& \left|M \Delta M^{\prime}\right|=|M \Delta(M \Delta P \Delta Q)|=|\varnothing \Delta P \Delta Q| \\
& =|P \Delta Q| \geq\left|P_{1}\right|+\ldots+\left|P_{k}\right| \geq 2|P| .
\end{aligned}
$$

Note that $|P \Delta Q|=|P|+|Q|-2|P \cap Q| \geq 2|P|$. Therefore, we have $|Q| \geq|P|+2|P \cap Q|$.

About symmetric difference

Commutative: $\boldsymbol{M} \Delta P=P \Delta \boldsymbol{M}$

Associative:
$\boldsymbol{M} \Delta P \Delta Q$
$=\boldsymbol{M} \Delta(P \Delta Q)$
$=(M \Delta P) \Delta Q$

Example.

$G:$

M:

$$
\begin{aligned}
& Q: \\
& M \Delta P \Delta Q: \\
& |P|=1 \\
& |Q|=5 \\
& |P \cap Q|=1
\end{aligned}
$$

Example.

$G:$

$|P|=1$
$|Q|=1$
$|P \cap Q|=0$

Algorithm

Corollary 3.13 Let P be a shortest augmenting path relative to a matching M, and Q be a shortest augmenting path relative to $M \Delta$ P. Then, if $|P|=|Q|$, the paths P and Q must be node-disjoint. Moreover, Q is also a shortest augmenting path relative to M. Proof. According to Lemma 3.12, we have $|P|=|Q| \geq|P|+2 \mid P \cap$ $Q \mid$. So $P \cap Q=\Phi$. Thus, P and Q are edge-disjoint. Assume that P and Q share a common node v. Consider the edge e incident with v in $M \Delta P$. Then, P and Q must share e, contradicting $P \cap Q=\Phi$. Therefore, P and Q are also node-disjoint.

P and Q are node-disjoint.
P \qquad
Q
e must be on Q since Q is an augmenting path of $M \Delta P$.

Algorithm

Hopcroft-Karp algorithm (1973)

The whole computation process is divided into a number of stages, at which some partial matching has been constructed and some way is sought to increase it. At stage i, we have the matching M_{i} and we search for $\left\{Q_{1}, Q_{2}, \ldots, Q_{k}\right\}$, a maximal set of node-disjoint, shortest augmenting paths, relative to M_{i}. Then, according to Corollary 3.13, Q_{2} is a shortest augmenting path relative to $M \Delta Q_{1}, Q_{3}$ is a shortest augmenting path relative to $\left(M \Delta Q_{1}\right) \Delta Q_{2}, \ldots$, and Q_{k} is a shortest augmenting path relative to ($M \Delta Q_{1} \Delta Q_{2} \ldots \Delta Q_{k-2}$) ΔQ_{k-1}. Therefore, the new matching for the next stage is formed as

$$
M_{i+1}=M_{i} \Delta Q_{1} \Delta Q_{2} \ldots \Delta Q_{k} .
$$

Algorithm

Proposition 3.14 Let s be the cardinality of a maximum matching in a bipartite graph G. Then, to construct a maximum matching by the above process requires at most $2\lfloor\sqrt{s}\rfloor+2$ stages.
Proof. It can be derived from Property 3.3 and Lemma 3.11.

Then, the running time should be bounded by $\mathrm{O}(|E| \sqrt{s})$ since at each stage $\mathrm{O}(|E|)$ edges will be visited.

Proof of Proposition 3.14

Let $M_{0}, M_{1}, \ldots, M_{s}$ be a sequence of matchings in G, where $M_{0}=\Phi$ and $M_{i+1}=M_{i} \Delta P_{i}$ and P_{i} is shortest augmenting path relative to M_{i} for each $i=1, \ldots, s-1$. Then, an upper bound for the number of stages we require can be given by bounding the number of distinct integers in the sequence $\left|P_{0}\right|,\left|P_{1}\right|, \ldots,\left|P_{s}\right|$. Let $r=\lfloor s-\sqrt{s}\rfloor$. Then, since $\left|M_{r}\right|=r$, we have

$$
\left|P_{r}\right| \leq 2\lfloor r /(s-r)\rfloor \leq 2|\sqrt{s}|+1 .
$$

Thus, for each $i \leq r,\left|P_{i}\right|$ is one of the $\lfloor\sqrt{s}\rfloor+1$ odd number less than or equal to $2 \sqrt{s} \downarrow+1$. Certainly, $s-r=$ $\lceil\sqrt{s}\rceil$ paths contribute at most $\lceil\sqrt{s}\rceil$ distinct integers to the collection, and so the total number is at most

$$
\lfloor\sqrt{s}\rfloor+1+\lceil\sqrt{s}\rceil \leq 2\lfloor\sqrt{s}\rfloor+2 .
$$

Algorithm

Main process:

$$
\underset{\substack{\text { _- } \\
\text { y choose }}}{\longrightarrow} M_{1} \Delta \boldsymbol{P}_{1} \longrightarrow G_{1}{ }^{\prime} \longrightarrow \begin{aligned}
& \text { Node-disjoint augmenting } \\
& \text { paths } \boldsymbol{P}_{1}
\end{aligned}
$$

Randomly choose $M_{1} \Delta \boldsymbol{P}_{1}$
some edges as M_{1}.

Algorithm

Let M_{i} be the matching of G produced at stage i. We define a directed graph G_{i} (called an alternating graph) with the same node set as G, but with edge set

$$
\begin{aligned}
E\left(G_{i}\right)= & \left\{u \rightarrow v \mid u \in V_{1}, v \in V_{2}, \text { and }(u, v) \in E \backslash M_{i}\right\} \\
& \cup\left\{v \rightarrow u \mid u \in V_{1}, v \in V_{2}, \text { and }(u, v) \in M_{i}\right\} .
\end{aligned}
$$

(a)

Yangjun Chen

Algorithm

First step:
From G_{i}, construct a subgraph G_{i}^{\prime} (called a layered graph) described below.

Let L_{0} be the set of free nodes (relative to M_{i}) in V_{1} and define $L_{j}(j>0)$ as follows:

$$
\begin{aligned}
& E_{j-1}=\left\{u \rightarrow v \in E\left(G_{i}\right) \mid u \in L_{j-1}, v \notin L_{0} \cup L_{1} \cup \ldots \cup L_{j-1}\right\}, \\
& L_{j}=\left\{v \in V\left(G_{i}\right) \mid \text { for some } u, u \rightarrow v \in E_{j-1}\right\} .
\end{aligned}
$$

Define $j^{*}=\min \left\{j \mid L_{j} \cap\left\{\right.\right.$ free nodes in $\left.\left.V_{2}\right\} \neq \Phi\right\} . G_{i}{ }^{\prime}$ is formed with $V\left(G_{i}{ }^{\prime}\right)$ and $E\left(G_{i}{ }^{\prime}\right)$ defined below.

Algorithm

First step:
If $j^{*}=1$, then

$$
\begin{aligned}
& V\left(G_{1}{ }^{\prime}\right)=L_{0} \cup\left(L_{1} \cap\left\{\text { free nodes in } V_{2}\right\}\right), \\
& E\left(\mathrm{G}_{1}{ }^{\prime}\right)=\left\{u \rightarrow v \mid u \in L_{0} \text { and } v \in\left\{\text { free nodes in } V_{2}\right\}\right\} .
\end{aligned}
$$

If $j^{*}>1$, then

$$
\begin{aligned}
& V\left(G_{i}^{\prime}\right)=L_{0} \cup L_{1} \cup \ldots \cup L_{j^{*}-1} \cup\left(L_{j^{*}} \cap\{\text { free nodes in }\right. \\
& \left.\left.V_{2}\right\}\right), \\
& E\left(G_{i}^{\prime}\right)=E_{0} \cup E_{1} \cup \ldots \cup E_{j^{*}-2} \cup\left\{u \rightarrow v \mid u \in L_{j^{*}-1}\right. \text { and }
\end{aligned}
$$

$$
\left.v \in\left\{\text { free nodes in } V_{2}\right\}\right\} .
$$

With this definition of the graph $G_{i}{ }^{\prime}$, directed paths from L_{0} to $L_{j^{*}}$ are precisely in one-to-one correspondence with shortest augmenting paths relative to M_{i} in G.

Algorithm

Second step:

In this step, we will traverse $G_{i}{ }^{\prime}$ in a depth-first searching fashion to find a maximal set of node-disjoint paths from L_{0} to $L_{j^{*}}$.

- For this, a stack structure stack is used to control the graph exploring.
- In addition, we use $c-l i s t(v)$ to represent the set of v 's child nodes.

Algorithm

Algorithm finding-augmenting-paths $\left(G_{i}{ }^{\prime}\right)$
begin

1. let x be the first element in L_{0};
2. push(x, stack); mark v;
3. while stack is not empty do $\{$
4. $v:=$ top (stack);

5. while c-list $(v) \neq \Phi$ do \{
6. let u be the first element in $c-l i s t(v)$;
7. \quad if u is marked then remove u from c-list (v)
8. else $\{$ push $(u$, stack $)$; mark $u ; v:=u ;\}$
9. \}
10. if v is neither in $L_{j^{*}}$ nor in L_{0} then pop(stack)
11. else $\left\{\right.$ if v is in $L_{j^{*}}$ then output all the elements in stack;

12.
13.
14. (*all the elements in stack make up an augmenting path.*)
15. \}
end

Example Trace

Example.

$\begin{array}{llllll}u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6}\end{array}$
M_{1} :

(a)

$G_{1}{ }^{\prime}$ will be constructed as follows:
$L_{0}=\left\{v_{1}, v_{4}, v_{5}\right\}$
$E_{0}=\left\{\left(v_{1}, u_{1}\right),\left(v_{4}, u_{4}\right),\left(v_{4}, u_{5}\right),\left(v_{5}, u_{3}\right),\left(v_{5}, u_{5}\right)\right\}$
$L_{1}=\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\} \quad / * j^{*}=1$ since u_{5} is free.*/
G_{1} :
(If u_{5} is not free, the following layers will be constructed.)
$E_{1}=\left\{\left(u_{1}, v_{6}\right),\left(u_{3}, v_{2}\right),\left(u_{4}, v_{3}\right)\right\}$
$L_{2}=\left\{v_{6}, v_{2}, v_{3}\right\}$
$E_{2}=\left\{\left(v_{6}, u_{6}\right),\left(v_{3}, t_{3}\right),\left(v_{2}, u_{2}\right)\right\}$
$L_{3}=\left\{u_{6}, u_{2}\right\}$

$/^{*} u_{3}$ is not in L_{3} since it already appears in L_{1}.

Example Trace

Since L_{1} contains free node u_{5} in $V_{2}, j^{*}=1$. Therefore, we have

$$
\begin{aligned}
& V\left(G_{1}{ }^{\prime}\right)=\left\{v_{1}, v_{4}, v_{5}\right\} \cup\left\{u_{5}\right\}, \text { and } \\
& E\left(G_{1}{ }^{\prime}\right)=\left\{\left(v_{4}, u_{5}\right),\left(v_{5}, u_{5}\right)\right\}
\end{aligned}
$$

Note that $v_{4} \rightarrow u_{5}$ is an augmenting path relative to M_{1}, and $v_{5} \rightarrow u_{5}$ is another. By applying the
$G_{1}{ }^{\prime}:$
 second step of Hopcroft-Karp algorithm to $G_{1}{ }^{\prime}$, $v_{4} \rightarrow u_{5}$ will be chosen, yielding a new matching $M_{2}=M_{1} \Delta\left\{v_{4} \rightarrow u_{5}\right\}$ as shown in the following figure.

Example Trace

At a next stage, we will construct G_{2} as shown in Figure 7. $G_{2}{ }^{\prime}$ will then be constructed as follows:
$L_{0}=\left\{v_{1}, v_{5}\right\}$,
G_{2} :
$E_{0}=\left\{\left(v_{1}, u_{1}\right),\left(v_{5}, u_{3}\right),\left(v_{5}, u_{5}\right)\right\}$,
$L_{1}=\left\{u_{1}, u_{3}, u_{5}\right\}$,
$E_{1}=\left\{\left(u_{1}, v_{6}\right),\left(u_{3}, v_{2}\right),\left(u_{5}, v_{4}\right)\right\}$,
$L_{2}=\left\{v_{2}, v_{4}, v_{6}\right\}$,
$E_{2}=\left\{\left(v_{2}, u_{2}\right),\left(v_{4}, u_{4}\right),\left(v_{6}, u_{6}\right)\right\}$,
$L_{3}=\left\{u_{2}, u_{4}, u_{6}\right\}$,
$/^{*} j^{*}=3$ since u_{2} and u_{6} are free. $* /$
$E_{3}=\left\{\left(u_{4}, v_{3}\right)\right\}$,
$L_{4}=\left\{v_{3}\right\}$,
$E_{4}=\left\{\left(v_{3}, u_{3}\right)\right\}$.

This part will not be created.

$G_{2}{ }^{\prime}: v_{1}$ ver

Since L_{3} contains two free nodes u_{2} and u_{6} in $V_{2}, j^{*}=3$. So we have

$$
\begin{aligned}
& V\left(G_{2}{ }^{\prime}\right)=L_{0} \cup L_{1} \cup L_{2} \cup\left\{u_{2}, u_{6}\right\}, \text { and } \\
& E\left(G_{2}{ }^{\prime}\right)=E_{0} \cup E_{1} \cup\left\{\left(v_{2}, u_{2}\right),\left(v_{6}, u_{6}\right)\right\} . \\
L_{0} & =\left\{v_{1}, v_{5}\right\}, \\
E_{0} & =\left\{\left(v_{1}, u_{1}\right),\left(v_{5}, u_{3}\right),\left(v_{5}, u_{5}\right)\right\}, \\
L_{1} & =\left\{u_{1}, u_{3}, u_{5}\right\}, \\
E_{1} & =\left\{\left(u_{1}, v_{6}\right),\left(u_{3}, v_{2}\right),\left(u_{5}, v_{4}\right)\right\}, \\
L_{2} & =\left\{v_{2}, v_{4}, v_{6}\right\}, \\
E_{2} & =\left\{\left(v_{2}, u_{2}\right),\left(v_{6}, u_{6}\right),\left(v_{4}, u_{4}\right)\right\}, \\
L_{3} & =\left\{u_{2}, u_{6}, u_{4}\right\} .
\end{aligned}
$$

Example Trace

Since L_{3} contains two free nodes u_{2} and u_{6} in $V_{2}, j^{*}=3$. So we have

$$
\begin{aligned}
& V\left(G_{2}{ }^{\prime}\right)=L_{0} \cup L_{1} \cup L_{2} \cup\left\{u_{2}, u_{6}\right\}, \text { and } \\
& E\left(G_{2}{ }^{\prime}\right)=E_{0} \cup E_{1} \cup\left\{\left(v_{2}, u_{2}\right),\left(v_{6}, u_{6}\right)\right\} .
\end{aligned}
$$

In Fig. 8, we show G_{2}, which contains two augmenting paths P_{1} and P_{2}, where $P_{1}=v_{1} \rightarrow u_{1} \rightarrow v_{6} \rightarrow u_{6}$ (represented by red edges in Fig. 8) and $P_{2}=v_{5} \rightarrow u_{3} \rightarrow v_{2}$ $\rightarrow u_{2}$ (represented by blue edges in Fig. 8) .

Example Trace

In Fig. 8, we show $G_{2}{ }^{\prime}$, which contains two augmenting paths P_{1} and P_{2}, where $P_{1}=v_{1} \rightarrow u_{1} \rightarrow v_{6} \rightarrow u_{6}$ and $P_{2}=$ $v_{5} \rightarrow u_{3} \rightarrow v_{2} \rightarrow u_{2}$. By applying the second step of Hopcroft-Karp algorithm, these two augmenting paths will be found. The maximum matching $M_{3}=M_{2} \Delta P_{1} \Delta$ P_{2} is shown in Fig. 9.
$M_{3}:=$
$G_{2}{ }^{\prime}$:

$P_{1} \quad P_{2}$

Example Trace

In order to have a better understanding of the second step of Hopcroft-Karp algorithm, we trace the execution steps when applying it to the graph shown in Figure 8.

$L_{3}=\left\{u_{2}, u_{4}, u_{6}\right\}$
$L_{0}=\left\{v_{1}, v_{5}\right\}$

Step 4: $\quad c-\operatorname{List}\left(v_{6}\right)=\left\{u_{6}\right\}$; push $\left(u_{6}\right.$, stack $)$; mark u_{6};
Step 5: $\quad c-\operatorname{List}\left(u_{6}\right)=\phi$;
u_{6} is a free node.

Output all the nodes in stack, which make up an augmenting path:

$$
v_{1} \rightarrow u_{1} \rightarrow v_{6} \rightarrow u_{6}
$$

empty stack;
push $\left(v_{5}\right.$, stack $)$; mark v_{5};
$/ * v_{5}$ is the next element in $L_{0} . * /$

$$
\begin{aligned}
& L_{3}=\left\{u_{2}, u_{4}, u_{6}\right\} \\
& L_{0}=\left\{v_{1}, v_{5}\right\}
\end{aligned}
$$

Step 6: $\quad c-\operatorname{List}\left(v_{5}\right)=\left\{u_{5}, u_{3}\right\}$; push $\left(u_{5}\right.$, stack $)$; mark u_{5};

Step 7: $\quad c-\operatorname{List}\left(u_{5}\right)=\left\{v_{4}\right\}$;
push $\left(v_{4}\right.$, stack $) ;$ mark v_{4};

Step 8: $\quad c-\operatorname{List}\left(v_{4}\right)=\phi$;

pop(stack);

$$
\begin{aligned}
& L_{3}=\left\{u_{2}, u_{4}, u_{6}\right\} \\
& L_{0}=\left\{v_{1}, v_{5}\right\}
\end{aligned}
$$

Step 9: $c-\operatorname{List}\left(u_{5}\right)=\left\{v_{4}\right\}$;

Step 10: u_{5} is neither in L_{3} nor in L_{0};
pop(stack);
$c-\operatorname{List}\left(v_{5}\right)=\left\{u_{3}\right\} ; / * u_{5}$ is removed from $c-\operatorname{List}\left(v_{5}\right) . * /$
Step 11: push $\left(u_{3}\right.$, stack $)$; mark u_{3};
$c-\operatorname{List}\left(u_{3}\right)=\left\{v_{2}\right\} ;$
$\operatorname{push}\left(v_{2}, \operatorname{stack}\right) ;$ mark v_{2};

$$
\begin{aligned}
& L_{3}=\left\{u_{2}, u_{4}, u_{6}\right\} \\
& L_{0}=\left\{v_{1}, v_{5}\right\}
\end{aligned}
$$

Step 12: $c-\operatorname{List}\left(v_{2}\right)=\left\{u_{2}\right\}$; push(u_{2}, stack $)$; mark u_{2};
Step 13: c - $\operatorname{List}\left(u_{2}\right)=\phi$;
u_{2} is in $L_{3} ; /^{*} j^{*}=3 . * / ;$

u_{2}
v_{2}
u_{3}
v_{5}

Output all the nodes in stack, which make up an augmenting path:
$v_{5} \rightarrow u_{3} \rightarrow v_{2} \rightarrow u_{2}$;
empty stack;
Now stack is empty and no element in L_{0} will be pushed into stack.
Stop.

Bipartite Graph

Hopcroft-Karp algorithm (1973)

In the above example, we choose the matching shown in Figure 5(b) as an initial matching for ease of explanation. In fact, we can choose any edge in the bipartite graph as an initial matching and then apply Hopcroft-Karp algorithm. Of course, the final matching found may be different from that shown in Figure 9.

Project Requirement

1. Implementation of the algorithm in $\mathrm{C}++$.
2. Documentation.
