String Matching

- String matching problem
- prefix
- suffix
- automata
- String-matching automata
- suffix function
- prefix function
- Knuth-Morris-Pratt algorithm

Chapter 32: String Matching

String-matching problem

1. Text: an array $T[1$.. $n]$ containing n characters drawn from a finite alphabet Σ (for instance, $\Sigma=\{0,1\}$ or $\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$.) Pattern: an array $P[1$.. $m](m \leq n)$
2. Finding all occurrences of a pattern in a text is a problem that arises frequently in text-editing programs.

Definition

We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning at position $s+1$ in text T)
if $0 \leq s \leq n-m$ and

$$
T[s+1 . . s+m]=P[1 . . m]
$$

(i.e., if $T[s+j]=P[j]$ for $1 \leq j \leq m$).

Valid shift s - if P occurs with shift s in T. Otherwise, s is an invalid shift.
text T :
pattern P :

We will find all the valid shifts.

■ Naïve algorithm

Naïve-String-Matcher (T, P)

1. $n \leftarrow$ length $[T]$
2. $m \leftarrow$ length $[P]$
3. for $s \leftarrow 0$ to $n-m$
4. do if $T[s+1 . . s+m]=P[1$.. $m]$
5. then print "Pattern occurs with shift" s

Obviously, the time complexity of this algorithm is bounded by $\mathrm{O}(\mathrm{nm})$.

In the following, we will discuss Knuth-Morris-Pratt algorithm, which needs only $\mathrm{O}(n+m)$ time.

- Finite automata

A finite automaton M is a 5 -tuple ($Q, q_{0}, A, \Sigma, \delta$), where
Q - a finite set of states
q_{0} - the start state
$A \subseteq Q$ - a distinguished set of accepting states
Σ - a finite input alphabet
δ - a function from $Q \times \Sigma$ into Q, called the transition function of M.
Example: $Q=\{0,1\}, q_{0}=0, A=\{1\}, \Sigma=\{\mathrm{a}, \mathrm{b}\}$ $\delta(0, a)=1, \delta(0, b)=0, \delta(1, a)=0, \delta(1, b)=0$.

- String-matching automata for patterns

Σ^{*} - the set of all finite-length strings formed using characters from the alphabet Σ
ε - zero-length empty string
$|x|$ - the length of string x
$x y$ - the concatenation of two strings x and y, which has length $|x|+|y|$ and consists of the characters from x followed by the characters from y
prefix - a string w is a prefix of a string x, denoted $w \odot x$, if x $=w y$ for some $y \in \Sigma^{*}$.
suffix - a string w is a suffix of a string x, denoted $w ■ x$, if x $=y w$ for some $y \in \Sigma^{*}$.
Example: ab ๑ abcca. cca ■ abcca.

■ String-matching automata for patterns

- $P_{k}-P[1 . . k](k \leq m)$, a prefix of $P[1$.. $m]$
suffix function σ - a mapping from Σ^{*} to $\{0,1, \ldots, m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x :

$$
\sigma(x)=\max \left\{k: P_{k} \subseteq x\right\} .
$$

Note that $P_{0}=\varepsilon$ is a suffix of every string.

- Example

$$
\begin{array}{ll}
P=\mathrm{ab} \\
\text { We have } \sigma(\varepsilon)=0 \\
\sigma(\mathrm{ccaca})=1 & P=\underline{a b} \\
\sigma(\mathrm{ccab})=2 & P=\underline{a b}
\end{array}
$$

- String-matching automata for a pattern

For a pattern $P[1 . . m]$, its string-matching automaton can be constructed as follows.

1. The state set Q is $\{0,1, \ldots, m\}$. The start state q_{0} is state 0 , and state m is the only accepting state.
2. The transition function δ is defined by the following equation, for any state k and character z :

$$
\delta(k, z)=\sigma\left(P_{k} z\right)
$$

$$
\begin{gathered}
P=\underline{a b c a d} \ldots \ldots \\
\delta(4, b)=\sigma\left(P_{4} b\right)=\sigma(a b c \underline{a b})=2 \\
\delta(4, d)=\sigma\left(P_{4} d\right)=\sigma(\underline{a b c a d})=5
\end{gathered}
$$

■ String-matching automata for patterns

- Example

$$
P=\text { ababaca }
$$

$$
\delta(k, z)=\sigma\left(P_{k} z\right)
$$

- String-matching automata for patterns
- Example
$P=$ ababaca

$$
\delta(k, z)=\sigma\left(P_{k} z\right)
$$

$$
\begin{array}{ll}
\delta(0, \mathrm{a})=\sigma\left(P_{0} \mathrm{a}\right)=\sigma(\mathrm{a})=1 & \delta(1, \mathrm{a})=\sigma\left(P_{1} \mathrm{a}\right)=\sigma(\mathrm{aa})=1 \\
\delta(0, \mathrm{~b})=\sigma\left(P_{0} \mathrm{~b}\right)=\sigma(\mathrm{b})=0 & \delta(1, \mathrm{~b})=\sigma\left(P_{1} \mathrm{~b}\right)=\sigma(\mathrm{ab})=2 \\
\delta(0, \mathrm{c})=\sigma\left(P_{0} \mathrm{c}\right)=\sigma(\mathrm{c})=0 & \delta(1, \mathrm{c})=\sigma\left(P_{1} \mathrm{c}\right)=\sigma(\mathrm{ac})=0
\end{array}
$$

■Finite-Automaton-Matcher

- String matching by using the finite automaton

Finite-Automaton-Matcher $(T, \delta, m) \quad P=$ ababaca

1. $n \leftarrow$ length $[T]$
2. $q \leftarrow 0$
3. for $i \leftarrow 1$ to n
4. do $q \leftarrow \delta(q, T[i])$
5. if $q=m$

6. then print "pattern occurs with shift" $i-m$

If the finite automaton is available, the algorithm needs only
$\mathrm{O}(n+m)$ time.

■inite-Automaton-Matcher

- Example
$P=\underline{\text { ababaca }, ~} T=$ abababacaba
$\delta(k, z)=\sigma\left(P_{k} z\right)$

step 1: $\quad q=0, T[1]=\mathrm{a}$. Go into the state $q=1$.
step 2: $q=1, T[2]=\mathrm{b}$. Go into the state $q=2 . P$
$\begin{array}{lllllll}a & b & a & b & a & c & a\end{array}$
step 3: $q=2, T[3]=\mathrm{a}$. Go into the state $q=3$. State $\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ step 4: $\quad q=3, T[4]=\mathrm{b}$. Go into the state $q=4$. step 5: $\quad q=4, T[5]=\mathrm{a}$. Go into the state $q=5$. step 6: $\quad q=5, T[6]=\mathrm{b}$. Go into the state $q=4$. step 7: $\quad q=4, T[7]=\mathrm{a}$. Go into the state $q=5$. step 8: $q=5, T[8]=c$. Go into the state $q=6$. step 9: $q=6, T[9]=\mathrm{a}$. Go into the state $q=7$.

■ Knuth-Morris-Pratt algorithm

- Dynamic computation of the transition function δ We needn't compute δ altogether, but using an auxiliary function π, called a prefix function, to calculate δ-values "on the fly".
prefix function π - a mapping from $\{1, \ldots, m\}$ to $\{0,1, \ldots, m\}$ such that

$$
\sigma\left(P_{k} z\right)=\delta(k, z)
$$

$$
z \in \Sigma
$$

■ Knuth-Morris-Pratt algorithm

- Example

$$
P=\text { ababababca }
$$

$$
\begin{aligned}
& P=\text { ababaca } \\
& \mathrm{O}(|\Sigma| m)
\end{aligned}
$$

$\mathrm{O}(m)$

By using the values of prefix function values, we will dynamically compute suffix function values. In this way, a suffix function value is computed only when it is needed. Thus, a lot of time can be saved.

How?

■ Knuth-Morris-Pratt algorithm

- function $\pi^{(u)}(j)$
i) $\pi^{(1)}(j)=\pi(j)$, and
ii) $\pi^{(u)}(j)=\pi\left(\pi^{(u-1)}(j)\right)$, for $u>1 . \quad T$:

$$
\pi^{(2)}(j) \pi(j)
$$

That is, $\pi^{(u)}(j)$ is just π applied u times to j.
Example: $\pi^{(2)}(6)=\pi(\pi(6))=\pi(4)=2$ for $P=$ ababaca.

- How to use $\pi^{(u)}(j)$?

Suppose that the automaton is in state j, having read $T[1 . . k]$, and that $T[k+1] \neq P[j+1]$. Then, apply π repeatedly until it find the smallest value of u for which either

1. $\pi^{(u)}(j)=l$ and $T[k+1]=P[l+1]$, or
2. $\pi^{(u)}(j)=0$ and $T[k+1] \neq P[1]$.

■ Knuth-Morris-Pratt algorithm

- How to use $\pi^{(u)}(j)$?

1. $\pi^{(u)}(j)=l$ and $T[k+1]=P[l+1]$, or
2. $\pi^{(u)}(j)=0$ and $T[k+1] \neq P[1]$.

That is, the automaton backs up through $\pi^{(1)}(j), \pi^{(2)}(j), \ldots$ until either Case 1 or 2 holds for $\pi^{(u)}(j)$ but not for $\pi^{(u-1)}(j)$.

If Case 1 holds, the automaton enters state l.
If Case 2 holds, it enters state 0.
In either case, input pointer is advanced to position $T[k+2]$.
In Case $1, P[1 . . l]$ is the longest prefix of P that is a suffix of $T[1 . . k]$, then $P\left[1 . . \pi^{(u)}(j)+1\right]=P[1 . . l+1]$ is the longest prefix of P that is a suffix of $T[1 \ldots k+1]$. In Case 2 , no prefix of P is a suffix of $T[1 . . k+1]$ and we will search P from scratch.

■ Knuth-Morris-Pratt algorithm

$$
\pi^{(2)}(q+1)
$$

$$
\pi(q+1)
$$

- Algorithm

KMP-Matcher (T, P)

1. $n \leftarrow$ length $[T]$
2. $m \leftarrow$ length $[P]$

3. $\pi \leftarrow$ Compute-Prefix-Function (P)
4. $q \leftarrow 0$

Compute $\pi^{(u)}(q+1)$
5. for $i \leftarrow 1$ to n
6. do while $q>0$ and $P[q+1] \neq T[i]$
7. do $q \leftarrow \pi[q]$

11.
12.

$$
q \leftarrow \pi[q]
$$

■ Knuth-Morris-Pratt algorithm

- Algorithm

Compute-Prefix-Function (P)

1. $m \leftarrow$ length $[T]$
2. $\pi[1] \leftarrow 0$
3. $q \leftarrow 0$
4. for $i \leftarrow 2$ to m
5. $q \leftarrow 0$
6. for $i \leftarrow 1$ to n
7. do while $q>0$ and $P[q+1] \neq T[i]$
8. \quad do $q \leftarrow \pi[q]$
9. if $P[q+1]=T[i]$
10. then $q \leftarrow q+1$
11. if $q=m$
12. then print ...
13. do while $q>0$ and $P[q+1] \neq P[i]$
14. do $q \leftarrow \pi[q] \quad / *$ if $q=0$ or $P[q+1]=P[i]$,
15. if $P[q+1]=P[i]$ going out of the while-loop.*/
16. \quad then $q \leftarrow q+1$
17. $\pi[i] \leftarrow q$
18. return π

$P=$ ababababca

i	1	2	3	4	5	6	7	8	9	10
$P[i]$	a	b	a	b	a	b	a	b	c	a
i]	0	0	1	2	3	4	5	6	0	1

■ Knuth-Morris-Pratt algorithm - sample trace

- Example

$$
\text { 2. } \pi[1]=0
$$

$$
\begin{aligned}
P & =\text { ababababca, } \\
T & =\text { ababaababababca }
\end{aligned}
$$

$$
\text { 3. } q \leftarrow 0
$$

$$
\text { 4. for } i \leftarrow 2 \text { to } n
$$

$$
\text { 5. do while } q>0 \text { and } P[q+1] \neq P[i]
$$

Compute prefix function:

$$
\text { 6. } \quad \text { do } q \leftarrow \pi[q]
$$

$$
\text { 7. if } P[q+1]=P[i]
$$

$$
\begin{aligned}
& \pi[1]=0 \\
& q=0 \\
& i=2, P[q+1]=P[1]=\mathrm{a}, P[i]=P[2]=\mathrm{b}, P[q+1] \neq P[i] \\
& \pi[i] \leftarrow q(\pi[2] \leftarrow 0) \\
& i=3, P[q+1]=P[1]=\mathrm{a}, P[i]=P[3]=\mathrm{a}, P[q+1]=P[i] \\
& q \leftarrow q+1, \pi[i] \leftarrow q(\pi[3] \leftarrow 1) \quad \begin{array}{l}
\text { 8. } \\
9 .
\end{array} \quad \begin{array}{l}
\text { then } q \leftarrow q+1 \\
q=1 \\
i=4, P[q+1]=P[2]=\mathrm{b}, P[i]=P[4]=\mathrm{b}, P[q+1]=P[i] \\
q \leftarrow q+1, \pi[i] \leftarrow q(\pi[4] \leftarrow 2)
\end{array}
\end{aligned}
$$

$P=$ ababababca

i	1	2	3	4	5	6	7	8	9	10
$P[i]$	a	b	a	b	a	b	a	b	c	a
i]	0	0	1	2	3	4	5	6	0	1

Knuth-Morris-Pratt algorithm - sample trace

- Example

$$
\begin{aligned}
& q=2 \\
& i=5, P[q+1]=P[3]=\mathrm{a}, P[i]=P[5]=\mathrm{a}, P[q+1]=P[i] \\
& q \leftarrow q+1, \pi[i] \leftarrow q(\pi[5] \leftarrow 3) \\
& q=3 \\
& i=6, P[q+1]=P[4]=\mathrm{b}, P[i]=P[6]=\mathrm{b}, P[q+1]=P[i] \\
& q \leftarrow q+1, \pi[i] \leftarrow q(\pi[6] \leftarrow 4) \\
& \text { 3. } q \leftarrow 0 \\
& \text { 4. for } i \leftarrow 2 \text { to } n \\
& \text { 5. do while } q>0 \text { and } P[q+1] \neq P[i] \\
& \text { 6. do } q \leftarrow \pi[q] \\
& \text { 7. if } P[q+1]=P[i] \\
& \text { 8. then } q \leftarrow q+1 \\
& \text { 9. } \pi[i] \leftarrow q
\end{aligned}
$$

Knuth-Morris-Pratt algorithm - sample trace

- Example

$$
\begin{aligned}
& q=4 \\
& i=7, P[q+1]=P[5]=\mathrm{a}, P[i]=P[7]=\mathrm{a}, P[q+1]=P[i] \\
& q \leftarrow q+1, \pi[i] \leftarrow q(\pi[7] \leftarrow 5) \\
& q=5 \\
& i=8, P[q+1]=P[6]=\mathrm{b}, P[i]=P[8]=\mathrm{b}, P[q+1]=P[i] \\
& q \leftarrow q+1, \pi[i] \leftarrow q(\pi[8] \leftarrow 6) \\
& \text { 3. } q \leftarrow 0 \\
& \text { 4. for } i \leftarrow 2 \text { to } n \\
& \text { 5. do while } q>0 \text { and } P[q+1] \neq P[i] \\
& \text { 6. do } q \leftarrow \pi[q] \\
& \text { 7. if } P[q+1]=P[i] \\
& \text { 8. } \quad \text { then } q \leftarrow q+1 \\
& \text { 9. } \pi[i] \leftarrow q
\end{aligned}
$$

- Knuth-Morris-Pratt algorithm - sample trace
- Example

$$
\text { 3. } q \leftarrow 0
$$

$$
\text { 4. for } i \leftarrow 2 \text { to } n
$$

$$
\text { 5. do while } q>0 \text { and } P[q+1] \neq P[i]
$$

$$
\text { 6. } \quad \operatorname{do} q \leftarrow \pi[q]
$$

$$
\text { 7. if } P[q+1]=P[i]
$$

$$
\text { 8. } \quad \text { then } q \leftarrow q+1
$$

$$
\text { 9. } \quad \pi[i] \leftarrow q
$$

$$
\begin{aligned}
& q=6 \\
& i=9, P[q+1]=P[7]=\mathrm{a}, P[i]=P[9]=\mathrm{c}, P[q+1] \neq P[i] \\
& q \leftarrow \pi[q](q \leftarrow \pi[6]=4) \\
& P[q+1]=P[5]=\mathrm{a}, P[i]=P[9]=\mathrm{c}, P[q+1] \neq P[i] \\
& q \leftarrow \pi[q](q \leftarrow \pi[4]=2) \\
& P[q+1]=P[3]=\mathrm{a}, P[i]=P[9]=\mathrm{c}, P[q+1] \neq P[i] \\
& q \leftarrow \pi[q](q \leftarrow \pi[2]=0), \pi[i] \leftarrow q(\pi[9] \leftarrow 0)
\end{aligned}
$$

■ Knuth-Morris-Pratt algorithm - sample trace

- Example

$$
\begin{aligned}
& q=0 \\
& i=10, P[q+1]=P[1]=\mathrm{a}, P[i]=P[10]=\mathrm{a}, P[q+1]=P[i] \\
& q \leftarrow q+1, \pi[i] \leftarrow q(\pi[10] \leftarrow 1)
\end{aligned}
$$

$P=$ ababababca

$$
\begin{aligned}
& \text { 3. } q \leftarrow 0 \\
& \text { 4. for } i \leftarrow 2 \text { to } n \\
& \text { 5. do while } q>0 \text { and } P[q+1] \neq P[i] \\
& \text { 6. do } q \leftarrow \pi[q] \\
& \text { 7. if } P[q+1]=P[i] \\
& \text { 8. then } q \leftarrow q+1 \\
& \text { 9. } \pi[i] \leftarrow q
\end{aligned}
$$

■ Knuth-Morris-Pratt algorithm
Theorem Algorithm Compute-Prefix-Function (P) computes π in $\mathrm{O}(|P|)$ steps.
Proof. The cost of the while statement is proportional to the number of times q is decremented by the statement $q \leftarrow \pi[q]$ following do in line 6 . The only way k is increased is by assigning $q \leftarrow q+1$ in line 8 . Since $q=0$ initially, and line 8 is executed at most $(|P|-1)$ times, we conclude that the while statement on lines 5 and 6 cannot be executed more than $|P|$ times. Thus, the total cost of executing lines 5 and 6 is $\mathrm{O}(|P|)$. The remainder of the algorithm is clearly $\mathrm{O}(|P|)$, and thus the whole algorithm takes $\mathrm{O}(|P|)$ time.

