String Matching

- String matching problem
 - prefix
 - suffix
 - automata
 - String-matching automata
 - suffix function
 - prefix function
 - Knuth-Morris-Pratt algorithm

Chapter 32: String Matching

String-matching problem

- 1. Text: an array T[1 ... n] containing n characters drawn from a finite alphabet Σ (for instance, $\Sigma = \{0, 1\}$ or $\Sigma = \{a, b, ..., z\}$.) Pattern: an array P[1 ... m] $(m \le n)$
- 2. Finding all occurrences of a pattern in a text is a problem that arises frequently in text-editing programs.

■ Definition

We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning at position s + 1 in text T)

if
$$0 \le s \le n - m$$
 and

$$T[s+1..s+m] = P[1..m]$$

(i.e., if
$$T[s+j] = P[j]$$
 for $1 \le j \le m$).

Valid shift s – if P occurs with shift s in T. Otherwise, s is an invalid shift.

We will find all the valid shifts.

■ Naïve algorithm

Naïve-String-Matcher(T, P)

- 1. $n \leftarrow length[T]$
- 2. $m \leftarrow length[P]$
- 3. for $s \leftarrow 0$ to n m
- 4. **do if** T[s+1 ... s+m] = P[1 ... m]
- 5. **then** print "Pattern occurs with shift" *s* Obviously, the time complexity of this algorithm is bounded by O(*nm*).

In the following, we will discuss Knuth-Morris-Pratt algorithm, which needs only O(n + m) time.

■ Finite automata

A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

Q - a finite set of states

 q_0 - the start state

 $A \subseteq Q$ – a distinguished set of accepting states

 Σ - a finite input alphabet

 δ - a function from $Q \times \Sigma$ into Q, called the transition function of M.

Example:
$$Q = \{0, 1\}, q_0 = 0, A = \{1\}, \Sigma = \{a, b\}$$

 $\delta(0, a) = 1, \delta(0, b) = 0, \delta(1, a) = 0, \delta(1, b) = 0.$

$$(b^n a^l b^m)^+$$

 $n \ge 0$.
 l is an odd integer.
 $m \ge 0$.

■ String-matching automata for patterns

- Σ^* the set of all finite-length strings formed using characters from the alphabet Σ
- ε zero-length *empty string*
- |x| the length of string x
- xy the concatenation of two strings x and y, which has length |x| + |y| and consists of the characters from x followed by the characters from y
- prefix a string w is a prefix of a string x, denoted $w \circ x$, if x = wy for some $y \in \Sigma^*$.
- suffix a string w is a suffix of a string x, denoted w = x, if x = yw for some $y \in \Sigma^*$.

Example: ab ● abcca. cca ■ abcca.

■ String-matching automata for patterns

- P_k - P[1...k] ($k \le m$), a prefix of P[1...m]

suffix function σ - a mapping from Σ^* to $\{0, 1, ..., m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x:

$$\sigma(x) = \max\{k: P_k \bullet x\}.$$

Note that $P_0 = \varepsilon$ is a suffix of every string.

- Example

$$P = ab$$

We have $\sigma(\varepsilon) = 0$
 $\sigma(ccaca) = 1$
 $P = ab$
 $\sigma(ccab) = 2$
 $P = ab$

■ String-matching automata for a pattern

For a pattern P[1 ... m], its string-matching automaton can be constructed as follows.

- 1. The state set Q is $\{0, 1, ..., m\}$. The start state q_0 is state 0, and state m is the only accepting state.
- 2. The transition function δ is defined by the following equation, for any state k and character z:

$$\delta(k, z) = \sigma(P_k z)$$

$$P = \underline{ab}cad \dots$$

$$\delta(4, b) = \sigma(P_4 b) = \sigma(\underline{abcab}) = 2$$

$$\delta(4, d) = \sigma(P_4 d) = \sigma(\underline{abcad}) = 5$$

■ String-matching automata for patterns

- Example

String-matching automata for patterns

- Example

$$\delta(0, a) = \sigma(P_0 a) = \sigma(a) = 1$$
 $\delta(1, a) = \sigma(P_1 a) = \sigma(aa) = 1$
 $\delta(0, b) = \sigma(P_0 b) = \sigma(b) = 0$ $\delta(1, b) = \sigma(P_1 b) = \sigma(ab) = 2$
 $\delta(0, c) = \sigma(P_0 c) = \sigma(c) = 0$ $\delta(1, c) = \sigma(P_1 c) = \sigma(ac) = 0$

■Finite-Automaton-Matcher

- String matching by using the finite automaton

6. **then** print "pattern occurs with shift" i - m

If the finite automaton is available, the algorithm needs only O(n + m) time.

■ Finite-Automaton-Matcher

- Example

$$P = \underline{\text{abab}}$$
aca, $T = \underline{\text{abab}}$ acaba

$$\delta(k, z) = \sigma(P_k z)$$

h

step 1:
$$q = 0$$
, $T[1] = a$. Go into the state $q = 1$.

step 2:
$$q = 1$$
, $T[2] = b$. Go into the state $q = 2$. P

step 3:
$$q = 2$$
, $T[3] = a$. Go into the state $q = 3$. State

step 4:
$$q = 3$$
, $T[4] = b$. Go into the state $q = 4$.

step 5:
$$q = 4$$
, $T[5] = a$. Go into the state $q = 5$.

step 6:
$$q = 5$$
, $T[6] = b$. Go into the state $q = 4$.

step 7:
$$q = 4$$
, $T[7] = a$. Go into the state $q = 5$.

step 8:
$$q = 5$$
, $T[8] = c$. Go into the state $q = 6$.

step 9:
$$q = 6$$
, $T[9] = a$. Go into the state $q = 7$.

			-				
1	1	3	1	5	1	7	1
0	2	0	4	0	4	0	2
0	0	0	0	0	6	0	0

- Dynamic computation of the transition function δ We needn't compute δ altogether, but using an auxiliary function π , called a *prefix function*, to calculate δ –values "on the fly".

prefix function π - a mapping from $\{1, ..., m\}$ to $\{0, 1, ..., m\}$ such that

- Example

$$P = ababababa$$

$$P = ababaca$$

 $O(|\Sigma|m)$

1	1	3	1	5	1	7	1
0	2	0	4	0	4	0	2
0	0	0	0	0	6	0	0

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	c	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

O(m)

$$P_8$$
 a b a b a b a b P_6 a b a b P_4 a b a b P_2 a b P_0

$$\pi(q) = \max\{k:$$

$$\pi(q) = \max\{k: k < q, P_k \blacksquare P_q\}$$

$$\pi[8] = 6$$

$$\pi[6] = 4$$

$$\pi[4]=2$$

$$b \quad c \quad a \quad \pi[2] = 0$$

By using the values of prefix function values, we will dynamically compute suffix function values. In this way, a suffix function value is computed only when it is needed. Thus, a lot of time can be saved.

How?

- function $\pi^{(u)}(j)$
 - i) $\pi^{(1)}(j) = \pi(j)$, and
 - ii) $\pi^{(u)}(j) = \pi(\pi^{(u-1)}(j))$, for u > 1.

That is, $\pi^{(u)}(j)$ is just π applied u times to j.

Example: $\pi^{(2)}(6) = \pi(\pi(6)) = \pi(4) = 2$ for P = ababaca.

- How to use $\pi^{(u)}(j)$?

Suppose that the automaton is in state j, having read T[1 ... k], and that $T[k+1] \neq P[j+1]$. Then, apply π repeatedly until it find the smallest value of u for which either

P:

T:

1.
$$\pi^{(u)}(j) = l$$
 and $T[k+1] = P[l+1]$, or

2. $\pi^{(u)}(j) = 0$ and $T[k+1] \neq P[1]$.

- How to use $\pi^{(u)}(j)$?
 - 1. $\pi^{(u)}(j) = l$ and T[k+1] = P[l+1], or
 - 2. $\pi^{(u)}(j) = 0$ and $T[k+1] \neq P[1]$.

That is, the automaton backs up through $\pi^{(1)}(j)$, $\pi^{(2)}(j)$, ... until either Case 1 or 2 holds for $\pi^{(u)}(j)$ but not for $\pi^{(u-1)}(j)$.

- If Case 1 holds, the automaton enters state *l*.
- If Case 2 holds, it enters state 0.

In either case, input pointer is advanced to position T[k+2]. In Case 1, P[1 ... l] is the longest prefix of P that is a suffix of T[1 ... k], then $P[1 ... \pi^{(u)}(j) + 1] = P[1 ... l + 1]$ is the longest

P is a suffix of T[1 ... k + 1] and we will search P from scratch.

prefix of P that is a suffix of T[1 ... k + 1]. In Case 2, no prefix of

 $\pi^{(2)}(q+1)$ $\pi(q+1)$

P:

T:

T:

- Algorithm

$$KMP$$
-Matcher(T , P)

- 1. $n \leftarrow length[T]$
- 2. $m \leftarrow length[P]$
- 3. $\pi \leftarrow \text{Compute-Prefix-Function}(P)$
- 4. $q \leftarrow 0$
- 5. for $i \leftarrow 1$ to n
- 6. **do while** q > 0 and $P[q + 1] \neq T[i]$
- 7. $\mathbf{do}\ q \leftarrow \pi[q]$
- 8. **if** P[q+1] = T[i]
- 9. **then** $q \leftarrow q + 1$
- 10. **if** q = m
- 11. **then** print "pattern occurs with shift" i m
- 12. $q \leftarrow \pi[q]$

Compute $\pi^{(u)}(q+1)$

- Algorithm

Compute-Prefix-Function(*P*)

- 1. $m \leftarrow length[T]$
- 2. $\pi[1] \leftarrow 0$
- 3. $q \leftarrow 0$
- 4. for $i \leftarrow 2$ to m
- **do while** q > 0 and $P[q + 1] \neq P[i]$
- **if** P[q+1] = P[i]
- then $q \leftarrow q + 1$
- $\pi[i] \leftarrow q$
- 10. return π

- $4. q \leftarrow 0$
- 5. for $i \leftarrow 1$ to n
- 6. **do while** q > 0 and $P[q + 1] \neq T[i]$
- **do** $q \leftarrow \pi[q]$
- **8.** if P[q+1] = T[i]
- then $q \leftarrow q + 1$ 9.
- **10.** if q = m
- 11. then print ...

$$-1$$
 $\neq P[l]$

do $q \leftarrow \pi[q]$ /*if q = 0 or P[q + 1] = P[i],

going out of the while-loop.*/

$$\pi(q)$$
 $q+1$

P = ababababa

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	c	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

- Example

P = abababababa,

T = ababaabababaa

Compute prefix function:

$$\pi[1] = 0$$

$$q = 0$$

$$i = 2$$
, $P[q + 1] = P[1] = a$, $P[i] = P[2] = b$, $P[q + 1] \neq P[i]$
 $\pi[i] \leftarrow q \ (\pi[2] \leftarrow 0)$

8.

2. $\pi[1] = 0$

4. for $i \leftarrow 2$ to n

9. $\pi[i] \leftarrow q$

 $\mathbf{do}\ q \leftarrow \pi[q]$

7. **if** P[q+1] = P[i]

then $q \leftarrow q + 1$

5. **do while** q > 0 and $P[q + 1] \neq P[i]$

 $3. q \leftarrow 0$

$$i = 3, P[q + 1] = P[1] = a, P[i] = P[3] = a, P[q + 1] = P[i]$$

 $q \leftarrow q + 1, \pi[i] \leftarrow q (\pi[3] \leftarrow 1)$ q

$$q = 1$$

$$i = 4$$
, $P[q + 1] = P[2] = b$, $P[i] = P[4] = b$, $P[q + 1] = P[i]$
 $q \leftarrow q + 1$, $\pi[i] \leftarrow q \ (\pi[4] \leftarrow 2)$

P = ababababa

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	c	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

- Example

$$q = 2$$

 $i = 5$, $P[q + 1] = P[3] = a$, $P[i] = P[5] = a$, $P[q + 1] = P[i]$
 $q \leftarrow q + 1$, $\pi[i] \leftarrow q$ ($\pi[5] \leftarrow 3$)
 $q = 3$
 $i = 6$, $P[q + 1] = P[4] = b$, $P[i] = P[6] = b$, $P[q + 1] = P[i]$
 $q \leftarrow q + 1$, $\pi[i] \leftarrow q$ ($\pi[6] \leftarrow 4$)

 $3. q \leftarrow 0$

P = ababababaa

- 4. **for** $i \leftarrow 2$ **to** n5. **do while** q > 0 and $P[q + 1] \neq P[i]$
- 6. **do** $q \leftarrow \pi[q]$
- 7. **if** P[q+1] = P[i]
- 8. then $q \leftarrow q + 1$
- 9. $\pi[i] \leftarrow q$

- Example

$$q = 4$$

$$i = 7, P[q + 1] = P[5] = a, P[i] = P[7] = a, P[q + 1] = P[i]$$

$$q \leftarrow q + 1, \pi[i] \leftarrow q (\pi[7] \leftarrow 5)$$

$$q = 5$$

$$i = 8, P[q + 1] = P[6] = b, P[i] = P[8] = b, P[q + 1] = P[i]$$

$$q \leftarrow q + 1, \pi[i] \leftarrow q (\pi[8] \leftarrow 6)$$

P = abababababa

$$3. q \leftarrow 0$$

- 4. for $i \leftarrow 2$ to n
- 5. **do while** q > 0 and $P[q + 1] \neq P[i]$
- 6. **do** $q \leftarrow \pi[q]$
- 7. **if** P[q+1] = P[i]
- 8. then $q \leftarrow q + 1$
- 9. $\pi[i] \leftarrow q$

- Example

$$q = 6$$

$$i = 9, P[q + 1] = P[7] = a, P[i] = P[9] = c, P[q + 1] \neq P[i]$$

$$q \leftarrow \pi[q] \ (q \leftarrow \pi[6] = 4)$$

$$P[q + 1] = P[5] = a, P[i] = P[9] = c, P[q + 1] \neq P[i]$$

$$q \leftarrow \pi[q] \ (q \leftarrow \pi[4] = 2)$$

$$P[q + 1] = P[3] = a, P[i] = P[9] = c, P[q + 1] \neq P[i]$$

$$q \leftarrow \pi[q] \ (q \leftarrow \pi[2] = 0), \pi[i] \leftarrow q \ (\pi[9] \leftarrow 0)$$

P = ababababaa

$$3. q \leftarrow 0$$

- 4. for $i \leftarrow 2$ to n
- 5. **do while** q > 0 and $P[q + 1] \neq P[i]$
- 6. **do** $q \leftarrow \pi[q]$
- 7. if P[q+1] = P[i]
- 8. then $q \leftarrow q + 1$
- 9. $\pi[i] \leftarrow q$

- Example

$$q = 0$$

 $i = 10, P[q + 1] = P[1] = a, P[i] = P[10] = a, P[q + 1] = P[i]$
 $q \leftarrow q + 1, \pi[i] \leftarrow q (\pi[10] \leftarrow 1)$

$$P =$$
 ababababca

- $3. q \leftarrow 0$
- 4. for $i \leftarrow 2$ to n
- 5. **do while** q > 0 and $P[q + 1] \neq P[i]$
- 6. **do** $q \leftarrow \pi[q]$
- 7. **if** P[q+1] = P[i]
- 8. then $q \leftarrow q + 1$
- 9. $\pi[i] \leftarrow q$

Theorem Algorithm Compute-Prefix-Function(P) computes π in O(/P|) steps.

Proof. The cost of the **while** statement is proportional to the number of times q is decremented by the statement $q \leftarrow \pi[q]$ following **do** in line 6. The only way k is increased is by assigning $q \leftarrow q + 1$ in line 8. Since q = 0 initially, and line 8 is executed at most (|P|-1) times, we conclude that the **while** statement on lines 5 and 6 cannot be executed more than |P|times. Thus, the total cost of executing lines 5 and 6 is O(|P|). The remainder of the algorithm is clearly O(|P|), and thus the whole algorithm takes O(|P|) time.