Flow Network

e Flow network and flows

* Ford-Fulkerson method to find a maximum flow
- Residual networks
- Augmenting paths
- Cuts of flow networks

e Max-flow min-cut theorem
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Chapter 26: Maximum Flow

B A directed graph is interpreted as a flow network:

- A material coursing through a system from a
source, where the material Is produced, to a sink,
where It IS consumed.

- The source produces the material at some steady

rate, and the sink consumes the material at the
same rate.

B Maximum flow problem: to compute the greatest
rate at which material can be shipped from the
source to the sink.
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B Example
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B Applications which can be modeled by the
maximum flow

- Liquids flowing through pipes

- Parts through assembly lines
- current through electrical network

- Information through communication network
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B Definition — flow networks and flows

A flow network G = (V, E) Is a directed graph in which each
edge (u, v) € E has a nonnegative capacity c(u, v) > 0.

source: s; sink: t
For every vertex v € V, there is a path:
S vV i

A flow In G is a real-valued function f: V x V — R that
satisfies the following properties:

Capacity constraint: For all u, v e V, f(u, v) < c(u, v).
Skew symmetry: For all u, v e V, f(u, v) = - f(v, u).

Flow conservation: Forallu € V—{s, t}, > f(u,v) =0.
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The quantity f(u, v), which can be positive, zero, or negative, IS
called the flow from vertex u to vertex v. The value of a flow f is
defined as the total flow out of the source
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B Example
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> f(u,v) = 0. The total flow out of a vertex is O.

veV

> f(u,v) = 0. The total flow into a vertex is O.

uev
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The total positive flow entering a vertex v is defined by

ZUEV,f(U,V)>O f (U,V)

The total net flow at a vertex is the total positive flow leaving the
vertex minus the total positive flow entering the vertex.

The interpretation of the flow-conservation property:

« The total positive flowing entering a vertex other than the
source or sink must equal the total positive flow leaving

that vertex.

« ForallueV-{s,t}, > f(u,v) =0. Thatis, the total flow out
of u is 0. ~
Forallv e V—{s, t}, 2 T(uVv)=0.Thatis, the total flow into
vis 0.
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B Networks with multiple sources and sinks

- Introduce supersource s and supersink t
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B \Working with flows

- Implicit summation notation
fX,Y)=2 % f(xy)

xeX yeY
The flow-conservation constraint can be re-expressed as

f(u,V)=0forallu e V- {s, t}.
- Lemma 26.1 Let G = (V, E) be a flow network, and let f be a
flow In G. Then, the following equalities hold:

1. For all X <V, we have f(X, X) = 0.
2. Forall X, Y <V, we have f(X, Y) = - (Y, X).
3.Forall X,Y,ZcVwith XY =g, we have the sums
fXUY, Z)=1(X, 2) + 1Y, 2),
f(Z, XUY)=1(Z X)+1(Z,Y).
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1. For all X < V, we have f(X, X) = 0.

X=1{x;, ..., x,}

fX, X) = Xxex ZyEX f(x,y)
=[xy, xp) + fxy, x3) + ... Ffxy, x,) +
Sy, x) + fx,, x3) + ...+ flxy, x,) +

Sz, xp) + 005, ) + o s, x,)

=0

Yangjun Chen
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2. Forall X, Yc V, we have f(X, Y) =- (Y, X).

fX, Y) = Dxex Zer f(x,y)
= Lyey axex —f (7, %)

=-/(Y X)
3.Forall X, Y, Zc Vwith X" Y =0, we have the sums

XY, 2)=AX 2)+ /Y, 2),
fZXuY)=AZ,X)+fZ7Y).
SXOY, 2) = Yixexuy Zizez f (%, 2)
= Dixez 2uzez (%, Z)+ ZyEY 2izez f (Y, 2)
=X, 2) + Y, 2)

Yangjun Chen
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B \Working with flows

- =1V, 9

1. For all X < V, we have f(X, X) = 0.

2. Forall X, Y <V, we have
f| =1(s, V) f(X, Y) = - (Y, X).
=f(V,V)-1(V-s,V) 3 ForallX,Y,ZcVwithX Y=g,
=-f(V-s5s,V) we have the sums
= f(V, V—59) f(XUY,2) =X, Z) + (Y, 2),
= (V. 1) + (V. V —s— 1) f(Z, X UY)=f(Z,X) +f(Z,Y).

Yangjun Chen
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B The Ford-Fulkerson method

- The maximum-flow problem: given a flow network G with
source s and sink t, we wish to find a flow f of maximum

Value' ( ZUEV,f(U,V)>0 f (U,V))
- Important concepts:

residual networks

augmenting paths

cuts
Ford-Fulkerson-Method(G, s, t)
1. Initialize flow fto O

2. While there exists an augmenting path p in the current
residue graph

3. do augment flow f along p

4. return f
Yangjun Chen
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B Residual networks

Yangjun Chen

Given a flow network and a flow, the residual network
consists of edges that can admit more flow.

Let f be a flow in G = (V, E) with source s and sink t.
Consider a pair of vertices u, v € V. The amount of
additional flow we can push from u to v before exceeding
the capacity c(u, v) is the residual capacity of (u, v), given
by

c«(u, v) = c(u, v) —f(u, v).
Example
If c(u, v) = 16 and f(u, v) = 11, then c4(u, v) = 16 — 11 = 5.
If c(u, v) =17 and f(u, v) = -4, then c,(u, v) = 17 — (-4) = 21.
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B Residual networks

- Given a flow network G = (V, E) and a flow f, the residual
network of G induced by f is G; = (V, E;), where

E:={(u,Vv) € VxV:c(u,v) >0}

- Example

Edmonton 12/12 Saskatoon

-12/0

15/20

Vancouver Winnipeg
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B Residual networks

residual network:
Edmonton Saskatoon

@ 0

'y

Vancouver Winnipeg

B < 2|E|
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B Residual networks

Lemma 26.2 Let G = (V, E) be a network with source s and
sink t, and let f be a flow in G. Let G; be the residual network of
G induced by f, and let /" be a flow in G;. Then, the flow sum f
+ 7 (defined by (f + 77)(u, v) =f (u, v) + £’ (u, v)) isa flow in G
with value |f + /7| = |f | + |f].

Proof. We must verify that the capacity constraints, skew
symmetry, and flow conservation are obeyed.

Capacity constraint:

(F+/7)(u, v) =1 (u,v) +/7(u,v)
<f(u, V) + c{u, v)
=f(u, v) + (c(u, v) - f(u, v))
=c(u, v).

Yangjun Chen
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Skew symmetry:

(F+£)(U, V) = (U, v) + (0, V) = - F (v, U) - £, U)
= - (F (v, u) + (v, W) = - (F+ )V, u).

Flow conservation:

S(f + f')(u,v) = Z(f(u v)+ f'(u,v))
—zf(uv)+zf(uv)
=0+0=0.
Finally, we have
f+/71 = S(F+1)(s0)= S(FsV)+F(5,v)
= SV T 1Y)
=[fl+ )

Yangjun Chen
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B Augmenting paths

- Given a flow network G = (V, E) and a flow f, an
augmenting path p is a simple path from s to t in the residual
network G; such that the residue capacity of each edge on p
Is> 0.

- Example
P Edmonton Saskatoon

S
Vancouver Winnioe
5 15\ T
3 I
4 4
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B Augmenting paths

Yangjun Chen

In the above residual network, paths — v, - vy, — t Is an
augmenting path.
We can increase the flow through each edge of this path by
up to 4 units without violating the capacity constraint since
the smallest residual capacity on this path is cq(v,, v;) = 4.
residual capacity of an augmenting path

c«(p) = min{c«(u, v): (u, v) iIs on p}.
Lemma 26.3 Let G = (V, E) be a network, let f be a flow In
G, and let p be an augmenting path in G;. Define a function
f:VxV—>Rby

cd(p) if (u, v) is on p,
fo(u, v) = { cp) If (v, u) 1Isonp,
otherwise.

Then, f isa flow In G;with value [f | = c«(p).
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Edmonton 12/12 ?askatoon
15/20
Vancouver Winnipeg

-15/0

i 717 ||-7/0 40

-11/0 4/4

Calgary LA Regina
Edmonton Saskatoon

3}

Vancouver Winnipeg

15
/
4

Calgary

Regina
Yangjun Chen



- Residual network induced by the new flow
Edmonton Saskatoon
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B Augmenting paths

- Corollary 26.4 Let G = (V, E) be a network, let f be a flow
In G, and let p be an augmenting path in G;. Let f, be defined
as In Lemma 26.3. Define a function /”: V x V — R by

fr=t+1
Then, /” 1s a flow in G with value | /7| = [f | + [f,| > [f].
Proof. Immediately from Lemma 26.2 and 26.3.

B Ford-Fulkerson Algorithm

- The Ford-Fulkerson method repeatedly augments the flow

along augmenting paths until a maximum flow has been
found.

- A flow Is maximum if and only if its residual network

contains no augmenting path.
Yangjun Chen 24



B Ford-Fulkerson algorithm

Ford_Fulkerson(G, s, t)

1. for each edge (u, v) € E(G)

2. dof(u,v)«0

3. while there exists a path p from sto t in G;
4. do c(p) <« min{c(u, v) : (u,v)isinp}
5.  foreachedge (u,v)onp

6. do f(u, v) < f(u, v) + c«(p)

7. f(v, u) < f(v, u) - c«(p)

Yangjun Chen
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B Sample trace
Initially, the flow on edge is O.

0/14

The corresponding residual network:
12

16

10 || 4 9

N
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B Sample trace
Pushing a flow 4 on p1 (an augmenting path)

4/14

The corresponding residual network:
8

12
4
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B Sample trace
Pushing a flow 7 on p2 (an augmenting path)

11/14

The corresponding residual network:

Yangjun Chen
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B Sample trace
Pushing a flow 8 on p3 (an augmenting path)

11/14
The corresponding residual network:

Yangjun Chen
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B Sample trace
Pushing a flow 4 on p4 (an augmenting path)

0/0

12/13 4a

11/14
The corresponding residual network: no augmenting paths!

Yangjun Chen
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B Analysis of Ford-Fulkerson algorithm

In practice, the maximum-flow problem often arises with
Integral capacities. If the capacities are rational numbers, an
appropriate scaling transformation can be used to make them all
Integral. Under this assumption, a straightforward
Implementation of Ford-Fulkerson algorithm runs in time
O(E|f*|), where f* Is the maximum flow found by the
algorithm.

The analysis is as follows:
1. Lines 1-3 take time ®(E).

2. The while-loop of lines 4-8 is executed at most |f*| times
since the flow value increases by at least one unit in each
Iteration. Each iteration takes O(E) time.

Yangjun Chen 31



Max-flow min-cut theorem
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B Cuts of flow networks

- Acut (S, T) of flow network G = (V, E) is a partition of
VintoSand T=V-Ssuchthatse Sandt e T.

- net flow across the cut (S, T) is defined to be f(S, T).

15/20

4/4

11/14
f({s, v, Vo, {Vs, V4, 1}) = 1(vy, v5) + 1(vy, v5) + F(vy, V)
=12+ (-4) + 11 = 19.

The net flow across a cut (S, T) consists of positive flows Iin
both direction.

Yangjun Chen
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B Cuts of flow networks

- The capacity of the cut (S, T) is denoted by c(S, T), which is
computed only from edges going from Sto T.

11/14

C({S, Vi, Vot {V3, V4, t}) = C(Vy, V3) + C(Vy, V,)
=12+ 14 = 26.

Yangjun Chen
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B Cuts of flow networks

Yangjun Chen

The following lemma shows that the net flow across any cut
IS the same, and it equals the value of the flow.

Lemma 26.5 Let f be a flow in a flow network G with source
s and sink t, and let (S, T) be a cut of G. Then, the net flow
across (S, T) i1s (S, T) = [f].

Proof. Note that f(S — s, V) = 0 by flow conservation. So we
have

f(S, T)=1(S,V-S)=1(S, V) -1(S, S)
=1(S, V)
=1(s,V) +f(S—s, V)
=f(s, V)
= [f].
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B Cuts of flow networks

- Corollary 26.6 The value of any flow in a flow network G

IS bounded from above by the capacity of any cut of G.
Proof.
fl =1(S, T)
= ZSZT f(u,v)

< 2> cu,v)
=c(S, T).

Yangjun Chen
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B Max-flow min-cut theorem

Theorem 26.7 If fis a flow network G = (V, E) with source s
and sink t, then the following conditions are equivalent:

1. fi1s a maximum flow in G.
2. The residual network G; contains no augmenting paths.
3. |fl =¢c(S, T) for some cut (S, T) of G.

Proof. (1) = (2): Suppose for the sake of contradiction that f is
a maximum flow in G but that G; has an augmenting path p.
Then, by Corollary 26.4, the flow sum f + f,, where f, Is given
by Lemma 26.3, is a flow in G with value strictly greater than
|f|, contradicting the assumption that f is a maximum flow.
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B Max-flow min-cut theorem

Theorem 26.7 If fis a flow network G = (V, E) with source s
and sink t, then the following conditions are equivalent:

1. fi1s a maximum flow in G.
2. The residual network G; contains no augmenting paths.
3. |fl =¢c(S, T) for some cut (S, T) of G.

Proof. (2) = (3): Suppose that G; has no augmenting path.
Define S = {v € V: there exists a path fromstovin G} and T =
V —S. The partition (S, T) Is a cut: we have s € S trivially and t
¢ S because there is no path from s to t in G;. For each pair of
vertices u and v such thatu € Sandv € T, we have f(u, v) =
c(u, v), since otherwise (u, v) € E;, which would place v in set
S. By Lemma 26.5, therefore, |f| = (S, T) =c(S, T).
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B Max-flow min-cut theorem

Theorem 26.7 If fis a flow network G = (V, E) with source s
and sink t, then the following conditions are equivalent:

1. fi1s a maximum flow in G.
2. The residual network G; contains no augmenting paths.
3.1f|=c(S, T) for some cut (S, T) of G.

Proof. (3) = (1): By Corollary 26.6, |f| < c(S, T) for all cuts (S,
T). The condition [f| = ¢(S, T) thus implies that f is a maximum
flow.
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