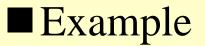
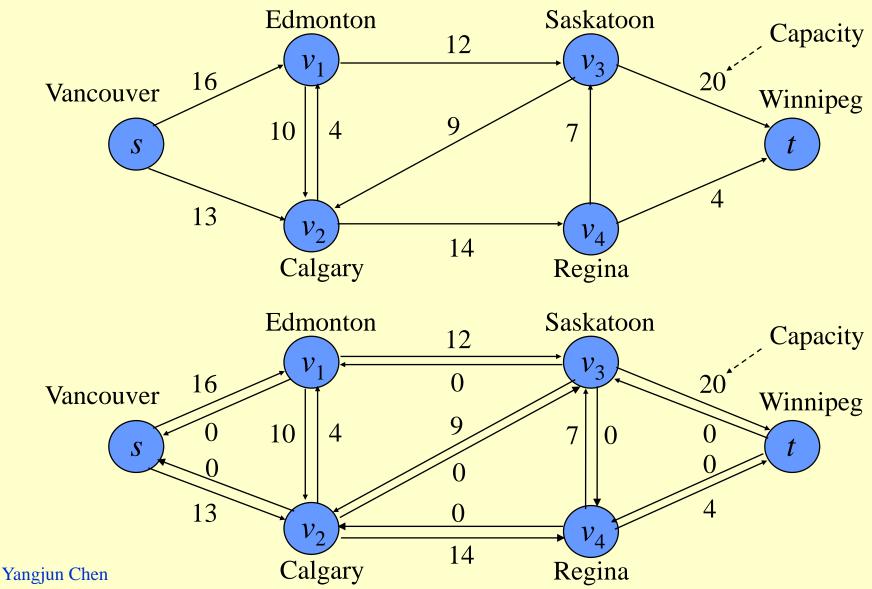
Flow Network

- Flow network and flows
- Ford-Fulkerson method to find a maximum flow
 - Residual networks
 - Augmenting paths
 - Cuts of flow networks
- Max-flow min-cut theorem

Chapter 26: Maximum Flow

- A directed graph is interpreted as a flow network:
 - A material coursing through a system from a source, where the material is produced, to a sink, where it is consumed.
 - The source produces the material at some steady rate, and the sink consumes the material at the same rate.
- Maximum flow problem: to compute the greatest rate at which material can be shipped from the source to the sink.





- Applications which can be modeled by the maximum flow
 - Liquids flowing through pipes
 - Parts through assembly lines
 - current through electrical network
 - information through communication network

Definition – flow networks and flows

- A flow network G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- source: *s*; sink: *t*
- For every vertex $v \in V$, there is a path:

s v v v t

- A flow in *G* is a real-valued function $f: V \times V \rightarrow \mathbf{R}$ that satisfies the following properties:

Capacity constraint: For all $u, v \in V, f(u, v) \leq c(u, v)$.

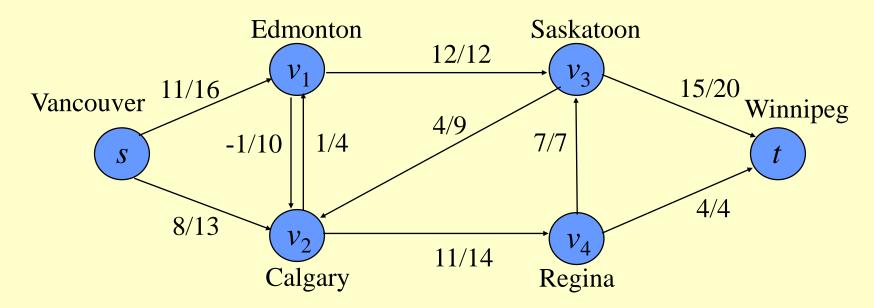
Skew symmetry: For all $u, v \in V, f(u, v) = -f(v, u)$.

Flow conservation: For all $u \in V - \{s, t\}, \sum_{v \in V} f(u, v) = 0$.

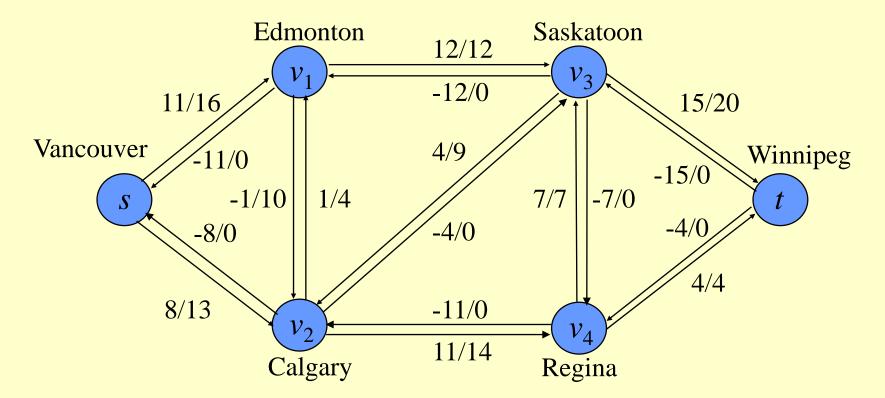
The quantity f(u, v), which can be positive, zero, or negative, is called the *flow* from vertex *u* to vertex *v*. The value of a flow *f* is defined as the total flow out of the source

$$|f| = \sum_{v \in V} f(s, v)$$

Example



Example



 $\sum_{u \in V} f(u, v) = 0$. The total flow out of a vertex is 0. $\sum_{u \in V} f(u, v) = 0$. The total flow into a vertex is 0.

Yangjun Chen

The *total positive flow* entering a vertex *v* is defined by

 $\sum_{u \in V, f(u,v) > 0} f(u,v)$

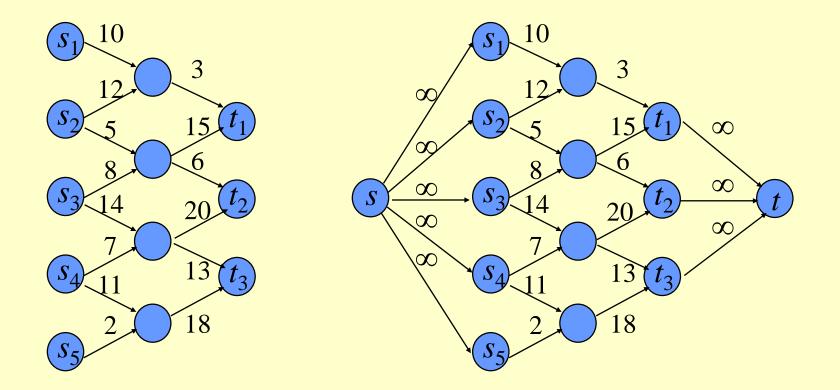
The *total net flow* at a vertex is the total positive flow leaving the vertex minus the total positive flow entering the vertex.

The *interpretation* of the flow-conservation property:

- The total positive flowing entering a vertex other than the source or sink must equal the total positive flow leaving that vertex.
- For all u ∈ V {s, t}, ∑_{v∈V} f(u,v) = 0. That is, the total flow out of u is 0.
 For all v ∈ V {s, t}, ∑_{u∈V} f(u,v) = 0. That is, the total flow into v is 0.

■Networks with multiple sources and sinks

- Introduce *supersource* s and *supersink* t



Working with flows

- implicit summation notation

 $f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y)$ The flow-conservation constraint can be re-expressed as f(u, V) = 0 for all $u \in V - \{s, t\}.$

- Lemma 26.1 Let G = (V, E) be a flow network, and let f be a flow in G. Then, the following equalities hold:

1. For all
$$X \subseteq V$$
, we have $f(X, X) = 0$.

- 2. For all *X*, $Y \subseteq V$, we have f(X, Y) = -f(Y, X).
- 3. For all *X*, *Y*, *Z* \subseteq *V* with *X* \cap *Y* = \emptyset , we have the sums

 $f(X \cup Y, Z) = f(X, Z) + f(Y, Z),$ $f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$

1. For all $X \subseteq V$, we have f(X, X) = 0.

$$X = \{x_1, \dots, x_n\}$$

$$f(X, X) = \sum_{x \in X} \sum_{y \in X} f(x, y)$$

= $f(x_1, x_2) + f(x_1, x_3) + \dots + f(x_1, x_n) +$
 $f(x_2, x_1) + f(x_2, x_3) + \dots + f(x_2, x_n) +$
 $f(x_3, x_1) + f(x_3, x_2) + \dots + f(x_3, x_n) + \dots$
= 0

2. For all *X*, $Y \subseteq V$, we have f(X, Y) = -f(Y, X).

$$f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y)$$
$$= \sum_{y \in Y} \sum_{x \in X} -f(y, x)$$
$$= -f(Y, X)$$

3. For all $X, Y, Z \subseteq V$ with $X \cap Y = \emptyset$, we have the sums $f(X \cup Y, Z) = f(X, Z) + f(Y, Z),$ $f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$ $f(X \cup Y, Z) = \sum_{x \in X \cup Y} \sum_{z \in Z} f(x, z)$ $= \sum_{x \in Z} \sum_{z \in Z} f(x, z) + \sum_{y \in Y} \sum_{z \in Z} f(y, z)$ = f(X, Z) + f(Y, Z)

Working with flows

- |f| = f(V, t) |f| = f(s, V) = f(V, V) - f(V - s, V) = -f(V - s, V) = f(V, V - s) = f(V, t) + f(V, V - s - t)= f(V, t)

For all X ⊆ V, we have f(X, X) = 0.
 For all X, Y ⊆ V, we have f(X, Y) = - f(Y, X).
 For all X, Y, Z ⊆ V with X ∩ Y = Ø, we have the sums f(X ∪ Y, Z) = f(X, Z) + f(Y, Z), f(Z, X ∪ Y) = f(Z, X) + f(Z, Y).

The Ford-Fulkerson method

- *The maximum-flow problem*: given a flow network *G* with source *s* and sink *t*, we wish to find a flow *f* of maximum value. $(\sum_{u \in V, f(u,v)>0} f(u,v))$
- important concepts:
 - residual networks
 - augmenting paths

cuts

Ford-Fulkerson-Method(*G*, *s*, *t*)

- 1. Initialize flow f to 0
- 2. while there exists an augmenting path p in the current residue graph
- 3. **do** augment flow f along p
- 4. **return** *f*

Residual networks

- Given a flow network and a flow, the *residual network* consists of edges that can admit more flow.
- Let *f* be a flow in G = (V, E) with source *s* and sink *t*. Consider a pair of vertices $u, v \in V$. The amount of *additional* flow we can push from *u* to *v* before exceeding the capacity c(u, v) is the *residual capacity* of (u, v), given by

$$c_f(u, v) = c(u, v) - f(u, v).$$

- Example

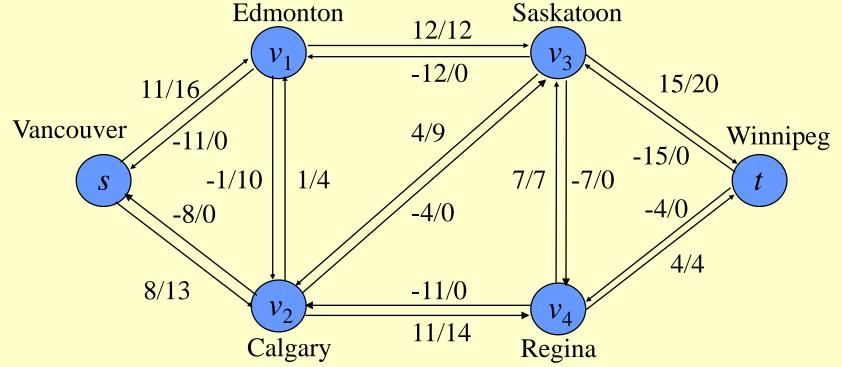
If c(u, v) = 16 and f(u, v) = 11, then $c_f(u, v) = 16 - 11 = 5$. If c(u, v) = 17 and f(u, v) = -4, then $c_f(u, v) = 17 - (-4) = 21$.

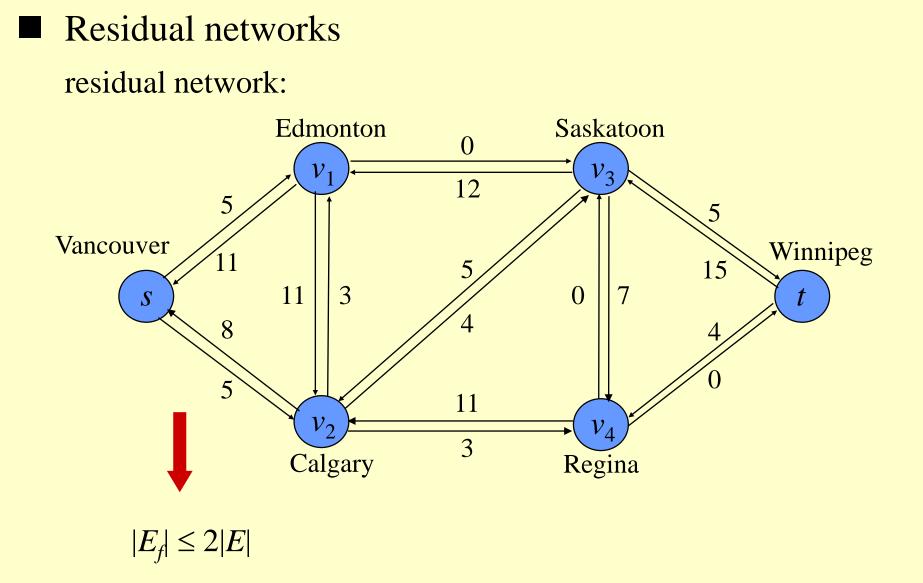
Residual networks

- Given a flow network G = (V, E) and a flow *f*, the *residual network* of *G* induced by *f* is $G_f = (V, E_f)$, where

 $E_f = \{(u, v) \in V \times V: c_f(u, v) > 0\}.$

- Example





Residual networks

Lemma 26.2 Let G = (V, E) be a network with source *s* and sink *t*, and let *f* be a flow in *G*. Let G_f be the residual network of *G* induced by *f*, and let *f* 'be a flow in G_f . Then, the flow sum *f* + *f* '(defined by (f + f')(u, v) = f(u, v) + f'(u, v)) is a flow in *G* with value |f + f'| = |f| + |f'|.

Proof. We must verify that the capacity constraints, skew symmetry, and flow conservation are obeyed.

Capacity constraint:

$$(f+f')(u, v) = f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + (c(u, v) - f(u, v))$$

$$= c(u, v).$$

Skew symmetry:

$$(f+f')(u, v) = f(u, v) + f'(u, v) = -f(v, u) - f'(v, u)$$

= - (f(v, u) + f'(v, u)) = - (f+f')(v, u).

Flow conservation:

$$\sum_{v \in V} (f + f')(u, v) = \sum_{v \in V} (f(u, v) + f'(u, v))$$

= $\sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v)$
= $0 + 0 = 0.$

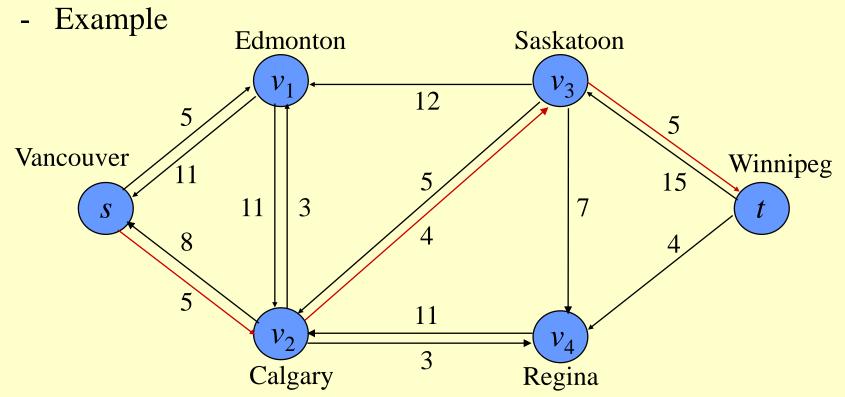
Finally, we have

$$\begin{aligned} |f+f'| &= \sum_{v \in V} (f+f')(s,v) = \sum_{v \in V} (f(s,v)+f'(s,v)) \\ &= \sum_{v \in V} f(s,v) + \sum_{v \in V} f'(s,v) \\ &= |f| + |f'| \end{aligned}$$

Yangjun Chen

Augmenting paths

- Given a flow network G = (V, E) and a flow f, an augmenting path p is a simple path from s to t in the residual network G_f such that the residue capacity of each edge on pis > 0.



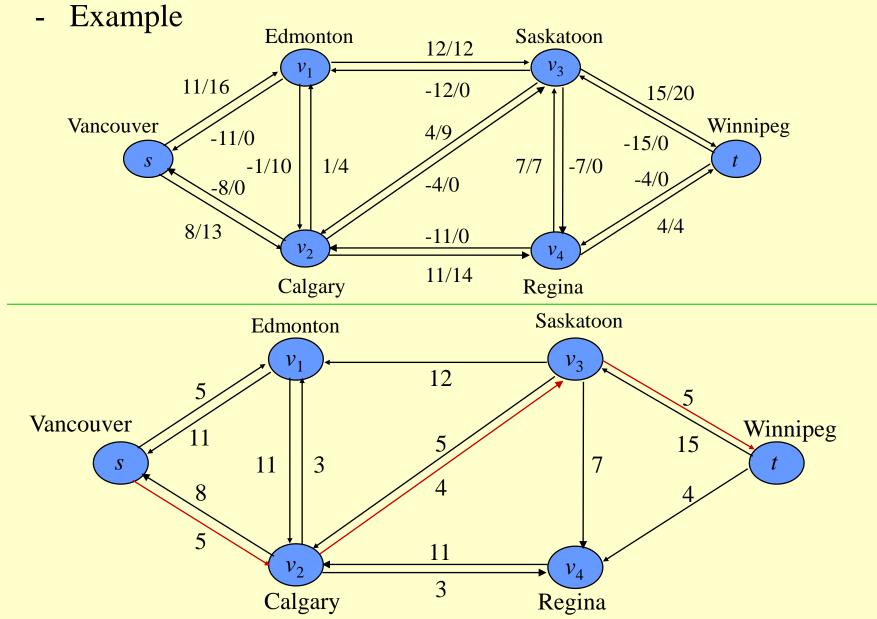
Augmenting paths

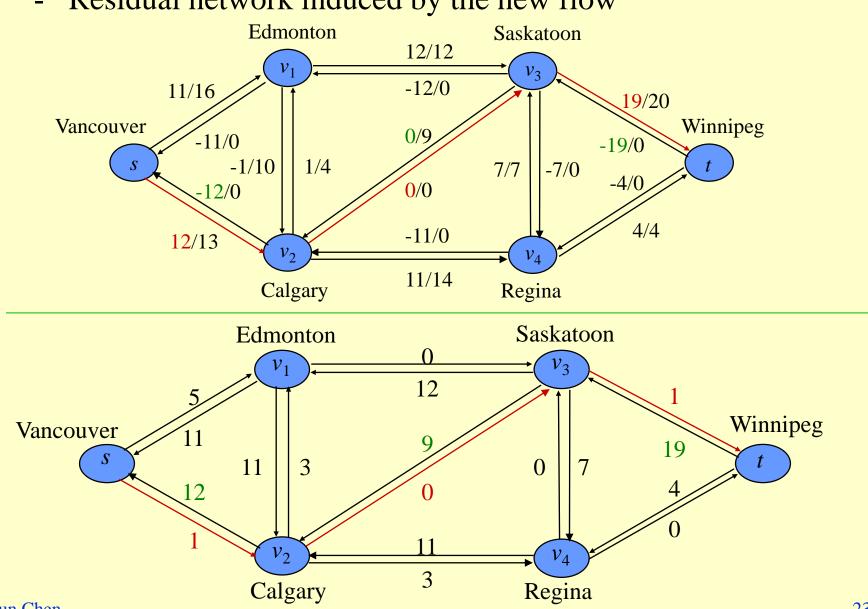
- In the above residual network, path $s \rightarrow v_2 \rightarrow v_3 \rightarrow t$ is an augmenting path.
- We can increase the flow through each edge of this path by up to 4 units without violating the capacity constraint since the smallest residual capacity on this path is $c_f(v_2, v_3) = 4$.
- residual capacity of an augmenting path

 $c_{f}(p) = \min\{c_{f}(u, v): (u, v) \text{ is on } p\}.$

- Lemma 26.3 Let G = (V, E) be a network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p: V \times V \rightarrow \mathbf{R}$ by
 - $f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ is on } p, \\ -c_f(p) & \text{if } (v, u) \text{ is on } p, \\ 0 & \text{otherwise.} \end{cases}$

Then, f_p is a flow in G_f with value $|f_p| = c_f(p)$.





Residual network induced by the new flow -

Yangjun Chen

Augmenting paths

- Corollary 26.4 Let G = (V, E) be a network, let f be a flow in G, and let p be an augmenting path in G_f. Let f_p be defined as in Lemma 26.3. Define a function f': V × V → R by f' = f + f_p.
 Then, f' is a flow in G with value |f'| = |f| + |f_p| > |f|. *Proof.* Immediately from Lemma 26.2 and 26.3.
- Ford-Fulkerson Algorithm
 - The Ford-Fulkerson method repeatedly augments the flow along augmenting paths until a maximum flow has been found.
 - A flow is maximum if and only if its residual network contains no augmenting path.

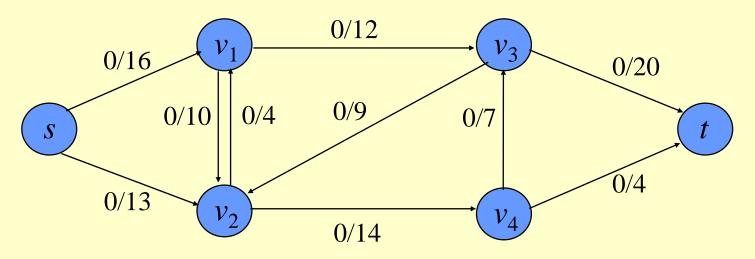
■ Ford-Fulkerson algorithm

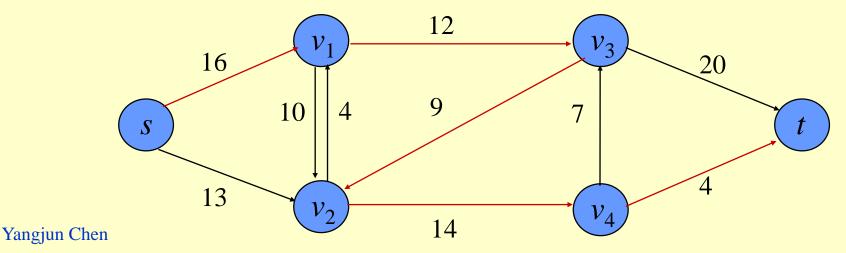
Ford_Fulkerson(G, s, t)

- 1. for each edge $(u, v) \in E(G)$
- 2. **do** $f(u, v) \leftarrow 0$
- 3. while there exists a path p from s to t in G_f
- 4. **do** $c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}$
- 5. **for** each edge (u, v) on p
- 6. **do** $f(u, v) \leftarrow f(u, v) + c_f(p)$

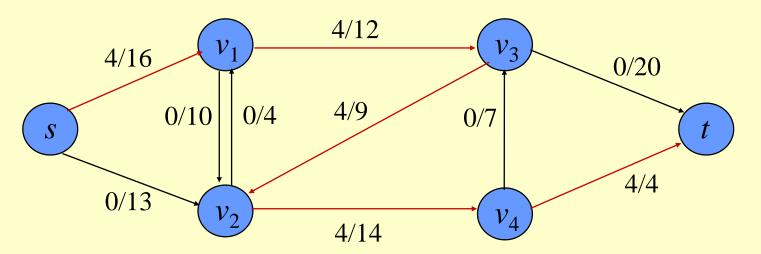
7.
$$f(v, u) \leftarrow f(v, u) - c_f(p)$$

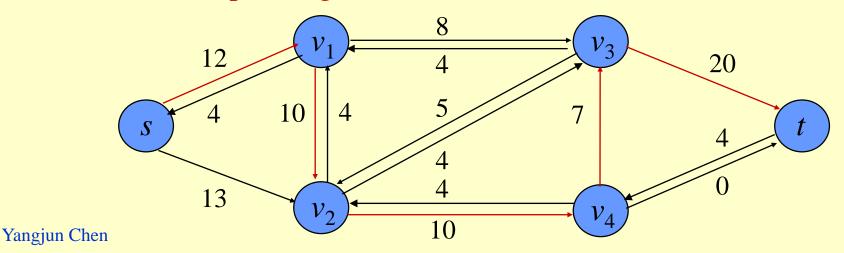
Initially, the flow on edge is 0.



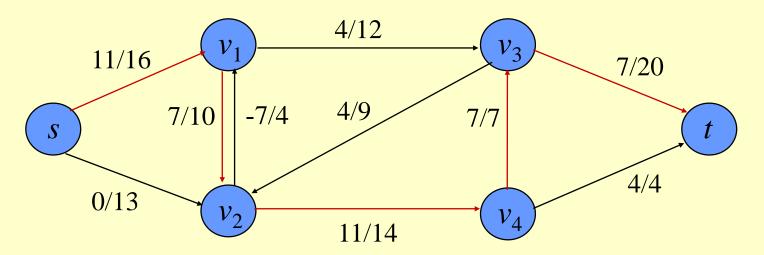


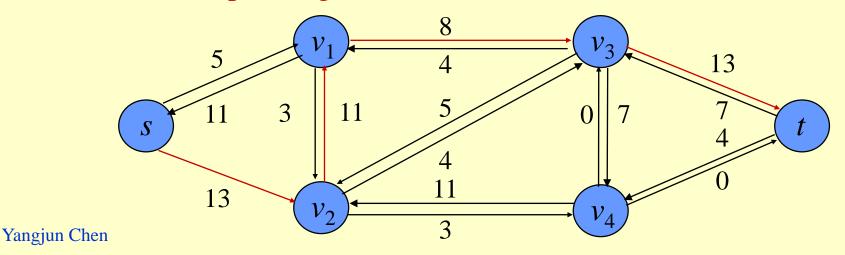
Pushing a flow 4 on *p*1 (an augmenting path)



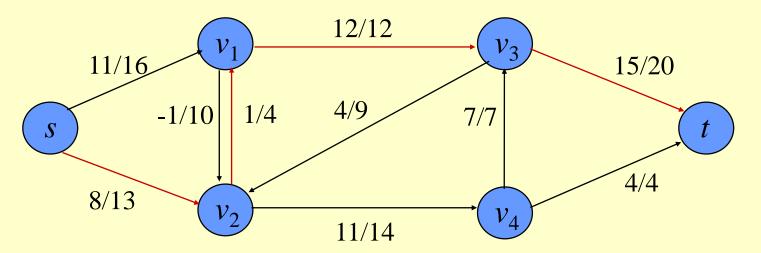


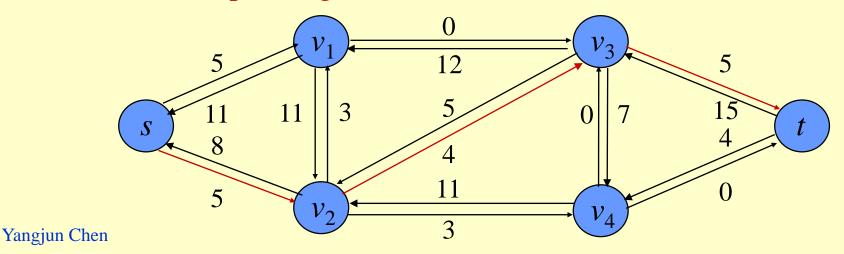
Pushing a flow 7 on *p*2 (an augmenting path)



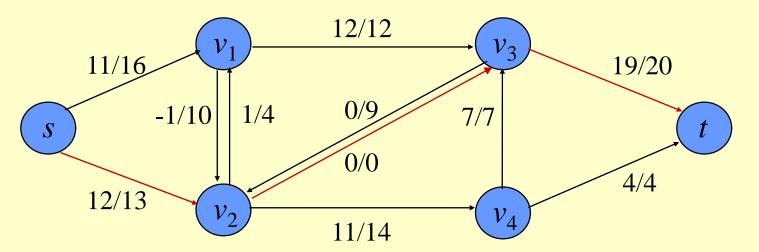


Pushing a flow 8 on *p*3 (an augmenting path)

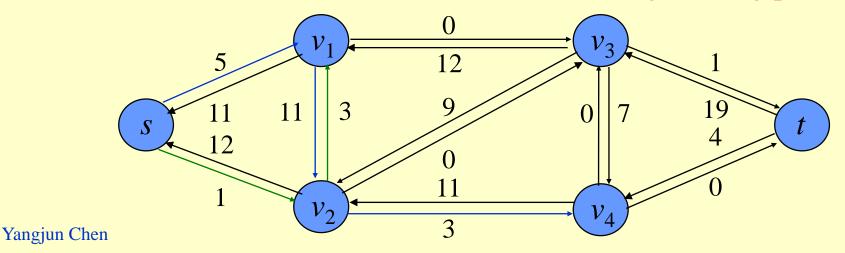




Pushing a flow 4 on *p*4 (an augmenting path)



The corresponding residual network: no augmenting paths!



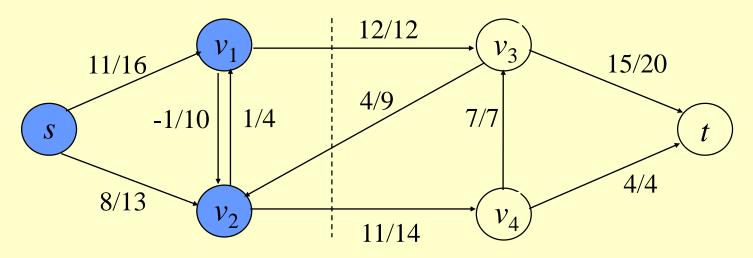
Analysis of Ford-Fulkerson algorithm

In practice, the maximum-flow problem often arises with integral capacities. If the capacities are rational numbers, an appropriate scaling transformation can be used to make them all integral. Under this assumption, a straightforward implementation of Ford-Fulkerson algorithm runs in time $O(E/f^*|)$, where f^* is the maximum flow found by the algorithm.

The analysis is as follows:

- 1. Lines 1-3 take time $\Theta(E)$.
- 2. The while-loop of lines 4-8 is executed at most $|f^*|$ times since the flow value increases by at least one unit in each iteration. Each iteration takes O(E) time.

- Cuts of flow networks
 - A cut (*S*, *T*) of flow network G = (V, E) is a partition of *V* into *S* and T = V S such that $s \in S$ and $t \in T$.
 - *net flow* across the cut (S, T) is defined to be f(S, T).

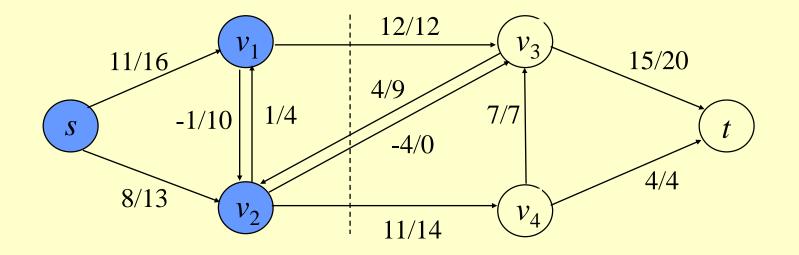


 $f(\{s, v_1, v_2\}, \{v_3, v_4, t\}) = f(v_1, v_3) + f(v_2, v_3) + f(v_2, v_4)$ = 12 + (-4) + 11 = 19.

The net flow across a cut (S, T) consists of positive flows in both direction.

Cuts of flow networks

- The capacity of the cut (S, T) is denoted by c(S, T), which is computed only from edges going from S to T.



 $c({s, v_1, v_2}, {v_3, v_4, t}) = c(v_1, v_3) + c(v_2, v_4)$ = 12 + 14 = 26.

Cuts of flow networks

- The following lemma shows that the net flow across any cut is the same, and it equals the value of the flow.

Lemma 26.5 Let *f* be a flow in a flow network *G* with source *s* and sink *t*, and let (S, T) be a cut of *G*. Then, the net flow across (S, T) is f(S, T) = |f|.

Proof. Note that f(S - s, V) = 0 by flow conservation. So we have

$$f(S, T) = f(S, V - S) = f(S, V) - f(S, S)$$

= f(S, V)
= f(S, V) + f(S - s, V)
= f(s, V)
= |f|.

Cuts of flow networks

- **Corollary 26.6** The value of any flow in a flow network *G* is bounded from above by the capacity of any cut of *G*. *Proof.*

$$|f| = f(S, T)$$

= $\sum_{u \in S} \sum_{v \in T} f(u, v)$
 $\leq \sum_{u \in S} \sum_{v \in T} c(u, v)$
= $c(S, T)$.

Theorem 26.7 If *f* is a flow network G = (V, E) with source *s* and sink *t*, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of *G*.

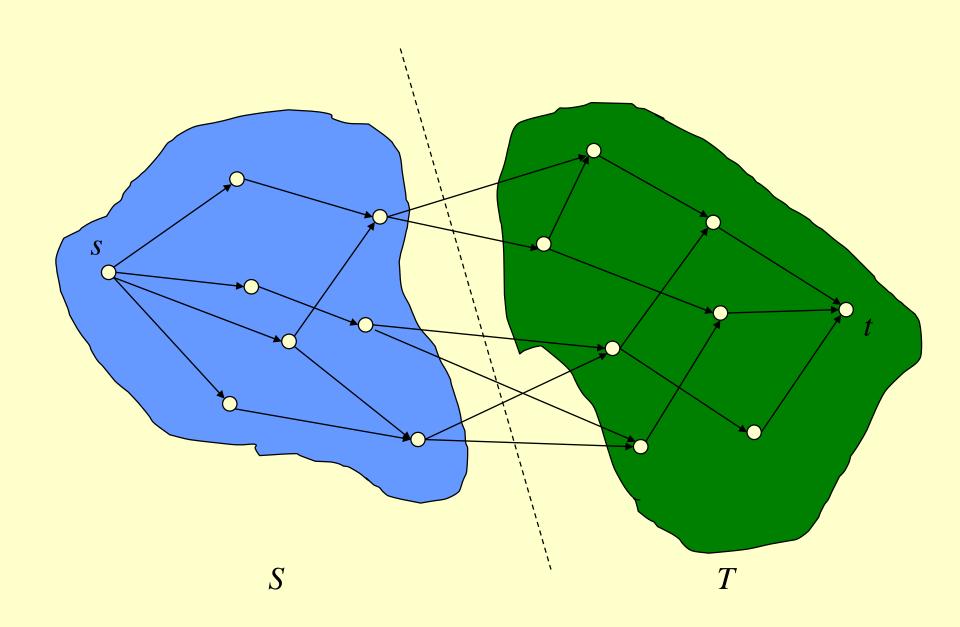
Proof. (1) \Rightarrow (2): Suppose for the sake of contradiction that *f* is a maximum flow in *G* but that G_f has an augmenting path *p*. Then, by Corollary 26.4, the flow sum $f + f_p$, where f_p is given by Lemma 26.3, is a flow in *G* with value strictly greater than |f|, contradicting the assumption that *f* is a maximum flow.

Theorem 26.7 If *f* is a flow network G = (V, E) with source *s* and sink *t*, then the following conditions are equivalent:

1. f is a maximum flow in G.

- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of *G*.

Proof. (2) ⇒ (3): Suppose that G_f has no augmenting path. Define $S = \{v \in V: \text{ there exists a path from } s \text{ to } v \text{ in } G_f\}$ and T = V - S. The partition (*S*, *T*) is a cut: we have $s \in S$ trivially and $t \notin S$ because there is no path from s to t in G_f . For each pair of vertices u and v such that $u \in S$ and $v \in T$, we have f(u, v) = c(u, v), since otherwise $(u, v) \in E_f$, which would place v in set *S*. By Lemma 26.5, therefore, |f| = f(S, T) = c(S, T).



Theorem 26.7 If *f* is a flow network G = (V, E) with source *s* and sink *t*, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (3) \Rightarrow (1): By Corollary 26.6, $|f| \le c(S, T)$ for all cuts (*S*, *T*). The condition |f| = c(S, T) thus implies that *f* is a maximum flow.