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Flow Network

• Flow network and flows

• Ford-Fulkerson method to find a maximum flow

- Residual networks

- Augmenting paths

- Cuts of flow networks

• Max-flow min-cut theorem
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Chapter 26: Maximum Flow

◼ A directed graph is interpreted as a flow network:

- A material coursing through a system from a 

source, where the material is produced, to a sink, 

where it is consumed.

- The source produces the material at some  steady 

rate, and the sink consumes the material at the 

same rate.

◼ Maximum flow problem: to compute the greatest 

rate at which material can be shipped from the 

source to the sink.
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◼Applications which can be modeled by the 

maximum flow

- Liquids flowing through pipes

- Parts through assembly lines

- current through electrical network

- information through communication network
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◼ Definition – flow networks and flows

- A flow network G = (V, E) is a directed graph in which each 

edge (u, v)  E has a nonnegative capacity c(u, v)  0.

- source: s; sink: t

- For every vertex v  V, there is a path:

s ↝ v ↝ t

- A flow in G is a real-valued function f: V  V → R that 

satisfies the following properties:

Capacity constraint: For all u, v  V, f(u, v)  c(u, v).

Skew symmetry: For all u, v  V, f(u, v) = - f(v, u).

Flow conservation: For all u  V – {s, t},                = 0.
Vv

vuf ),(
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◼Example
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The quantity f(u, v), which can be positive, zero, or negative, is

called the flow from vertex u to vertex v. The value of a flow f is

defined as the total flow out of the source

|f| = 
Vv

vsf ),(
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◼Example
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
Vv

vuf ),( = 0. The total flow out of a vertex is 0.


Vu

vuf ),( = 0. The total flow into a vertex is 0.
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The total positive flow entering a vertex v is defined by 

The total net flow at a vertex is the total positive flow leaving the

vertex minus the total positive flow entering the vertex.

The interpretation of the flow-conservation property:

• The total positive flowing entering a vertex other than the

source or sink must equal the total positive flow leaving

that vertex.

• For all u  V – {s, t},                = 0. That is, the total flow out

of u is 0.

For all v  V – {s, t},                = 0. That is, the total flow into

v is 0.


Vv

vuf ),(

  0),(, ),(vufVu vuf


Vu

vuf ),(
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◼Networks with multiple sources and sinks

- Introduce supersource s and supersink t
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◼ Working with flows

- implicit summation notation

f(X, Y) = 

The flow-conservation constraint can be re-expressed as

f(u, V) = 0 for all u  V – {s, t}.

- Lemma 26.1 Let G = (V, E) be a flow network, and let f be a 

flow in G. Then, the following equalities hold:

1. For all X  V, we have f(X, X) = 0.

2. For all X, Y  V, we have f(X, Y) = - f(Y, X).

3. For all X, Y, Z  V with X  Y = ø, we have the sums

f(X  Y, Z) = f(X, Z) + f(Y, Z),

f(Z, X  Y) = f(Z, X) + f(Z, Y).

 
 Xx Yy

yxf ),(
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◼ Working with flows

- |f| = f(V, t) 

|f| = f(s, V)

= f(V, V) – f(V – s, V)

= - f(V – s, V)

= f(V, V – s)

= f(V, t) + f(V, V – s – t)

= f(V, t)

1. For all X  V, we have f(X, X) = 0.

2. For all X, Y  V, we have

f(X, Y) = - f(Y, X).

3. For all X, Y, Z  V with X  Y = ø,

we have the sums

f(X  Y, Z) = f(X, Z) + f(Y, Z),

f(Z, X  Y) = f(Z, X) + f(Z, Y).
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◼ The Ford-Fulkerson method

- The maximum-flow problem: given a flow network G with 

source s and sink t, we wish to find a flow f of maximum 

value. (                         )

- important concepts:

residual networks

augmenting paths

cuts

Ford-Fulkerson-Method(G, s, t)

1. Initialize flow f to 0

2. while there exists an augmenting path p in the current 

residue graph

3. do augment flow f along p

4. return f

  0),(, ),(vufVu vuf
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◼ Residual networks

- Given a flow network and a flow, the residual network 

consists of edges that can admit more flow.

- Let f be a flow in G = (V, E) with source s and sink t. 

Consider a pair of vertices u, v  V. The amount of 

additional flow we can push from u to v before exceeding 

the capacity c(u, v) is the residual capacity of (u, v), given 

by

cf(u, v) = c(u, v) – f(u, v).

- Example

If c(u, v) = 16 and f(u, v) = 11, then cf(u, v) = 16 – 11 = 5.

If c(u, v) = 17 and f(u, v) = -4, then cf(u, v) = 17 – (-4) = 21.
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◼ Residual networks

- Given a flow network G = (V, E) and a flow f, the residual 

network of G induced by f is Gf = (V, Ef), where

Ef = {(u, v)  V  V: cf(u, v) > 0}.
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◼ Residual networks

residual network:

|Ef|  2|E|
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◼ Residual networks

Lemma 26.2 Let G = (V, E) be a network with source s and 

sink t, and let f be a flow in G. Let Gf be the residual network of 

G induced by f, and let f’ be a flow in Gf. Then, the flow sum f 

+ f’ (defined by (f + f’ )(u, v) = f (u, v) + f’ (u, v)) is a flow in G 

with value |f + f’| = |f | + |f’|.

Proof. We must verify that the capacity constraints, skew 

symmetry, and flow conservation are obeyed.

Capacity constraint:

(f + f ’)(u, v) = f (u, v) + f ’(u, v)

 f (u, v) + cf(u, v)

= f (u, v) + (c(u, v) - f(u, v))

= c(u, v).
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Skew symmetry:

(f + f ’)(u, v) = f (u, v) + f ’(u, v) = - f (v, u) - f ’(v, u)

=  - (f (v, u) + f ’(v, u)) = - (f + f ’)(v, u). 

Flow conservation:

=

=                +

= 0 + 0 = 0.

Finally, we have

|f + f ’|  =                         = 

=               + 

= |f |+ |f ’| 

 +
Vv

vuff ),)(( )),(),(( vufvuf
Vv

+



Vv

vuf ),( 
Vv

vuf ),('

 +
Vv

vsff ),)(( )),(),(( vsfvsf
Vv

+



Vv

vsf ),( 
Vv

vsf ),('
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◼ Augmenting paths

- Given a flow network G = (V, E) and a flow f, an 

augmenting path p is a simple path from s to t in the residual 

network Gf such that the residue capacity of each edge on p 

is > 0.
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◼ Augmenting paths

- In the above residual network, path s → v2 → v3 → t is an 

augmenting path.

- We can increase the flow through each edge of this path by 

up to 4 units without violating the capacity constraint since 

the smallest residual capacity on this path is cf(v2, v3) = 4.

- residual capacity of an augmenting path

cf(p) = min{cf(u, v): (u, v) is on p}.

- Lemma 26.3 Let G = (V, E) be a network, let f be a flow in 

G, and let p be an augmenting path in Gf. Define a function 

fp: V  V → R by

cf(p) if (u, v) is on p, 

fp(u, v) =  - cf(p) if (v, u) is on p,

0 otherwise.

Then, fp is a flow in Gf with value |fp| = cf(p).
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- Residual network induced by the new flow
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◼ Augmenting paths

- Corollary 26.4 Let G = (V, E) be a network, let f be a flow 

in G, and let p be an augmenting path in Gf. Let fp be defined 

as in Lemma 26.3. Define a function f ’: V  V → R by

f ’ = f + fp.

Then, f’ is a flow in G with value | f’| = |f | + |fp| > |f |.

Proof. Immediately from Lemma 26.2 and 26.3.

◼ Ford-Fulkerson Algorithm

- The Ford-Fulkerson method repeatedly augments the flow 

along augmenting paths until a maximum flow has been 

found.

- A flow is maximum if and only if its residual network 

contains no augmenting path.
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◼ Ford-Fulkerson algorithm

Ford_Fulkerson(G, s, t)

1. for each edge (u, v)  E(G)

2. do f(u, v)  0

3. while there exists a path p from s to t in Gf

4. do cf(p)  min{cf (u, v) : (u, v) is in p}

5. for each edge (u, v) on p

6. do f(u, v)  f(u, v) + cf(p)

7. f(v, u)  f(v, u) - cf(p)
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◼ Sample trace
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◼ Sample trace
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◼ Sample trace
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◼ Sample trace
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◼ Sample trace
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◼ Analysis of Ford-Fulkerson algorithm

In practice, the maximum-flow problem often arises with 

integral capacities. If the capacities are rational numbers, an 

appropriate scaling transformation can be used to make them all 

integral. Under this assumption, a straightforward 

implementation of Ford-Fulkerson algorithm runs in time 

O(E|f*|), where f* is the maximum flow found by the 

algorithm.

The analysis is as follows:

1. Lines 1-3 take time (E).

2. The while-loop of lines 4-8 is executed at most |f*| times 

since the flow value increases by at least one unit in each 

iteration. Each iteration takes O(E) time.
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Max-flow min-cut theorem



Yangjun Chen 3333

◼ Cuts of flow networks

- A cut (S, T) of flow network G = (V, E) is a partition of 

V into S and T = V – S such that s  S and t  T.

- net flow across the cut (S, T) is defined to be f(S, T).
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The net flow across a cut (S, T) consists of positive flows in

both direction.
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◼ Cuts of flow networks

- The capacity of the cut (S, T) is denoted by c(S, T), which is 

computed only from edges going from S to T.
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◼ Cuts of flow networks

- The following lemma shows that the net flow across any cut 

is the same, and it equals the value of the flow.

Lemma 26.5 Let f be a flow in a flow network G with source 

s and sink t, and let (S, T) be a cut of G. Then, the net flow 

across (S, T) is f(S, T) = |f|.

Proof. Note that f(S – s, V) = 0 by flow conservation. So we 

have

f(S, T) = f(S, V - S) = f(S, V) - f(S, S)

= f(S, V)

= f(s, V) + f(S – s, V)

= f(s, V)

= |f|. 
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◼ Cuts of flow networks

- Corollary 26.6 The value of any flow in a flow network G 

is bounded from above by the capacity of any cut of G. 

Proof. 

|f| = f(S, T) 

= 



= c(S, T).

 
 Su Tv

vuf ),(

 
 Su Tv

vuc ),(



Yangjun Chen 37

◼ Max-flow min-cut theorem

Theorem 26.7 If f is a flow network G = (V, E) with source s 

and sink t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf  contains no augmenting paths.

3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (1)  (2): Suppose for the sake of contradiction that f is 

a maximum flow in G but that Gf  has an augmenting path p. 

Then, by Corollary 26.4, the flow sum f + fp, where fp is given 

by Lemma 26.3, is a flow in G with value strictly greater than 

|f|, contradicting the assumption that f is a maximum flow.
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◼ Max-flow min-cut theorem

Theorem 26.7 If f is a flow network G = (V, E) with source s 

and sink t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf  contains no augmenting paths.

3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (2)  (3): Suppose that Gf  has no augmenting path. 

Define S = {v  V: there exists a path from s to v in Gf} and T = 

V – S. The partition (S, T) is a cut: we have s  S trivially and t 

 S because there is no path from s to t in Gf. For each pair of 

vertices u and v such that u  S and v  T, we have f(u, v) = 

c(u, v), since otherwise (u, v)  Ef, which would place v in set 

S. By Lemma 26.5, therefore, |f| = f(S, T) = c(S, T). 
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◼ Max-flow min-cut theorem

Theorem 26.7 If f is a flow network G = (V, E) with source s 

and sink t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf  contains no augmenting paths.

3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (3)  (1): By Corollary 26.6, |f|  c(S, T) for all cuts (S, 

T). The condition |f| = c(S, T) thus implies that f is a maximum 

flow. 


