
11/13/2023

Greedy Algorithms

• General principle of greedy algorithm

• Activity-selection problem

- Optimal substructure

- Recursive solution

- Greedy-choice property

- Recursive algorithm

• Minimum spanning trees

- Generic algorithm

- Definition: cuts, light edges, safe edges

- Prim’s algorithm

greedy - 2

Overview

 Like dynamic programming (DP), used to solve

optimization problems.

 Problems exhibit optimal substructure (like DP).

 Problems also exhibit the greedy-choice property.

» When we have a choice to make, make the one that looks

best right now.

» Make a locally optimal choice in hope of getting a globally

optimal solution.

greedy - 3

Greedy Strategy

 The choice that seems best at the moment is the one we

go with.

» Prove that when there is a choice to make, one of the optimal

choices is the greedy choice. Therefore, it’s always safe to

make the greedy choice.

» Show that all but one of the subproblems resulting from the

greedy choice are empty.

greedy - 4

Activity-selection Problem

 Input: Set S of n activities, a1, a2, …, an.

» si = start time of activity i.

» fi = finish time of activity i.

 Output: Subset A of maximum number of compatible

activities.

» Two activities are compatible, if their intervals don’t overlap.

Example: Activities in each line

are compatible.

greedy - 5

Example:

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 7 8 10 2 13

fi 4 5 6 7 8 9 10 11 12 13 14

{a3, a9, a11} consists of mutually compatible activities.

But it is not a maximal set.

{a1, a4, a8, a11} is a largest subset of mutually compatible activities.

Another largest subset is {a2, a6, a9, a11}.

a1

a2

a3

a5

a6

a7

a8

a9

a10

a11 a4

greedy - 6

Optimal Substructure

 Assume activities are sorted by finishing times.

» f1 f2 … fn.

 Suppose an optimal solution includes activity ak.

» This generates two subproblems.

» Selecting from a1, …, ak-1, activities compatible with one

another, and that finish before ak starts (compatible with ak).

» Selecting from ak+1, …, an, activities compatible with one

another, and that start after ak finishes.

» The solutions to the two subproblems must be optimal.

greedy - 7

Recursive Solution

 Let Sij = subset of activities in S that start after ai

finishes and finish before aj starts.

 Subproblems: Selecting maximum number of mutually

compatible activities from Sij.

 Let c[i, j] = size of maximum subset of mutually

compatible activities in Sij.

Recursive

Solution:

=
=

<<

f

f

ij
jki

ij

Skic

S
jic if-1] + c[k+1, j] + 1},[max{

if0
],[

The answer: c[1, n]

Running time: O(n3)

11/13/2023

a6

a7

a8 a4 S19:

S3,11:

a7

a8

a9

a1

a2

a3

a5

a6

a7

a8

a9

a11 a4

a10

greedy - 9

Greedy-choice Property

 The problem also exhibits the greedy-choice property.

» There is an optimal solution to the subproblem Sij, that
includes the activity with the smallest finish time in set Sij.

» Can be proved easily.

 Hence, there is an optimal solution to S that includes
a1.

 Therefore, make this greedy choice without solving
subproblems first and evaluating them.

 Solve the subproblem that ensues as a result of making
this greedy choice.

 Combine the greedy choice and the solution to the
subproblem.

11/13/2023

… …

a1

… …a1

Greedy choice property:

greedy - 11

Recursive Algorithm
Recursive-Activity-Selector (s, f, i, j)

1. m i + 1

2. while m < j and sm < fi

3. do m m + 1

4. if m < j

5. then return {am}

Recursive-Activity-Selector(s, f, m, j)

6. else return f

Initial Call: Recursive-Activity-Selector (s, f, 0, n + 1)

Complexity: (n)

Straightforward to convert the algorithm to an iterative one.

See the text.

ai

ai+1

ai+2

… …

ak

… …

aj

f0 = 0

11/13/2023

Example:

a1 a2

a3 a4

a5 a6 a7

sorted sequence according to f values:

a5 a1 a3 a6 a2 a4 a7

11/13/2023

a5 a1 a3 a6 a2 a4 a7

step 1:

result = {a5}. Removed all those activities not compatible

with a5.

a6 a2 a4 a7

step 2:

result = {a5, a6}. Removed all those activities not compatible

with a6.

step 3:

result = {a5, a6, a4}.

a4 a7

a2

a4

a6 a7

greedy - 14

Typical Steps

 Cast the optimization problem as one in which we
make a choice and are left with one subproblem to
solve.

 Prove that there’s always an optimal solution that
makes the greedy choice, so that the greedy choice is
always safe.

 Show that greedy choice and optimal solution to
subproblem optimal solution to the problem.

 Make the greedy choice and solve top-down.

 May have to preprocess input to put it into greedy
order.

» Example: Sorting activities by finish time.

greedy - 15

Elements of Greedy Algorithms

 Greedy-choice Property.

» A globally optimal solution can be arrived at by making a

locally optimal (greedy) choice.

 Optimal Substructure.

greedy - 16

Minimum Spanning Trees

• Given: Connected, undirected, weighted graph, G

• Find: Minimum - weight spanning tree, T

• Example:

b c

a

d e f

5

11

0

3
1

7

-3

2

a

b c

fed

5

3 -3

1

0

Acyclic subset of edges(E) that connects

all vertices of G.

w(T) =
Tvu

vuw
),(

),(

weight of T:

greedy - 17

b c

a

d e f

11

0

7

-3

2

Minimum Spanning Trees

b c

a

d e f

5

0

3

7

-3

b c

a

d e f

11

0

1

7

2

b c

a

d e f

5

11

3
1 -3

greedy - 18

Generic Algorithm

• A - subset of some Minimum Spanning tree (MST).

• “Grow” A by adding “safe” edges one by one.

• Edge is “safe” if it can be added to A without destroying this

invariant.

A := ;

while A not complete tree do

find a safe edge (u, v);

A := A {(u, v)}

od

A T

A + e T

add a safe edge

e to A

T may be different from T.

greedy - 19

 cut partitions vertices into

disjoint sets, S and V – S.

b ca

d e f

5

11

0

3
1

7

-3

2

a light edge crossing cut

(could be more than one)

Definitions

cut that respects an edge set A = {(a, b), (b, c)}

• Cut – A cut (S, V – S) of an undirected graph G = (V, E) is a

partition of V.

• A cut respects a set A of edges if no edge in A crosses the cut.

• An edge is a light edge crossing a cut if its weight is the minimum

of any edge crossing the cut.

greedy - 20

Proof:

Let T be an MST that includes A.

Case 1: (u, v) in T. We’re done.

Case 2: (u, v) not in T. We have the following:

u y

x

v

edge in A

cut

Edges in T

are shown in blue.

Theorem 23.1

Theorem 23.1: Let (S, V - S) be any cut that respects A, and let (u, v)

be a light edge crossing (S, V - S). Then, (u, v) is safe for A.

(x, y) (in T) crosses cut.

Let T´ = {T - {(x, y)}} {(u, v)}.

Because (u, v) is light for cut,

w(u, v) w(x, y). Thus,

w(T´) = w(T) - w(x, y) + w(u, v) w(T).

Hence, T´ is also an MST.

So, (u, v) is safe for A.

greedy - 21

In general, A will consist of several connected components (CC).

Corollary

Corollary: If (u, v) is a light edge connecting one CC in GA = (V, A)

to another CC in GA, then (u, v) is safe for A.

u

v

greedy - 22

Kruskal’s Algorithm

 Starts with each vertex in its own component.

 Repeatedly merges two components into one by choosing a light

edge that connects them (i.e., a light edge crossing the cut

between them).

 Scans the set of edges in monotonically increasing order by

weight.

 Uses a disjoint-set data structure to determine whether an edge

connects vertices in different components.

greedy - 23

Prim’s Algorithm
 Builds one tree. So A is always a tree.

 Starts from an arbitrary “root” r.

 At each step, adds a light edge crossing cut (VA, V - VA) to A.

» VA = vertices that A is incident on.

VA

V - VA

cut

greedy - 24

Prim’s Algorithm
 Uses a priority queue Q to find a light edge quickly.

 Each object in Q is a vertex in V - VA.

Min-heap as a binary

tree.
11

14 13

18 17 19 20

18 24 26

1

2 3

4 5 6 7

8 9 10

greedy - 25

 key(v) (key of v V - VA) is minimum weight of any

edge (u, v), where u VA.

 Then the vertex returned by Extract-Min operation is v

such that there exists u VA and (u, v) is light edge

crossing (VA, V - VA).

 key(v) is if v is not adjacent to any vertex in VA.

Prim’s Algorithm

cut

v

u1

u2
u3

w1

w2

w3

key(v) = min{w1, w2, w3}

VA V - VA

v’
v’’ key(v’) = key(v’’) =

w4 w5

greedy - 26

Q := V[G];

for each u Q do

key[u] :=

od;

key[r] := 0;

[r] := NIL;

while Q do

u := Extract-Min(Q);

for each v Adj[u] do

if v Q w(u, v) < key[v] then

[v] := u;

key[v] := w(u, v)

fi

od

od

Complexity:
Using binary heaps: O(E lgV).

Initialization – O(V).

Building initial queue – O(V).

V Extract-Min’s – O(V lgV).

E Decrease-Key’s – O(E lgV).

Using min-heaps: O(E + VlgV).

(see book)

Prim’s Algorithm

Note: A = {([v], v) : v V - {r} - Q}.

decrease-key operation

11/13/2023

cut

v

u1

u2
u3

w1

w2

w3

key(v) = min{w1, w2, w3}

VA V - VA

v’
v’’ key(v’) = key(v’’) =

w4

Assume that u3 is u, chosen by the extract-min operation.

key(v) should be changed:

key(v) min{key(v), w3}.

w5

greedy - 28

cut

v
u1

u2
u3

VA V - VA

v’
v’’

w4

w5

greedy - 29

Example of Prim’s Algorithm

b/ c/a/0

d/ e/ f/

5

11

0

3 1

7

-3

2

Q = a b c d e f

0

Not in tree

a

b c

d e f

0

Q := V[G];

for each u Q do

key[u] :=

od;

key[r] := 0;

[r] := NIL;

while Q do

u := Extract-Min(Q);

for each v Adj[u] do

if v Q w(u, v) < key[v]

then

[v] := u;

key[v] := w(u, v)

fi

od

od

greedy - 30

Example of Prim’s Algorithm

b/5 c/a/0

d/11 e/ f/

5

11

0

3 1

7

-3

2

Q = b d c e f

5 11

a

b c

d e f

0

5

11

b

d c

f e

5

11

greedy - 31

Example of Prim’s Algorithm

Q = e c d f

3 7 11

b/5 c/7a/0

d/11 e/3 f/

5

11

0

3 1

7

-3

2

b

d c

f e

5

11

3

7

e

d c

f

3

11 7

greedy - 32

Example of Prim’s Algorithm

Q = d c f

0 1 2

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

e

d c

f

3

0 1

2

d

f c

0

2 1

greedy - 33

Example of Prim’s Algorithm

Q = c f

1 2

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

d

f c

0

2 1

c

f

1

2

greedy - 34

Example of Prim’s Algorithm

Q = f

-3

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

c

f

1

-3

f -3

greedy - 35

Example of Prim’s Algorithm

Q =

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

greedy - 36

Example of Prim’s Algorithm

0

b/5 c/1a/0

d/0 e/3 f/-3

5

3
1 -3

