
11/13/2023

Greedy Algorithms

• General principle of greedy algorithm

• Activity-selection problem

- Optimal substructure

- Recursive solution

- Greedy-choice property

- Recursive algorithm

• Minimum spanning trees

- Generic algorithm

- Definition: cuts, light edges, safe edges

- Prim’s algorithm

greedy - 2

Overview

 Like dynamic programming (DP), used to solve

optimization problems.

 Problems exhibit optimal substructure (like DP).

 Problems also exhibit the greedy-choice property.

» When we have a choice to make, make the one that looks

best right now.

» Make a locally optimal choice in hope of getting a globally

optimal solution.

greedy - 3

Greedy Strategy

 The choice that seems best at the moment is the one we

go with.

» Prove that when there is a choice to make, one of the optimal

choices is the greedy choice. Therefore, it’s always safe to

make the greedy choice.

» Show that all but one of the subproblems resulting from the

greedy choice are empty.

greedy - 4

Activity-selection Problem

 Input: Set S of n activities, a1, a2, …, an.

» si = start time of activity i.

» fi = finish time of activity i.

 Output: Subset A of maximum number of compatible

activities.

» Two activities are compatible, if their intervals don’t overlap.

Example: Activities in each line

are compatible.

greedy - 5

Example:

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 7 8 10 2 13

fi 4 5 6 7 8 9 10 11 12 13 14

{a3, a9, a11} consists of mutually compatible activities.

But it is not a maximal set.

{a1, a4, a8, a11} is a largest subset of mutually compatible activities.

Another largest subset is {a2, a6, a9, a11}.

a1

a2

a3

a5

a6

a7

a8

a9

a10

a11 a4

greedy - 6

Optimal Substructure

 Assume activities are sorted by finishing times.

» f1  f2  …  fn.

 Suppose an optimal solution includes activity ak.

» This generates two subproblems.

» Selecting from a1, …, ak-1, activities compatible with one

another, and that finish before ak starts (compatible with ak).

» Selecting from ak+1, …, an, activities compatible with one

another, and that start after ak finishes.

» The solutions to the two subproblems must be optimal.

greedy - 7

Recursive Solution

 Let Sij = subset of activities in S that start after ai

finishes and finish before aj starts.

 Subproblems: Selecting maximum number of mutually

compatible activities from Sij.

 Let c[i, j] = size of maximum subset of mutually

compatible activities in Sij.

Recursive

Solution: 








=
=

<<

f

f

ij
jki

ij

Skic

S
jic if-1] + c[k+1, j] + 1},[max{

if0
],[

The answer: c[1, n]

Running time: O(n3)

11/13/2023

a6

a7

a8 a4 S19:

S3,11:

a7

a8

a9

a1

a2

a3

a5

a6

a7

a8

a9

a11 a4

a10

greedy - 9

Greedy-choice Property

 The problem also exhibits the greedy-choice property.

» There is an optimal solution to the subproblem Sij, that
includes the activity with the smallest finish time in set Sij.

» Can be proved easily.

 Hence, there is an optimal solution to S that includes
a1.

 Therefore, make this greedy choice without solving
subproblems first and evaluating them.

 Solve the subproblem that ensues as a result of making
this greedy choice.

 Combine the greedy choice and the solution to the
subproblem.

11/13/2023

… …

a1

… …a1

Greedy choice property:

greedy - 11

Recursive Algorithm
Recursive-Activity-Selector (s, f, i, j)

1. m  i + 1

2. while m < j and sm < fi

3. do m  m + 1

4. if m < j

5. then return {am} 

Recursive-Activity-Selector(s, f, m, j)

6. else return f

Initial Call: Recursive-Activity-Selector (s, f, 0, n + 1)

Complexity: (n)

Straightforward to convert the algorithm to an iterative one.

See the text.

ai

ai+1

ai+2

… …

ak

… …

aj

f0 = 0

11/13/2023

Example:

a1 a2

a3 a4

a5 a6 a7

sorted sequence according to f values:

a5 a1 a3 a6 a2 a4 a7

11/13/2023

a5 a1 a3 a6 a2 a4 a7

step 1:

result = {a5}. Removed all those activities not compatible

with a5.

a6 a2 a4 a7

step 2:

result = {a5, a6}. Removed all those activities not compatible

with a6.

step 3:

result = {a5, a6, a4}.

a4 a7

a2

a4

a6 a7

greedy - 14

Typical Steps

 Cast the optimization problem as one in which we
make a choice and are left with one subproblem to
solve.

 Prove that there’s always an optimal solution that
makes the greedy choice, so that the greedy choice is
always safe.

 Show that greedy choice and optimal solution to
subproblem  optimal solution to the problem.

 Make the greedy choice and solve top-down.

 May have to preprocess input to put it into greedy
order.

» Example: Sorting activities by finish time.

greedy - 15

Elements of Greedy Algorithms

 Greedy-choice Property.

» A globally optimal solution can be arrived at by making a

locally optimal (greedy) choice.

 Optimal Substructure.

greedy - 16

Minimum Spanning Trees

• Given: Connected, undirected, weighted graph, G

• Find: Minimum - weight spanning tree, T

• Example:

b c

a

d e f

5

11

0

3
1

7

-3

2

a

b c

fed

5

3 -3

1

0

Acyclic subset of edges(E) that connects

all vertices of G.

w(T) = 
Tvu

vuw
),(

),(

weight of T:

greedy - 17

b c

a

d e f

11

0

7

-3

2

Minimum Spanning Trees

b c

a

d e f

5

0

3

7

-3

b c

a

d e f

11

0

1

7

2

b c

a

d e f

5

11

3
1 -3

greedy - 18

Generic Algorithm

• A - subset of some Minimum Spanning tree (MST).

• “Grow” A by adding “safe” edges one by one.

• Edge is “safe” if it can be added to A without destroying this

invariant.

A := ;

while A not complete tree do

find a safe edge (u, v);

A := A  {(u, v)}

od

A  T

A + e  T

add a safe edge

e to A

T may be different from T.

greedy - 19

 cut partitions vertices into

disjoint sets, S and V – S.

b ca

d e f

5

11

0

3
1

7

-3

2

a light edge crossing cut

(could be more than one)

Definitions

cut that respects an edge set A = {(a, b), (b, c)}

• Cut – A cut (S, V – S) of an undirected graph G = (V, E) is a

partition of V.

• A cut respects a set A of edges if no edge in A crosses the cut.

• An edge is a light edge crossing a cut if its weight is the minimum

of any edge crossing the cut.

greedy - 20

Proof:

Let T be an MST that includes A.

Case 1: (u, v) in T. We’re done.

Case 2: (u, v) not in T. We have the following:

u y

x

v

edge in A

cut

Edges in T

are shown in blue.

Theorem 23.1

Theorem 23.1: Let (S, V - S) be any cut that respects A, and let (u, v)

be a light edge crossing (S, V - S). Then, (u, v) is safe for A.

(x, y) (in T) crosses cut.

Let T´ = {T - {(x, y)}}  {(u, v)}.

Because (u, v) is light for cut,

w(u, v)  w(x, y). Thus,

w(T´) = w(T) - w(x, y) + w(u, v)  w(T).

Hence, T´ is also an MST.

So, (u, v) is safe for A.

greedy - 21

In general, A will consist of several connected components (CC).

Corollary

Corollary: If (u, v) is a light edge connecting one CC in GA = (V, A)

to another CC in GA, then (u, v) is safe for A.

u

v

greedy - 22

Kruskal’s Algorithm

 Starts with each vertex in its own component.

 Repeatedly merges two components into one by choosing a light

edge that connects them (i.e., a light edge crossing the cut

between them).

 Scans the set of edges in monotonically increasing order by

weight.

 Uses a disjoint-set data structure to determine whether an edge

connects vertices in different components.

greedy - 23

Prim’s Algorithm
 Builds one tree. So A is always a tree.

 Starts from an arbitrary “root” r.

 At each step, adds a light edge crossing cut (VA, V - VA) to A.

» VA = vertices that A is incident on.

VA

V - VA

cut

greedy - 24

Prim’s Algorithm
 Uses a priority queue Q to find a light edge quickly.

 Each object in Q is a vertex in V - VA.

Min-heap as a binary

tree.
11

14 13

18 17 19 20

18 24 26

1

2 3

4 5 6 7

8 9 10

greedy - 25

 key(v) (key of v  V - VA) is minimum weight of any

edge (u, v), where u  VA.

 Then the vertex returned by Extract-Min operation is v

such that there exists u  VA and (u, v) is light edge

crossing (VA, V - VA).

 key(v) is  if v is not adjacent to any vertex in VA.

Prim’s Algorithm

cut

v

u1

u2
u3

w1

w2

w3

key(v) = min{w1, w2, w3}

VA V - VA

v’
v’’ key(v’) = key(v’’) = 

w4 w5

greedy - 26

Q := V[G];

for each u  Q do

key[u] := 

od;

key[r] := 0;

[r] := NIL;

while Q   do

u := Extract-Min(Q);

for each v  Adj[u] do

if v  Q  w(u, v) < key[v] then

[v] := u;

key[v] := w(u, v)

fi

od

od

Complexity:
Using binary heaps: O(E lgV).

Initialization – O(V).

Building initial queue – O(V).

V Extract-Min’s – O(V lgV).

E Decrease-Key’s – O(E lgV).

Using min-heaps: O(E + VlgV).

(see book)

Prim’s Algorithm

Note: A = {([v], v) : v  V - {r} - Q}.

decrease-key operation

11/13/2023

cut

v

u1

u2
u3

w1

w2

w3

key(v) = min{w1, w2, w3}

VA V - VA

v’
v’’ key(v’) = key(v’’) = 

w4

Assume that u3 is u, chosen by the extract-min operation.

key(v) should be changed:

key(v)  min{key(v), w3}.

w5

greedy - 28

cut

v
u1

u2
u3

VA V - VA

v’
v’’

w4

w5

greedy - 29

Example of Prim’s Algorithm

b/ c/a/0

d/ e/ f/

5

11

0

3 1

7

-3

2

Q = a b c d e f

0  

Not in tree

a

b c

d e f

0



 





Q := V[G];

for each u  Q do

key[u] := 

od;

key[r] := 0;

[r] := NIL;

while Q   do

u := Extract-Min(Q);

for each v  Adj[u] do

if v  Q  w(u, v) < key[v]

then

[v] := u;

key[v] := w(u, v)

fi

od

od

greedy - 30

Example of Prim’s Algorithm

b/5 c/a/0

d/11 e/ f/

5

11

0

3 1

7

-3

2

Q = b d c e f

5 11  

a

b c

d e f

0

5

11 





b

d c

f e

5

11







greedy - 31

Example of Prim’s Algorithm

Q = e c d f

3 7 11 

b/5 c/7a/0

d/11 e/3 f/

5

11

0

3 1

7

-3

2

b

d c

f e

5

11

3

7



e

d c

f

3

11 7



greedy - 32

Example of Prim’s Algorithm

Q = d c f

0 1 2

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

e

d c

f

3

0 1

2

d

f c

0

2 1

greedy - 33

Example of Prim’s Algorithm

Q = c f

1 2

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

d

f c

0

2 1

c

f

1

2

greedy - 34

Example of Prim’s Algorithm

Q = f

-3

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

c

f

1

-3

f -3

greedy - 35

Example of Prim’s Algorithm

Q = 

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

greedy - 36

Example of Prim’s Algorithm

0

b/5 c/1a/0

d/0 e/3 f/-3

5

3
1 -3

