Greedy Algorithms

- General principle of greedy algorithm
- Activity-selection problem
 - Optimal substructure
 - Recursive solution
 - Greedy-choice property
 - Recursive algorithm
- Minimum spanning trees
 - Generic algorithm
 - Definition: cuts, light edges, safe edges
 - Prim's algorithm

11/13/2023

- Like dynamic programming (DP), used to solve optimization problems.
- Problems exhibit optimal substructure (like DP).
- Problems also exhibit the **greedy-choice** property.
 - » When we have a choice to make, make the one that looks best *right now*.
 - » Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy Strategy

- The choice that seems best at the moment is the one we go with.
 - » Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it's always safe to make the greedy choice.
 - » Show that all but one of the subproblems resulting from the greedy choice are empty.

Activity-selection Problem

- <u>Input:</u> Set *S* of *n* activities, $a_1, a_2, ..., a_n$.
 - » s_i = start time of activity *i*.
 - » f_i = finish time of activity *i*.
- <u>Output:</u> Subset *A* of maximum number of compatible activities.
 - » Two activities are compatible, if their intervals don't overlap.

Example:

<u>i</u>	1	2	3	4	5	6	7	8	9	10	11
\underline{S}_{i}	1	3	0	5	3	5	7	8	10	2	13
f_{i-}	4	5	6	7	8	9	10	11	12	13	14

 $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities. But it is not a maximal set.

 $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities. Another largest subset is $\{a_2, a_6, a_9, a_{11}\}$.

greedy - 5

Optimal Substructure

- Assume activities are sorted by finishing times.
 » f₁ ≤ f₂ ≤ ... ≤ f_n.
- Suppose an optimal solution includes activity a_k .
 - » This generates two subproblems.
 - » Selecting from $a_1, ..., a_{k-1}$, activities compatible with one another, and that finish before a_k starts (compatible with a_k).
 - » Selecting from $a_{k+1}, ..., a_n$, activities compatible with one another, and that start after a_k finishes.
 - » The solutions to the two subproblems must be optimal.

Recursive Solution

- Let S_{ij} = subset of activities in *S* that start after a_i finishes and finish before a_i starts.
- Subproblems: Selecting maximum number of mutually compatible activities from S_{ij} .
- Let c[i, j] = size of maximum subset of mutually compatible activities in S_{ij}.

Recursive Solution: $c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \phi \\ \max_{i \le k \le j} \{c[i, k-1] + c[k+1, j] + 1\} & \text{if } S_{ij} \neq \phi \end{cases}$

The answer: c[1, n]Running time: $O(n^3)$

Greedy-choice Property

- The problem also exhibits the greedy-choice property.
 - » There is an optimal solution to the subproblem S_{ij} , that includes the activity with the smallest finish time in set S_{ij} .
 - » Can be proved easily.
- Hence, there is an optimal solution to S that includes
 a₁.
- Therefore, make this greedy choice without solving subproblems first and evaluating them.
- Solve the subproblem that ensues as a result of making this greedy choice.
- Combine the greedy choice and the solution to the subproblem.

Greedy choice property:

Assume that $\{a_{i_1}, ..., a_{i_k}\}$ be a maximal set of compatible activities. Then, $\{a_1, ..., a_{i_k}\}$ must be a maximum set of compatible activities.

Recursive Algorithm

Straightforward to convert the algorithm to an iterative one. See the text.

greedy - 11

Example:

sorted sequence according to *f* values:

$$a_5 \longrightarrow a_1 \longrightarrow a_3 \longrightarrow a_6 \longrightarrow a_2 \longrightarrow a_4 \longrightarrow a_7$$

11/13/2023

$$a_5 \longrightarrow a_1 \longrightarrow a_3 \longrightarrow a_6 \longrightarrow a_2 \longrightarrow a_4 \longrightarrow a_7$$

step 1:

result = $\{a_5\}$. Removed all those activities not compatible with a_5 .

$$a_6 \longrightarrow a_2 \longrightarrow a_4 \longrightarrow a_7$$

step 2:

result = $\{a_5, a_6\}$. Removed all those activities not compatible with a_6 . a_2

result = $\{a_5, a_6, a_4\}$.

11/13/2023

Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there's always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- Show that greedy choice and optimal solution to subproblem ⇒ optimal solution to the problem.
- Make the greedy choice and **solve top-down**.
- May have to preprocess input to put it into greedy order.
 - » <u>Example:</u> Sorting activities by finish time.

Elements of Greedy Algorithms

- Greedy-choice Property.
 - » A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Optimal Substructure.

Minimum Spanning Trees

- Given: Connected, undirected, weighted graph, G
- Find: Minimum weight spanning tree, T
- Example:

Acyclic subset of edges(E) that connects all vertices of G.

weight of *T*:

$$w(T) = \sum_{(\overline{u}, v) \in T} w(u, v)$$

Minimum Spanning Trees

Generic Algorithm

- *A* subset of some Minimum Spanning tree (MST).
- "Grow" *A* by adding "safe" edges one by one.
- Edge is "safe" if it can be added to A without destroying this invariant.

T′may be different from *T*.

Definitions

- Cut A cut (S, V S) of an undirected graph G = (V, E) is a partition of *V*.
- A cut respects a set A of edges if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

cut that **respects** an edge set $A = \{(a, b), (b, c)\}$

Theorem 23.1

Theorem 23.1: Let (S, V - S) be any cut that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, (u, v) is safe for A.

Proof:

Let *T* be an *MST* that includes *A*.

<u>Case 1:</u> (u, v) in *T*. We're done.

<u>Case 2:</u> (u, v) not in *T*. We have the following:

(x, y) (in *T*) crosses cut. Let $T' = \{T - \{(x, y)\}\} \cup \{(u, v)\}.$

Because (u, v) is light for cut, $w(u, v) \le w(x, y)$. Thus, $w(T') = w(T) - w(x, y) + w(u, v) \le w(T)$.

Hence, T' is also an MST. So, (u, v) is safe for A.

greedy - 20

In general, A will consist of several connected components (CC).

<u>Corollary</u>: If (u, v) is a light edge connecting one CC in $G_A = (V, A)$ to another CC in G_A , then (u, v) is safe for A.

Kruskal's Algorithm

- Starts with each vertex in its own component.
- Repeatedly merges two components into one by choosing a light edge that connects them (i.e., a light edge crossing the cut between them).
- Scans the set of edges in monotonically increasing order by weight.
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

- Builds **one tree**. So *A* is always a tree.
- Starts from an arbitrary "root" *r*.
- At each step, adds a light edge crossing cut $(V_A, V V_A)$ to A.

» V_A = vertices that A is incident on.

- implemented as a min-heap • Uses a **priority queue** *Q* to find a light edge quickly.
- Each object in Q is a vertex in V V_A .

- *key*(*v*) (key of *v* ∈ *V V_A*) is minimum weight of any edge (*u*, *v*), where *u* ∈ *V_A*.
- Then the vertex returned by Extract-Min operation is v such that there exists $u \in V_A$ and (u, v) is light edge crossing $(V_A, V V_A)$.
- key(v) is ∞ if v is not adjacent to any vertex in V_A .

Q := V[G];for each $u \in Q$ do $key[u] := \infty$ od; key[r] := 0; $\pi[r] := NIL;$ while $Q \neq \emptyset$ do u := Extract-Min(Q);for each $v \in Adi[u]$ do if $v \in Q \land w(u, v) < key[v]$ then $\pi[v] := u;$ key[v] := w(u, v)fi od od

Complexity:

Using binary heaps: $O(E \lg V)$. Initialization – O(V). Building initial queue – O(V). V Extract-Min's – $O(V \lg V)$. E Decrease-Key's – $O(E \lg V)$.

Using min-heaps: $O(E + V \lg V)$. (see book)

decrease-key operation

Note: $A = \{(\pi[v], v) : v \in V - \{r\} - Q\}.$

Assume that u_3 is u, chosen by the *extract-min* operation. key(v) should be changed:

 $key(v) \leftarrow \min\{key(v), w_3\}.$

greedy - 30

