Greedy Algorithms

- General principle of greedy algorithm
- Activity-selection problem
- Optimal substructure
- Recursive solution
- Greedy-choice property
- Recursive algorithm
- Minimum spanning trees
- Generic algorithm
- Definition: cuts, light edges, safe edges
- Prim's algorithm

Overview

- Like dynamic programming (DP), used to solve optimization problems.
- Problems exhibit optimal substructure (like DP).
- Problems also exhibit the greedy-choice property.
» When we have a choice to make, make the one that looks best right now.
» Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy Strategy

- The choice that seems best at the moment is the one we go with.
» Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it's always safe to make the greedy choice.
» Show that all but one of the subproblems resulting from the greedy choice are empty.

Activity-selection Problem

Input: Set S of n activities, $a_{1}, a_{2}, \ldots, a_{n}$.
$» s_{i}=$ start time of activity i.
$» f_{i}=$ finish time of activity i.

- Output: Subset A of maximum number of compatible activities.
» Two activities are compatible, if their intervals don't overlap.

Example:
Activities in each line are compatible.

Example:

i	1	2	3	4	5	6	7	8	9	10	11
\underline{s}_{i}	1	3	0	5	3	5	7	8	10	2	13
f_{i}	4	5	6	7	8	9	10	11	12	13	14

$\left\{a_{3}, a_{9}, a_{11}\right\}$ consists of mutually compatible activities.
But it is not a maximal set.
$\left\{a_{1}, a_{4}, a_{8}, a_{11}\right\}$ is a largest subset of mutually compatible activities.
Another largest subset is $\left\{a_{2}, a_{6}, a_{9}, a_{11}\right\}$.

Optimal Substructure

- Assume activities are sorted by finishing times.

$$
» f_{1} \leq f_{2} \leq \ldots \leq f_{n} .
$$

- Suppose an optimal solution includes activity a_{k}.
» This generates two subproblems.
» Selecting from a_{1}, \ldots, a_{k-1}, activities compatible with one another, and that finish before a_{k} starts (compatible with a_{k}).
» Selecting from a_{k+1}, \ldots, a_{n}, activities compatible with one another, and that start after a_{k} finishes.
» The solutions to the two subproblems must be optimal.

Recursive Solution

- Let $S_{i j}=$ subset of activities in S that start after a_{i} finishes and finish before a_{j} starts.
- Subproblems: Selecting maximum number of mutually compatible activities from $S_{i j}$.
- Let $c[i, j]=$ size of maximum subset of mutually compatible activities in $S_{i j}$.
$\begin{array}{ll}\text { Recursive } \\ \text { Solution: } & c[i, j]= \begin{cases}0 & \text { if } S_{i j}=\phi \\ \max _{i<k<j}\{c[i, k-1]+c[k+1, j]+1\} & \text { if } S_{i j} \neq \phi\end{cases} \end{array}$
The answer: $c[1, n]$
Running time: $\mathrm{O}\left(n^{3}\right)$

Greedy-choice Property

- The problem also exhibits the greedy-choice property.
» There is an optimal solution to the subproblem $S_{i j}$, that includes the activity with the smallest finish time in set $S_{i j}$.
» Can be proved easily.
- Hence, there is an optimal solution to S that includes a_{1}.
- Therefore, make this greedy choice without solving subproblems first and evaluating them.
- Solve the subproblem that ensues as a result of making this greedy choice.
- Combine the greedy choice and the solution to the subproblem.

Greedy choice property:

Assume that $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$ be a maximal set of compatible activities. Then, $\left\{a_{1}, \ldots, a_{i_{k}}\right\}$ must be a maximum set of compatible activities.

Recursive Algorithm

Recursive-Activity-Selector (s, f, i, i)

1. $m \leftarrow i+1$
2. while $m<j$ and $s_{m}<f_{i}$
3. do $m \leftarrow m+1$
4. if $m<j$
5. then return $\left\{a_{m}\right\} \cup$

Recursive-Activity-Selector (s, f, m, j)

6. else return ϕ

Initial Call: Recursive-Activity-Selector $(s, f, 0, n+1)$
Complexity: $\Theta(n)$

$$
f_{0}=0
$$

Straightforward to convert the algorithm to an iterative one. See the text.

Example:

sorted sequence according to f values:

$$
a_{5} \longrightarrow a_{1} \longrightarrow a_{3} \longrightarrow a_{6} \longrightarrow a_{2} \longrightarrow a_{4} \longrightarrow a_{7}
$$

$$
a_{5} \longrightarrow a_{1} \longrightarrow a_{3} \longrightarrow a_{6} \longrightarrow a_{2} \longrightarrow a_{4} \longrightarrow a_{7}
$$

step 1:
result $=\left\{a_{5}\right\}$. Removed all those activities not compatible with a_{5}.

$$
a_{6} \longrightarrow a_{2} \longrightarrow a_{4} \longrightarrow a_{7}
$$

step 2:
result $=\left\{a_{5}, a_{6}\right\}$. Removed all those activities not compatible
with a_{6}.

$$
a_{4} \longrightarrow a_{7}
$$

step 3:

$$
\text { result }=\left\{a_{5}, a_{6}, a_{4}\right\}
$$

Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there's always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.
- Make the greedy choice and solve top-down.
- May have to preprocess input to put it into greedy order.
» Example: Sorting activities by finish time.

Elements of Greedy Algorithms

- Greedy-choice Property.
»A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Optimal Substructure.

Minimum Spanning Trees

- Given: Connected, undirected, weighted graph, G
- Find: Minimum - weight spanning tree, T
- Example:

weight of T :

$$
w(T)=\sum_{(\bar{u}, v) \in T} w(u, v)
$$

Minimum Spanning Trees

Generic Algorithm

- A - subset of some Minimum Spanning tree (MST).
- "Grow" A by adding "safe" edges one by one.
- Edge is "safe" if it can be added to A without destroying this invariant.

$A:=\varnothing$;
while A not complete tree do find a safe edge (u, v); $A:=A \cup\{(u, v)\}$
od
T 'may be different from T.

Definitions

- Cut - A cut $(S, V-S)$ of an undirected graph $G=(V, E)$ is a partition of V.
- A cut respects a set A of edges if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.
cut that respects an edge set $A=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})\}$

Theorem 23.1

Theorem 23.1: Let $(S, V-S)$ be any cut that respects A, and let (u, v) be a light edge crossing $(S, V-S)$. Then, (u, v) is safe for A.

Proof:

Let T be an $M S T$ that includes A. Case 1: (u, v) in T. We're done. Case 2: (u, v) not in T. We have the following:

(x, y) (in $T)$ crosses cut.
Let $T^{\prime}=\{T-\{(x, y)\}\} \cup\{(u, v)\}$.
Because (u, v) is light for cut, $w(u, v) \leq w(x, y)$. Thus, $w\left(T^{\prime}\right)=w(T)-w(x, y)+w(u, v) \leq w(T)$.

Hence, T^{\prime} is also an MST.
So, (u, v) is safe for A.

Corollary

In general, A will consist of several connected components (CC).

Corollary: If (u, v) is a light edge connecting one CC in $G_{A}=(V, A)$ to another CC in G_{A}, then (u, v) is safe for A.

Kruskal's Algorithm

- Starts with each vertex in its own component.
- Repeatedly merges two components into one by choosing a light edge that connects them (i.e., a light edge crossing the cut between them).
- Scans the set of edges in monotonically increasing order by weight.
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

Prim's Algorithm

- Builds one tree. So A is always a tree.
- Starts from an arbitrary "root" r.
- At each step, adds a light edge crossing cut $\left(V_{A}, V-V_{A}\right)$ to A.
» $V_{A}=$ vertices that A is incident on.

Prim's Algorithm

- Uses a priority queue Q to find a light edge quickly.
- Each object in Q is a vertex in $V-V_{A}$.

Min-heap as a binary tree.

Prim's Algorithm

- $\operatorname{key}(v)$ (key of $v \in V-V_{A}$) is minimum weight of any edge (u, v), where $u \in V_{A}$.
- Then the vertex returned by Extract-Min operation is v such that there exists $u \in V_{A}$ and (u, v) is light edge $\operatorname{crossing}\left(V_{A}, V-V_{A}\right)$.
- $\operatorname{key}(v)$ is ∞ if v is not adjacent to any vertex in V_{A}.

Prim's Algorithm

```
Q:= V[G];
for each }u\inQ\mathrm{ do
    key[u]:= \infty
od;
key[r] := 0;
\pi[r] := NIL;
while }Q\not=\varnothing\mathrm{ do
    u := Extract-Min(Q);
    for each v\inAdj[u] do
        if v\inQ^w(u,v)<key[v] then
        \pi[v]:=u;
        key[v]:= w(u,v)
        fi
    od
od
```


Complexity:

Using binary heaps: $O(E \lg V)$.
Initialization - $O(V)$.
Building initial queue $-O(V)$.
V Extract-Min's - $O(V \lg V)$.
E Decrease-Key's - $O(E \lg V)$.
Using min-heaps: $O(E+V \lg V)$.
(see book)
\longleftarrow decrease-key operation
Note: $A=\{(\pi[v], v): v \in V-\{r\}-Q\}$.

Assume that u_{3} is u, chosen by the extract-min operation. $k e y(v)$ should be changed:

$$
k e y(v) \leftarrow \min \left\{k e y(v), w_{3}\right\}
$$

Example of Prim's Algorithm

Not in tree

$Q:=V[G] ;$
for each $u \in Q$ do
$k e y[u]:=\infty$
od;
$k e y[r]:=0$;
$\pi[r]:=N I L$;
while $Q \neq \varnothing$ do
$u:=\operatorname{Extract}-\operatorname{Min}(Q)$;
for each $v \in A d j[u]$ do
if $v \in Q \wedge w(u, v)<k e y[v]$
then

$$
\begin{aligned}
& \pi[v]:=u ; \\
& k e y[v]:=w(u, v)
\end{aligned}
$$

fi
od
od

Example of Prim's Algorithm

Example of Prim's Algorithm

(f) -3

Example of Prim's Algorithm

Example of Prim's Algorithm

