Greedy Algorithms |

 General principle of greedy algorithm
 Activity-selection problem
- Optimal substructure
- Recursive solution
- Greedy-choice property
- Recursive algorithm
« Minimum spanning trees
- Generic algorithm
- Definition: cuts, light edges, safe edges
- Prim’s algorithm

11/13/2023

Overview

+ Like dynamic programming (DP), used to solve
optimization problems.

* Problems exhibit optimal substructure (like DP).

* Problems also exhibit the greedy-choice property.

» When we have a choice to make, make the one that looks
best right now.

» Make a locally optimal choice in hope of getting a globally
optimal solution.

greedy - 2

Greedy Strategy

* The choice that seems best at the moment Is the one we
go with.
» Prove that when there is a choice to make, one of the optimal

choices 1s the greedy choice. Therefore, 1t’s always safe to
make the greedy choice.

» Show that all but one of the subproblems resulting from the
greedy choice are empty.

greedy - 3

Activity-selection Problem

+ Input: Set S of n activities, a,, a,, ..., a,.
» §; = start time of activity I.
» f; = finish time of activity I.
¢ Qutput: Subset A of maximum number of compatible
activities.

» Two activities are compatible, if their intervals don’t overlap.

Example: Activities in each line
. o o . are compatible.

greedy - 4

Example:

1 2 3 5> 6 7 8 9 10 11
1 3 0 3 5 7 8 102 13
4 5 6 /7 8 9 1011 12 13 14

{a3, ag, 2,1} consists of mutually compatible activities.

But it Is not a maximal set.
{a,, a,, ag, 8, Is a largest subset of mutually compatible activities.

Another largest subset Is {a,, a;, a4, a;4 -

4
5

Optimal Substructure

+ Assume activities are sorted by finishing times.
» £ <, <L LT

* Suppose an optimal solution includes activity a,.
» This generates two subproblems.

» Selecting from a,, ..., a,_,, activities compatible with one
another, and that finish before a, starts (compatible with a,).

» Selecting from a4, ..., @,, activities compatible with one
another, and that start after a, finishes.

» The solutions to the two subproblems must be optimal.

greedy - 6

Recursive Solution

* Let S;; = subset of activities In S that start after a;
finishes and finish before a; starts.

¢ Subproblems: Selecting maximum number of mutually
compatible activities from S;;.

¢ Letcli, || = size of maximum subset of mutually
compatible activities in S;;.

Recursive . .. | O ifS; = ¢
Solution: L1 115+ max{c[i, k-1] + c[k+1, j] + 1} ifS; # ¢

i<k<]

The answer: c[1, n]
Running time: O(n3)

greedy - 7

dg
a4 . |
ag .
al .az - ﬂ
[4 ‘ a5 o—
3.3 . a8
3.4 . |
8.6 a7 ag
° a8 |
S1g
a;
S3 11

23
/20
/13

11

Greedy-choice Property

+ The problem also exhibits the greedy-choice property.

» There Is an optimal solution to the subproblem Sy, that
includes the activity with the smallest finish time in set S;;.

» Can be proved easily.

+ Hence, there iIs an optimal solution to S that includes
a,.

* Therefore, make this greedy choice without solving
subproblems first and evaluating them.

+ Solve the subproblem that ensues as a result of making
this greedy choice.

+ Combine the greedy choice and the solution to the
subproblem.

greedy - 9

Greedy choice property:.

Assume that {a;_, ..., a;, } be a maximal set of compatible
activities. Then, {a, ..., a;, } must be a maximum set of
compatible activities.

11/13/2023

Recursive Algorithm

Recursive-Activity-Selector (s, f, 1, |)
1. me«i1+1
2. whilem<jands,<f

3. dom«<m+1

4, if m<j Aiva |

S. thenreturn{fa o | e
Recursive-Activity-Selector(s, f, m, j) o K,

else return ¢

Initial Call: Recursive-Activity-Selector (s, f, 0, n + 1)

Complexity: ®(n) fb=0

Straightforward to convert the algorithm to an iterative one.
See the text.

greedy - 11

Example:

sorted sequence according to f values:

a-5_’a1—>a3—> a6—> a2—> a4—> a7

11/13/2023

a5—’a1—>a3—> a6—> a2—> a4—> a7

step 1:
result = {a:}. Removed all those activities not compatible
with ac.

dg — dy — dy — dy

step 2:
result = {a:, az}. Removed all those activities not compatible
with ag. ' a, .
a4 o a7 [a4 °
step 3: ag a,

result = {a:, a5, a,}.

11/13/2023

Typical Steps

+ Cast the optimization problem as one in which we
make a choice and are left with one subproblem to

greedy -

solve.

Prove that there’s always an optimal solution that
makes the greedy choice, so that the greedy choice is

always

Show t
subpro

Make t

safe.

nat greedy choice and optimal solution to
nlem = optimal solution to the problem.

ne greedy choice and solve top-down.

May have to preprocess input to put it into greedy

order.

» Example: Sorting activities by finish time.

14

Elements of Greedy Algorithms

+ Greedy-choice Property.

» A globally optimal solution can be arrived at by making a
locally optimal (greedy) choice.

+ Optimal Substructure.

greedy - 15

Minimum Spanning Trees

« Given: Connected, undirected, weighted graph, G
« Find: Minimum - weight spanning tree, T

« Example: Y\

Acyclic subset of edges(E) that connects
all vertices of G.

weight of T:
w(T) = 2w(u,v)

(Tv)eT

greedy - 16

Minimum Spanning Trees

greedy - 17

Generic Algorithm

* A - subset of some Minimum Spanning tree (MST).
« “Grow” A by adding “safe” edges one by one.

« Edge is “safe” If it can be added to A without destroying this

Invariant.

GCT

l add a safe edge
etoA

@ -l I

T’may be different from T.

greedy - 18

A =0,

while A not complete tree do
find a safe edge (u, v);
A=AuU{(u,Vv)}

od

Definitions

« Cut—Acut (S, V-S) of an undirected graph G =(V, E) Is a
partition of V.

» A cut respects a set A of edges if no edge In A crosses the cut.

« An edge is a light edge crossing a cut If its weight is the minimum
of any edge crossing the cut.

cut that respects an edge set A= {(a, b), (b, ¢)}

3) : .
@ @ 7 @/ a light edge crossing cut
-3

(could be more than one)

1
11 3

~ //-\ < cut partitions vertices into

(d/ 0\\/\9/2 @ disjoint sets, Sand V — S.

greedy - 19

Theorem 23.1

Theorem 23.1: Let (S, V - S) be any cut that respects A, and let (u, V)
be a light edge crossing (S, V - S). Then, (u, v) is safe for A.

Proof:

Let T be an MST that includes A.

Case 1: (u, v) In T. We’re done.

Case 2: (u, v) not in T. We have the following:

(x,y) (in T) crosses cut.

Let T" ={T-{(x, y)}} v {(u,v)}.

Because (u, v) is light for cut,
w(u, v) <w(X, y). Thus,
wW(T") =w(T) - w(x, y) + w(u, v) <w(T).

Hence, T" is also an MST.
So, (u, v) is safe for A.

EdgesinT A
are shown in blue®

greedy - 20

Corollary

In general, A will consist of several connected components (CC).

Corollary: If (u, v) is a light edge connecting one CC in G, = (V, A)
to another CC in G,, then (u, v) Is safe for A.

greedy - 21

greedy -

Kruskal’s Algorithm

Starts with each vertex in its own component.

Repeatedly merges two components into one by choosing a light
edge that connects them (i.e., a light edge crossing the cut
between them).

Scans the set of edges in monotonically increasing order by
weight.

Uses a disjoint-set data structure to determine whether an edge
connects vertices in different components.

Prim’s Algorithm

¢ Builds one tree. So A is always a tree.

¢ Starts from an arbitrary “root” r.

+ At each step, adds a light edge crossing cut (V,, V - V,) to 4.
» V, = vertices that A is incident on.

Va

cut

greedy - 23

Prim’s Algorithm

¢ Uses a priority queue Q to find a light edge quickly.
+ Each objectin Q is a vertex inV - V,. e 88 a ™
yple™

AL\

Min-heap as a binary
tree.

greedy - 24

Prim’s Algorithm
* key(v) (key of v € V - V,) Is minimum weight of any
edge (u, v), where u € V,.

* Then the vertex returned by Extract-Min operation Is v
such that there exists u € V, and (u, v) is light edge
crossing (V,, V - V,).

* key(v) Is oo If v IS not adjacent to any vertex in V,.

key(v) = min{w,, w,, ws}

key(v’) = key(v") = o

cut

greedy - 25

Prim’s Algorithm

Q = V[G]; -
for each u € Q do Complexity:
key[u] := Using binary heaps: O(E IgV).
od; Initialization — O(V).
key[r] :=0; Building initial queue — O(V).
n[r] := NIL; V Extract-Min’s — O(V IgV).
while Q = & do E Decrease-Key’s — O(E IgV).
u := Extract-Min(Q);
for each v e Adj[u] do Using min-heaps: O(E + VigV).
if v.e QA w(u, V) <key[v] then || | (see book)
n[v] ;= u;
key[v] :=w(u, v) <= (ecrease-key operation
fi
od
od

Note: A={(r[v],v):ve V-{r}-0Q}

greedy - 26

key(v) = min{w,, w,, Wy}

key(v’) = key(v") = o

Assume that us IS u, chosen by the extract-min operation.
key(v) should be changed:
key(v) <~ min{key(v), w,}.

11/13/2023

greedy - 28

Example of Prim’s Algorithm

5
al0
11
d/eo 5
Not In tree
AL
r N
Q=abcdef

greedy - 29

Q = VI[G];

foreachu € Q do
key[u] ;=

od,;

key[r] :=0;

nt[r] := NIL;

while Q = & do

u := Extract-Min(Q);
for each v € Adj[u] do
ifve QAaw(u,v)<key[v]
then
n[v] = u;
key[v] ;= w(u, v)
fi
od

od

Example of Prim’s Algorithm

Q=bdcef

greedy - 30

Example of Prim’s Algorithm

greedy - 31

greedy - 32

Example of Prim’s Algorithm

(o)1

Example of Prim’s Algorithm

greedy - 33

Example of Prim’s Algorithm

greedy - 34

Example of Prim’s Algorithm

greedy - 35

Example of Prim’s Algorithm

@——G6 @
@) @3

greedy - 36

