Dynamic Programming

- Several problems
- Principle of dynamic programming
 - Structure analysis of optimal solutions
 - Defining values of optimal solutions
 - Top-down or bottom-up computation of values
 - Computation of optimal solution from computed values
- Longest Common Subsequences
- Optimal binary search trees

Longest Common Subsequence

• *Problem:* Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, find a common subsequence whose length is maximum.

Subsequence needn't be consecutive, but must be in order.

Other sequence questions

• *Edit distance:* Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, what is the minimum number of deletions, insertions, and changes that you must do to change one to another?

ED = |operations| = |X| + |Y| - 2 |LCS|

Example: for the first pair of sequences, we have

|operations| = |X| + |Y| - 2 |LCS|= 10 + 8 - 2 × 6 = 6

Other sequence questions

DNA sequence alignment: Given a score matrix M on amino acid pairs with M(a, b) for a, b ∈ {Λ} ∪ A (A = {A, T, C, G}, Λ - space symbol), and 2 DNA sequences, X = ⟨x₁,...,x_m⟩ ∈ A^m and Y = ⟨y₁,...,y_n⟩ ∈ Aⁿ, find the alignment with highest score.

	А	Т	С	G	Λ
A	1	-1	-1	-1	-2]
Т	-1	1	-1	-1	-2 -2
С	-1	-1	1	-1	-2
					-2
					1

G ATCG GCAT CAAT GTGAATC

-1-2+1+1-2+1-2+1-1+1+1-2 = -4

More problems

Optimal BST: Given sequence $K = k_1 < k_2 < \cdots < k_n$ of *n* sorted keys, with a search probability p_i for each key k_i , build a binary search tree (BST) with minimum expected search cost.

Matrix chain multiplication: Given a sequence of matrices $A_1 A_2 \dots A_n$, with A_i of dimension $m_i \times n_i$, insert parenthesis to minimize the total number of scalar multiplications.

 $((A_1 \times (A_2 \times A_3)) \times (A_4 \times A_5)) \text{ or } ((A_1 \times A_2) \times A_3) \times (A_4 \times A_5))$

Which is fast?

Number of scaler multiplications of $A_{mk} \times A_{kn}$: $m \times k \times n$.

$$(A_{10,100} \times A_{100,5}) \times A_{5,50}$$
:
 $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500.$
 $B_{10,5} \times A_{5,50}$

 $A_{10,100} \times (A_{100,5} \times A_{5,50})$: $10 \times 100 \times 50 + 100 \times 5 \times 50 = 75000.$ $A_{10,100} \times C_{100,50}$

11/8/2023

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
 - » Subproblems may share subsubproblems,
 - » However, solution to one subproblem may not affect the solutions to other subproblems of the same problem. (More on this later.)
- DP reduces computation by
 - » Solving subproblems in a bottom-up fashion.
 - » Storing solution to a subproblem the first time it is solved.
 - » Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- 3. Compute optimal solution values either topdown with caching or bottom-up in a table.
- 4. Construct an optimal solution from computed values.
- We'll study these with the help of examples.

Longest Common Subsequence

• **Problem:** Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, find a common subsequence whose length is maximum.

Subsequence needn't be consecutive, but must be in order.

Naïve Algorithm

- For every subsequence of *X*, check whether it's a subsequence of *Y*.
- Time: $\Theta(n2^m)$.
 - » 2^m subsequences of *X* to check.
 - » Each subsequence takes $\Theta(n)$ time to check: scan *Y* for first letter, for second, and so on.

Optimal Substructure

TheoremLet
$$Z = \langle z_1, \ldots, z_{k-1}, z_k \rangle$$
 be any LCS of X and Y.1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.3.or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Notation:

prefix $X_i = \langle x_1, ..., x_i \rangle$ is the first *i* letters of *X*.prefix $Y_j = \langle y_1, ..., y_j \rangle$ is the first *j* letters of *Y*.SpringtimegPrintingPrinting

LCS: printing

LCS: print

TheoremLet $Z = \langle z_1, \ldots, z_{k-1}, z_k \rangle$ be any LCS of X and Y.1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.3.or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

<u>Case 1:</u>

<u>springtimeg</u> <u>printing</u>

springtime printin LCS: printin + g <u>Case 2:</u>

<u>pringtime</u> <u>printing</u>

Optimal Substructure

TheoremLet
$$Z = \langle z_1, \ldots, z_k \rangle$$
 be any LCS of X and Y.1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.3.or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Proof: (case 1: $x_m = y_n$)

Any common sequence Z' that does not end in $x_m = y_n$ can be made longer by adding $x_m = y_n$ to the end. Therefore,

- (1) longest common subsequence (LCS) Z must end in $x_m = y_n$.
- (2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} , and
- (3) there is no longer CS of X_{m-1} and Y_{n-1} , or Z would not be an LCS.

Optimal Substructure

TheoremLet
$$Z = \langle z_1, \ldots, z_k \rangle$$
 be any LCS of X and Y.1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.3.or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Proof: (case 2:
$$x_m \neq y_n$$
, and $z_k \neq x_m$)
Since *Z* does not end in x_m ,
(1) *Z* is a common subsequence of X_{m-1} and *Y*, and
(2) there is no longer CS of X_{m-1} and *Y*, or *Z* would not be an LCS.
(case 2: $x_m \neq y_n$, and $z_k \neq y_n$) Since *Z* does not end in y_n ,
(3) *Z* is a common subsequence of Y_{n-1} and *X*, and
(4) there is no longer CS of Y_{n-1} and *X*, or *Z* would not be an LCS.

Recursive Solution

- Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$.
- We want to get c[m,n].

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

This gives a recursive algorithm and solves the problem. But does it solve it well?

Recursive Solution

 $c[\alpha,\beta] = \begin{cases} 0 & \text{if } \alpha \text{ empty or } \beta \text{ empty,} \\ c[\text{ prefix}\alpha, \text{ prefix}\beta]+1 & \text{if } \operatorname{end}(\alpha) = \operatorname{end}(\beta), \\ \max(c[\text{ prefix}\alpha,\beta],c[\alpha, \text{ prefix}\beta]) & \text{if } \operatorname{end}(\alpha) \neq \operatorname{end}(\beta). \end{cases}$

 $\frac{\text{Recursive Solution}}{c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$

- Keep track of c[α,β] in a table of nm entries
- Top-down
- Bottom-up
 - X = springtime
 - Y = printing

		р	r	i	n	t	i	n	g
	0	Р 0	0	0	0	0	0	0	0
	0	0	0	0	0	0	U	0	0
S	0								
р	0	◆ ``							
r	0								
1	0								
n	0								
g	0								
t	0								
i	0								
m	0								
e	0								

Computing the length of an LCS

LCS-LENGTH (X, Y)

 $m \leftarrow length[X]$ 1. 2. $n \leftarrow length[Y]$ for $i \leftarrow 1$ to m 3. initialization **do** $c[i, 0] \leftarrow 0$ 4. 5. for $j \leftarrow 0$ to n6. **do** $c[0, j] \leftarrow 0$ for $i \leftarrow 1$ to m 7. 8. **do for** $i \leftarrow 1$ **to** n**do if** $x_i = y_i$ 9. then $c[i, j] \leftarrow c[i-1, j-1] + 1$ 10. 11. $b[i, j] \leftarrow ````]$ 12. **else if** $c[i-1, j] \ge c[i, j-1]$ 13. then $c[i, j] \leftarrow c[i-1, j]$ 14. $b[i, j] \leftarrow ``\uparrow"$ 15. else $c[i, j] \leftarrow c[i, j-1]$ 16. $b[i, j] \leftarrow ``\leftarrow"$ **17. return** *c* and *b*

 $c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$

b[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_i .

c[m,n] contains the length of an LCS of X and Y.

Time: O(mn)

Recursive Solution

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

X = ABCBDAB

Y = BDCABA

		В	D	С	A	В	А
	0	0	0	0	0	0	0
A	0						
В	0						
С	0						
В	0						
D	0						
Α	0						
В	0						

Recursive Solution

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

X = ABCBDABY = BDCABA

X = ABCBDABY = BDCABALCS: BCBA

		В	D	С	A	В	А
	0	0	0	0	0	0	0
Α	0	0	0	0		-1	1
В	0		-1 +	-1	1	*2 +	-2
С	0	1	1	2 +	-2	2	2
В	0		1	$\frac{1}{2}$		*کن+ +	-3
D	0		2	1 2	2	- m+	3
Α	0	1	2	$\frac{1}{2}$	* cu+	3	×4
В	0	1	2	2	3	4	4

Constructing an LCS

PRINT-LCS (b, X, i, j)

- **1.** if i = 0 or j = 0
- 2. then return
- **3.** if $b[i, j] = " \ "$
- 4. then PRINT-LCS(b, X, i-1, j-1)

```
5. print x_i
```

```
6. else if b[i, j] = "\uparrow"
```

- **then** PRINT-LCS(*b*, *X*, *i*–1, *j*)
- 8. else PRINT-LCS(b, X, i, j-1)

- •Initial call is PRINT-LCS(*b*, *X*, *m*, *n*).
- •When $b[i, j] = \backslash$, we have extended LCS by one character. So LCS = number of entries with \diagdown in them.
- •Time: O(m + n)

7.

Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- 3. Compute optimal solution values either topdown with caching or bottom-up in a table.
- 4. Construct an optimal solution from computed values.
- We'll study these with the help of examples.

Optimal Binary Search Trees

- Problem
 - » Given sequence $K = k_1 < k_2 < \cdots < k_n$ of *n* sorted keys, with a search probability p_i for each key k_i .
 - Want to build a binary search tree (BST)
 with minimum expected search cost.
 - » Actual cost = # of items (nodes in the tree) examined.
 - » For key k_i , $cost(k_i) = depth_T(k_i) + 1$, where $depth_T(k_i) = depth$ of k_i in BST T.

Expected Search Cost

 $E[\text{search cost in } T] \longleftarrow$

i=1

 $=\sum cost(k_i) \cdot p_i$

Mathematical expectation of searching costs of all nodes in *T*

$$= \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i}$$
 (15.16)

$$= \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i}$$

Sum of probabilities is 1.

Example

• Consider 5 keys with these search probabilities: $p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$

Therefore, E[search cost]= $1 + \sum_{1}^{5} \text{depth}_{T}(k_{i}) \cdot p_{i}$ $k_{1} < k_{2} < \cdots < k_{5}$ = 1 + 1.15 = 2.15.

• $p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$

Therefore, E[search cost] = 2.10.

This tree turns out to be optimal for this set of keys.

 k_{z}

Observation

• Observations:

- » Optimal BST may not have smallest height.
- » Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
 - » Construct each *n*-node BST.
 - » For each,

assign keys and compute expected search cost.

» But there are $\Omega(4^n/n^{3/2})$ different BSTs with *n* nodes.

Optimal Substructure

Any subtree of a BST contains keys in a contiguous range k_i, ..., k_i for some 1 ≤ i ≤ j ≤ n.

If *T* is an optimal BST and *T* contains subtree *T'* with keys *k_i*, ..., *k_j*, then *T'* must be an optimal BST for keys *k_i*, ..., *k_j*.
Proof:

Optimal Substructure

 k_r

 k_{r-1}

 k_i

 k_{r+1}

 k_i

- One of the keys in $k_i, ..., k_j$, say k_r , where $i \le r \le j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_r contains k_i, \dots, k_{r-1} .
- Right subtree of k_r contains $k_{r+1}, ..., k_j$.

- » Examine all candidate roots k_r , for $i \le r \le j$
- » Determine all optimal BSTs containing $k_i, ..., k_{r-1}$ and all optimal BSTs containing $k_{r+1}, ..., k_j$

11/8/2023

Recursive Solution

- Find optimal BST for $k_i, ..., k_j$, where $i \ge 1, j \le n, j \ge i-1$. When j = i - 1, the tree is empty.
- Define e[i, j] = expected search cost of optimal BST for $k_i, ..., k_j$.

e[i, j]

e[*i*, *r*–1]

 k_r

e[r+1, j]

- If j = i 1, then e[i, j] = 0.
- If $j \ge i$,
 - » Select a root k_r , for some $i \le r \le j$.
 - » Recursively make an optimal BSTs k_i k_{r-1} k_{r+1} k_j
 - for $k_i, ..., k_{r-1}$ as the left subtree, e[i, r-1] and
 - for $k_{r+1}, ..., k_j$ as the right subtree, e[r + 1, j].

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
 - » Depth of every node in OPT subtree goes up by 1.
 - » Expected search cost increases by

$$w(i, j) = \sum_{l=i}^{j} p_l$$

- If k_r is the root of an optimal BST for $k_i, ..., k_j$: $k_i = k_{r-1} = k_i$ $* e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$ = e[i, r-1] + e[r+1, j] + w(i, j). $w(i, j) = w(i, r-1) + p_r + w(r+1, j))$
- But, we don't know k_r . Hence,

$$e[i, j] = \begin{cases} 0 & \text{if } j = i - 1 \\ \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$$

from (15.16)

e[1, 1]

e[*i*, *r*-1]

e[r+1, j]

Computing an Optimal Solution

For each subproblem (i, j), store:

- expected search cost in a table *e*[1..*n* + 1, 0..*n*]
 Will use only entries *e*[*i*, *j*], where *j* ≥ *i*−1.
- root[*i*, *j*] = root of subtree with keys $k_i, ..., k_j$, for $1 \le i \le j \le n$.
- w[1..n + 1, 0..n] = sum of probabilities

»
$$w[i, i-1] = 0$$
 for $1 \le i \le n$.

» $w[i, j] = w[i, j - 1] + p_j$ for $1 \le i \le j \le n$.

Pseudo-code

Example

Construct an optimal binary search tree over five key values k1 < k2 < k3 < k4 < k5 with access probability 0.3, 0.2, 0.1, 0.15, and 0.25, respectively.

<u>e[i,j]</u>

	j=0	1	2	3	4	5
i=1	0					
2		0				
3			0			
4				0		
5					0	
6						0

<u>w[i,j]</u>

	j=0	1	2	3	4	5
i=1	0					
2		0				
3			0			
4				0		
5					0	
6						0

Example

Construct an optimal binary search tree over five key values k1 < k2 < k3 < k4 < k5 with access probability 0.3, 0.2, 0.1, 0.15, and 0.25, respectively.

<u>1. w[i,j]</u> *l* = 1

	j=0	1	2	3	4	5
i=1	0	0.3				
2		0	0.2			
3			0	0.1		
4				0	0.15	
5					0	0.25
6						0

OPTIMAL-BST(p, n)1. for $i \leftarrow 1$ to n + 12. **do** $e[i, i-1] \leftarrow 0$ 3. $w[i, i-1] \leftarrow 0$ 4. for $l \leftarrow 1$ to n5. **do for** $i \leftarrow 1$ **to** n - l + 16. **do** $i \leftarrow i + l - 1$ 7. $w[i, j] \leftarrow w[i, j-1] + p_i$ 8. $e[i, j] \leftarrow \infty$ 9. for $r \leftarrow i$ to j**10. do** $t \leftarrow e[i, r-1] + e[r+1]$ + w[i, i]11. if t < e[i, j]12. **then** $e[i, j] \leftarrow t$ 13. $root[i, j] \leftarrow r$ 10. return *e* and *root*

11/8/2023

<u>**1**. e[i,j]</u> l = 1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>1. e[1,]]</u>	l =						
i=1 0 0.3 Image: constraint of the system of t		ι —	T					$\underline{OPTIMAL-BST(p, n)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	j	j=0	1	2	3	4	5	1. for $i \leftarrow 1$ to $n + 1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i=1	0	0.3					2. do $e[i, i-1] \leftarrow 0$
3 0 0.1 4. for $l \leftarrow 1$ to n 4 0 0.15 0 0.25 6 0 0 0.25 6 for $l \leftarrow 1$ to $n - l + 1$ 6 0 0 0.25 6 for $l \leftarrow 1$ to $n - l + 1$ 6 0 0 0.25 6 for $l \leftarrow 1$ to $n - l + 1$ 6 0 0 0.25 6 for $l \leftarrow 1$ to $n - l + 1$ 6 0 0 0.25 6 for $l \leftarrow 1$ to $n - l + 1$ 1. $r \leftarrow l i, j = 1$ $w[i, j] \leftarrow w[i, j - 1] + p_j$ 8. $e[i, j] \leftarrow \infty$ 9. for $r \leftarrow i$ to j 10. do $t \leftarrow e[i, r - 1] + e[r + 1 + w[i, j]$ 10. $do \ t \leftarrow e[i, j] \leftarrow t$ 13. $root[i, j] \leftarrow r$ 10. return e and $root$ 10. return e and $root$			0					_
4 0 0.15 5 0 0 0.25 6 0 0 1. $r[i,j]$ $l = 1$ 1 $j=0$ 1 2 3 $j=0$ 1 2 3 $j=1$ 1 1 1 $j=0$ 1 2 3 $j=0$ 1 2 3 $j=1$ 2 3 4 $j=1$ 2 3 4 $j=1$ 1 1 1 $j=1$ 2 3 4 $j=1$ 1 1 1 $j=1$ 1 1 1<				0				
6 0 0 6 do $j \leftarrow i + l - 1$ 7 $w[i, j] \leftarrow w[i, j - 1] + p_j$ 8 $e[i, j] \leftarrow \infty$ 9 for $r \leftarrow i$ to j 10 do $t \leftarrow e[i, r - 1] + e[r + 1] + w[i, j]$ 1 1 1 10 do $t \leftarrow e[i, j] \leftarrow t$ 2 2 2 11 if $t < e[i, j] \leftarrow t$ 3 3 3 13 root[i, j] \leftarrow r 4 4 5 5 6					0		0.00	
1. $r[i,j]$ $l = 1$ i=1 1 i=1 1 2 2 3 3 4 4 5 5 6 6 7. $w[i, j] \leftarrow w[i, j-1] + p_j$ 8. $e[i, j] \leftarrow \infty$ 9. for $r \leftarrow i$ to j 10. do $t \leftarrow e[i, r-1] + e[r+1] + w[i, j]$ 11. if $t < e[i, j]$ 12. then $e[i, j] \leftarrow t$ 13. $root[i, j] \leftarrow r$ 10. return e and $root$						0		
1. $r[i,j]$ $l = 1$ 8. $e[i, j] \leftarrow \infty$ j=0 1 2 3 4 5 i=1 1 1 1 1 2 2 3 4 5 3 3 3 4 5 6 6 6 6 8. $e[i, j] \leftarrow \infty$ 9. for $r \leftarrow i$ to j 10. do $t \leftarrow e[i, r-1] + e[r + 1]$ $+ w[i, j]$ 11. if $t < e[i, j]$ 11. if $t < e[i, j]$ 12. then $e[i, j] \leftarrow t$ 13. $root[i, j] \leftarrow r$ 10. return e and $root$ 10. return e and $root$	0						0	0
1. $r[i,j]$ $l = 1$ j=0 1 2 3 4 5 i=1 1 1 1 1 1 2 2 2 1 1 1 3 3 3 4 5 1 1 if $t < e[i, j]$ 4 3 4 5 1 1 1 1 1 5 6 6 6 6 6 6 6 6								•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
j=0 1 2 3 4 5 i=1 1 2 3 4 5 3 2 2 11. if $t < e[i, j]$ 4 3 4 5 6 6 6 6	1. r[i.i]	l =	1					9. for $r \leftarrow i$ to j
j=0 1 2 3 4 5 i=1 1 1 1 1 1 1 2 2 2 1 1 1 1 3 3 3 3 1 1 1 4 3 3 4 1 1 1 5 6 6 6 6 6 6 6		-	-					10. do $t \leftarrow e[i, r-1] + e[r+1]$
i=1 1 Image: matrix of the set of the		i=0	1	2	3	4	5	+ w[i, j]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ŭ	1	_		-		11. if $t < e[i, j]$
4 4 10. return <i>e</i> and <i>root</i>	2			2				12. then $e[i, j] \leftarrow t$
4 4 5 6 6 6 6 6 6 10. return e and root	3				3			13 . $root[i, j] \leftarrow r$
5 6						4		
							5	
$\begin{bmatrix} 0 & if i - i & 1 \end{bmatrix}$	6							
			0					if $j = i - 1$

$$e[i, j] = \begin{cases} 0 & \text{if } j = i - i \\ \min_{i \le r \le j} \{e[i, r-1] + e[r+1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$$

dynprog - 38

<u>2. w[i,j]</u> *l* = 2

	_j=0	1	2	3	4	5
i=1	0	0.3	0.5			
2		0	0.2	0.3		
3			0	0.1	0.25	
4				0	0.15	0.4
5					0	0.25
6						0

<u>2. e[i,j]</u> *l* = 2

	.j=0	1	2	3	4	5
i=1	0	0.3	0.7			
2		0	0.2	0.4		
3			0	0.1	0.35	
4				0	0.15	0.55
5					0	0.25
6						0

<u>**2**. r[i,j]</u> *l* = 2

	_j=0	1	2	3	4	5
i=1		1	1			
2			2	2		
3				3	4	
4					4	5
5						5
6						

dynprog - 39

<u>**3.** w[i,j]</u> *l* = 3

	j=0	1	2	3	4	5
i=1	0	0.3	0.5	0.6		
2		0	0.2	0.3	0.45	
3			0	0.1	0.25	0.5
4				0	0.15	0.4
5					0	0.25
6						0

<u>**3**. e[i,j]</u> *l* = 3

	.j=0	1	2	3	4	5
i=1	0	0.3	0.7	1		
2		0	0.2	0.4	0.8	
3			0	0.1	0.35	0.85
4				0	0.15	0.55
5					0	0.25
6						0

<u>**3.** r[i,j]</u> *l* = 3

	j=0	1	2	3	4	5
i=1		1	1	2		
2			2	2	3	
3				3	4	5
4					4	5
5						5
6						

<u>**4.**</u> w[i,j] l = 4

	j=0	1	2	3	4	5
i=1	0	0.3	0.5	0.6	0.75	
2		0	0.2	0.3	0.45	0.7
3			0	0.1	0.25	0.5
4				0	0.15	0.4
5					0	0.25
6						0

<u>**4.** e[i,j]</u> l = 4

	j=0	1	2	3	4	5
i=1	0	0.3	0.7	1	1.4	
2		0	0.2	0.4	0.8	1.35
3			0	0.1	0.35	0.85
4				0	0.15	0.55
5					0	0.25
6						0

<u>4. r[i,j]</u> l = 4

	j=0	1	2	3	4	5
i=1		1	1	2	2	
2			2	2	3	4
3				3	4	5
4					4	5
5						5
6						

<u>5. w[i,j]</u> l = 5

	j=0	1	2	3	4	5
i=1	0	0.3	0.5	0.6	0.75	1
2		0	0.2	0.3	0.45	0.7
3			0	0.1	0.25	0.5
4				0	0.15	0.4
5					0	0.25
6						0

<u>5. e[i,j]</u> l = 5

	.j=0	1	2	3	4	5
i=1	0	0.3	0.7	1	1.4	2.15
2		0	0.2	0.4	0.8	1.35
3			0	0.1	0.35	0.85
4				0	0.15	0.55
5					0	0.25
6						0

<u>5. r[i,j]</u> l = 5

	.j=0	1	2	3	4	5
i=1		1	1	1	2	2
2			2	2	2	4
3				3	4	4
4					4	5
5						5
6						

11/8/2023

r[1, 5] = 2 shows that the root of the tree over k1, k2, k3, k4, k5 is k2.

<u>r[i,j]</u>

Elements of Dynamic Programming

- Optimal substructure
- Overlapping subproblems

Optimal Substructure

- Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
- Suppose that you are given this last choice that leads to an optimal solution.
- Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
- Need to ensure that a wide enough range of choices and subproblems are considered.

Optimal Substructure

- Optimal substructure varies across problem domains:
 - » 1. *How many subproblems* are used in an optimal solution.
 - » 2. *How many choices* in determining which subproblem(s) to use.
- Informally, running time depends on (# of subproblems overall) × (# of choices).
- How many subproblems and choices do the examples considered contain?
- Dynamic programming uses optimal substructure bottom up.
 - » *First* find optimal solutions to subproblems.

Then choose which to use in optimal solution to the problem.

Optimal Substucture

- Does optimal substructure apply to all optimization problems? <u>No</u>.
- Applies to determining the shortest path but NOT the longest simple path of an unweighted directed graph.

• Why?

- » Shortest path has independent subproblems.
- » Solution to one subproblem does not affect solution to another subproblem of the same problem.
- » Subproblems are not independent in longest simple path.
 - Solution to one subproblem affects the solutions to other subproblems.
- » Example:

Overlapping Subproblems

- The space of subproblems must be "small".
- The total number of distinct subproblems is a polynomial in the input size.
 - » A recursive algorithm is exponential because it solves the same problems repeatedly.
 - » If divide-and-conquer is applicable, then each problem solved will be brand new.

Question: What kind of trees will be created, if the search probabilities of all the key words are the same?

Answer: A balanced binary search tree. Reason: In this case, the mathematical expectation is:

 $\frac{1}{n}\sum_{i}depth_{T}\left(k_{i}\right).$

This value reaches minimum when the tree is balanced.

$$\frac{1}{n}\sum_{i}depth_{T}(k_{i}) = \frac{1}{n}O(nlog_{2} n) = O(log_{2} n)$$

11/8/2023

Therefore, E[search cost] = 2.2.

Therefore, E[search cost] = 2.4.