
11/8/2023

Dynamic Programming

• Several problems

• Principle of dynamic programming

- Structure analysis of optimal solutions

- Defining values of optimal solutions

- Top-down or bottom-up computation of values

- Computation of optimal solution from computed values

• Longest Common Subsequences

• Optimal binary search trees

dynprog - 2

Longest Common Subsequence

 Problem: Given 2 sequences, X = x1,...,xm and
Y = y1,...,yn, find a common subsequence whose
length is maximum.

Springtime ncaa tournament basketball

printing north carolina krzyzewski

Subsequence needn’t be consecutive, but must be in order.

dynprog - 3

Other sequence questions

 Edit distance: Given 2 sequences, X = x1,...,xm

and Y = y1,...,yn, what is the minimum number of

deletions, insertions, and changes that you must do

to change one to another?

ED = |operations| = |X| + |Y| - 2 |LCS|

Example: for the first pair of sequences, we have

|operations| = |X| + |Y| - 2 |LCS|

= 10 + 8 – 2 6 = 6

dynprog - 4

 DNA sequence alignment: Given a score matrix M on

amino acid pairs with M(a, b) for a, b {} A (A =

{A, T, C, G}, - space symbol), and 2 DNA sequences,

X = x1,...,xm Am and Y = y1,...,yn An, find the

alignment with highest score.

Other sequence questions

1 -1 -1 -1 -2

-1 1 -1 -1 -2

-1 -1 1 -1 -2

-1 -1 -1 1 -2

-2 -2 -2 -2 1

G ATCG GCAT

CAAT GTGAATC

-1-2+1+1-2+1-2+1-1+1+1-2 = -4

A

T

C

G

A T C G

dynprog - 5

More problems

Optimal BST: Given sequence K = k1 < k2 <··· < kn

of n sorted keys, with a search probability pi for

each key ki, build a binary search tree (BST) with

minimum expected search cost.

Matrix chain multiplication: Given a sequence of

matrices A1 A2 … An, with Ai of dimension mi ni,

insert parenthesis to minimize the total number of

scalar multiplications.

((A1 (A2 A3)) (A4 A5)) or ((A1 A2) A3) (A4 A5))

Which is fast?

11/8/2023

Number of scaler multiplications of Amk × Akn:

m × k × n.

(A10,100 × A100,5) × A5,50:

10 × 100 × 5 + 10 × 5 × 50 = 7500.

A10,100 × (A100,5 × A5,50):

10 × 100 × 50 + 100 × 5 × 50 = 75000.

B10,5 × A5,50

A10,100 × C100,50

dynprog - 7

Dynamic Programming
 Dynamic Programming is an algorithm design technique for

optimization problems: often minimizing or maximizing.

 Like divide and conquer, DP solves problems by combining
solutions to subproblems.

 Unlike divide and conquer, subproblems are not independent.

» Subproblems may share subsubproblems,

» However, solution to one subproblem may not affect the solutions to other
subproblems of the same problem. (More on this later.)

 DP reduces computation by

» Solving subproblems in a bottom-up fashion.

» Storing solution to a subproblem the first time it is solved.

» Looking up the solution when subproblem is encountered again.

 Key: determine structure of optimal solutions

dynprog - 8

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-

down with caching or bottom-up in a table.

4. Construct an optimal solution from computed

values.

We’ll study these with the help of examples.

dynprog - 9

Longest Common Subsequence

 Problem: Given 2 sequences, X = x1,...,xm and
Y = y1,...,yn, find a common subsequence whose
length is maximum.

springtime ncaa tournament basketball

printing north carolina krzyzewski

Subsequence needn’t be consecutive, but must be in order.

dynprog - 10

Naïve Algorithm

 For every subsequence of X, check whether it’s a

subsequence of Y .

 Time: Θ(n2m).

» 2m subsequences of X to check.

» Each subsequence takes Θ(n) time to check:

scan Y for first letter, for second, and so on.

dynprog - 11

Optimal Substructure

Notation:

prefix Xi = x1,...,xi is the first i letters of X.

prefix Yj = y1,...,yj is the first j letters of Y.

Theorem

Let Z = z1, . . . , zk-1, zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .

3. or zk yn and Z is an LCS of X and Yn-1.

Springtimeg

Printing

LCS: printing

pringtime

Printing

LCS: print

dynprog - 12

Theorem

Let Z = z1, . . . , zk-1, zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .

3. or zk yn and Z is an LCS of X and Yn-1.

springtimeg

printing

springtime

printin

LCS: printin

pringtime

printing

+ g LCS: print = max{print, print}

pringtim

printing

pringtime

printin

Case 1: Case 2:

dynprog - 13

Optimal Substructure

Proof: (case 1: xm = yn)

Any common sequence Z’ that does not end in xm = yn can be made longer by adding
xm = yn to the end. Therefore,

(1) longest common subsequence (LCS) Z must end in xm = yn.

(2) Zk-1 is a common subsequence of Xm-1 and Yn-1, and

(3) there is no longer CS of Xm-1 and Yn-1, or Z would not be an LCS.

Theorem

Let Z = z1, . . . , zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .

3. or zk yn and Z is an LCS of X and Yn-1.

dynprog - 14

Optimal Substructure

Proof: (case 2: xm yn, and zk xm)

Since Z does not end in xm,

(1) Z is a common subsequence of Xm-1 and Y, and

(2) there is no longer CS of Xm-1 and Y, or Z would not be an LCS.

Theorem

Let Z = z1, . . . , zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm yn, then either zk xm and Z is an LCS of Xm-1 and Y .

3. or zk yn and Z is an LCS of X and Yn-1.

(case 2: xm yn, and zk yn) Since Z does not end in yn,

(3) Z is a common subsequence of Yn-1 and X, and

(4) there is no longer CS of Yn-1 and X, or Z would not be an LCS.

dynprog - 15

Recursive Solution

 Define c[i, j] = length of LCS of Xi and Yj .

 We want to get c[m,n].

−−

=+−−

==

=

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

This gives a recursive algorithm and solves the problem.

But does it solve it well?

dynprog - 16

Recursive Solution

=+=

.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[

prefixcprefixc

prefixprefixcc

c[springtime, printing]

c[springtim, printing] c[springtime, printin]

[springti, printing] [springtim, printin] [springtim, printin] [springtime, printi]

[springt, printing] [springti, printin] [springtim, printi] [springtime, print]

same

subproblem

dynprog - 17

Recursive Solution

p r i n t i n g

0 0 0 0 0 0 0 0 0

s 0

p 0

r 0

i 0

n 0

g 0

t 0

i 0

m 0

e 0

• Keep track of c[,] in

a table of nm entries

• Top-down

• Bottom-up

−−

=+−−

==

=

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

X = springtime

Y = printing

dynprog - 18

Computing the length of an LCS
LCS-LENGTH (X, Y)

1. m ← length[X]

2. n ← length[Y]

3. for i ← 1 to m

4. do c[i, 0] ← 0

5. for j ← 0 to n

6. do c[0, j] ← 0

7. for i ← 1 to m

8. do for j ← 1 to n

9. do if xi = yj

10. then c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “ ”

12. else if c[i−1, j] ≥ c[i, j−1]

13. then c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else c[i, j] ← c[i, j−1]

16. b[i, j] ← “←”

17. return c and b

b[i, j] points to table entry

whose subproblem we used

in solving LCS of Xi

and Yj.

c[m,n] contains the length

of an LCS of X and Y.

Time: O(mn)

initialization

−−

=+−−

==

=

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

i – 1, j

i, j -1

i-1,j-1

dynprog - 19

Recursive Solution

B D C A B A

0 0 0 0 0 0 0

A 0

B 0

C 0

B 0

D 0

A 0

B 0

X = ABCBDAB

Y = BDCABA

−−

=+−−

==

=

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

dynprog - 20

Recursive Solution

B D C A B A

0 0 0 0 0 0 0

A 0 0 0 0 1 1 1

B 0 1 1 1 1 2 2

C 0 1 1 2 2 2 2

B 0 1 1 2 2 3 3

D 0 1 2 2 2 3 3

A 0 1 2 2 3 3 4

B 0 1 2 2 3 4 4

X = ABCBDAB

Y = BDCABA

−−

=+−−

==

=

. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

X = ABCBDAB

Y = BDCABA

LCS: BCBA

dynprog - 21

Constructing an LCS
PRINT-LCS (b, X, i, j)

1. if i = 0 or j = 0

2. then return

3. if b[i, j] = “ ”

4. then PRINT-LCS(b, X, i−1, j−1)

5. print xi

6. else if b[i, j] = “↑”

7. then PRINT-LCS(b, X, i−1, j)

8. else PRINT-LCS(b, X, i, j−1)

•Initial call is PRINT-LCS(b, X, m, n).

•When b[i, j] = , we have extended LCS by one character. So

LCS = number of entries with in them.

•Time: O(m + n)

i – 1, j

i, j -1

i-1,j-1

dynprog - 22

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-

down with caching or bottom-up in a table.

4. Construct an optimal solution from computed

values.

We’ll study these with the help of examples.

dynprog - 23

Optimal Binary Search Trees

 Problem

» Given sequence K = k1 < k2 <··· < kn of n sorted keys,

with a search probability pi for each key ki.

» Want to build a binary search tree (BST)

with minimum expected search cost.

» Actual cost = # of items (nodes in the tree) examined.

» For key ki, cost(ki) = depthT(ki) +1, where depthT(ki) = depth of ki

in BST T .

ki

kj

dynprog - 24

Expected Search Cost

=

= =

=

=

+=

+=

+=

=

n

i

iiT

n

i

n

i

iiiT

n

i

iiT

n

i

ii

pk

ppk

pk

pkcost

TE

1

1 1

1

1

)(depth1

)(depth

)1)(depth(

)(

]in cost search [

Sum of probabilities is 1.

(15.16)

Mathematical expectation of

searching costs of all nodes in T

dynprog - 25

Example

 Consider 5 keys with these search probabilities:

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

k2

k1 k4

k3 k5

i depthT(ki) depthT(ki)·pi

1 1 0.25

2 0 0

3 2 0.1

4 1 0.2

5 2 0.6

1.15

Therefore, E[search cost]

k1 < k2 <··· < k5

dynprog - 26

Example

 p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

i depthT(ki) depthT(ki)·pi

1 1 0.25

2 0 0

3 3 0.15

4 2 0.4

5 1 0.3

1.10

Therefore, E[search cost] = 2.10.

k2

k1 k5

k4

k3

This tree turns out to be optimal for this set of keys.

dynprog - 27

Observation

 Observations:

» Optimal BST may not have smallest height.

» Optimal BST may not have highest-probability key at

root.

 Build by exhaustive checking?

» Construct each n-node BST.

» For each,

assign keys and compute expected search cost.

» But there are (4n/n3/2) different BSTs with n nodes.

dynprog - 28

Optimal Substructure

 Any subtree of a BST contains keys in a contiguous range
ki, ..., kj for some 1 ≤ i ≤ j ≤ n.

 If T is an optimal BST and

T contains subtree T with keys ki, ..., kj ,

then T must be an optimal BST for keys ki, ..., kj.

 Proof: … … .

T

T

ki
kj

dynprog - 29

Optimal Substructure

 One of the keys in ki, …, kj, say kr, where i ≤ r ≤ j,

must be the root of an optimal subtree for these keys.

 Left subtree of kr contains ki,..., kr−1.

 Right subtree of kr contains kr+1, ..., kj.

 To find an optimal BST:

» Examine all candidate roots kr, for i ≤ r ≤ j

» Determine all optimal BSTs containing ki, ..., kr−1 and

all optimal BSTs containing kr+1, ..., kj

kr

ki kr-1 kr+1 kj

11/8/2023

ki

ki+1 kj

ki+2

ki ki+1

kr+3 kj

ki+3

ki ki+2

kr+4 kj

ki+1

ki+2 kj

ki

... …

dynprog - 31

Recursive Solution

 Find optimal BST for ki, ..., kj, where i ≥ 1, j ≤ n, j ≥ i−1.

When j = i − 1, the tree is empty.

 Define e[i, j] = expected search cost of optimal BST for ki, ..., kj.

 If j = i − 1, then e[i, j] = 0.

 If j ≥ i,

» Select a root kr, for some i ≤ r ≤ j.

» Recursively make an optimal BSTs

• for ki, .., kr−1 as the left subtree, e[i, r - 1] and

• for kr+1, ..., kj as the right subtree, e[r + 1, j].

kr

ki kr-1 kr+1 kj

e[i, j]

e[r+1, j]e[i, r−1]

dynprog - 32

Recursive Solution

 When the OPT subtree becomes a subtree of a node:

» Depth of every node in OPT subtree goes up by 1.

» Expected search cost increases by

 If kr is the root of an optimal BST for ki ,..,kj:

» e[i, j] = pr + (e[i, r−1] + w(i, r−1)) + (e[r+1, j] + w(r+1, j))

= e[i, r−1] + e[r+1, j] + w(i, j).

 But, we don’t know kr. Hence,

=

=
j

il

lpjiw),(from (15.16)

w(i, j)=w(i,r−1) + pr + w(r + 1, j))

+++−

−=
=

jijiwjrerie

ij
jie

jri
 if)},(],1[]1,[{min

1 if0
],[

kr

ki kr-1 kr+1 kj

e[i, j]

e[r+1, j]
e[i, r−1]

dynprog - 33

Computing an Optimal Solution

For each subproblem (i, j), store:

 expected search cost in a table e[1..n + 1, 0..n]

» Will use only entries e[i, j], where j ≥ i−1.

 root[i, j] = root of subtree with keys ki, ..., kj, for 1 ≤ i ≤ j ≤

n.

 w[1..n + 1, 0..n] = sum of probabilities

» w[i, i − 1] = 0 for 1 ≤ i ≤ n.

» w[i, j] = w[i, j - 1] + pj for 1 ≤ i ≤ j ≤ n.

… …

e[1..n + 1, 0..n]

… …

root[1..n, 1..n]

… …

w[1..n + 1, 0..n]

rij

ki kj

dynprog - 34

Pseudo-code
OPTIMAL-BST(p, n)

1. for i ← 1 to n + 1

2. do e[i, i− 1] ← 0

3. w[i, i − 1] ← 0

4. for l ← 1 to n

5. do for i ← 1 to n − l + 1

6. do j ← i + l − 1

7. w[i, j] ← w[i, j − 1] + pj

8. e[i, j]← ∞

9. for r ←i to j
10. do t ← e[i, r− 1] + e[r + 1, j] + w[i, j]

11. if t < e[i, j]

12. then e[i, j] ← t

13. root[i, j] ←r

10. return e and root

Time: O(n3)

Consider all trees with l

keys.

Fix the first key.

Fix the last key

Determine the root

of the optimal

(sub)tree

+++−

−=
=

jijiwjrerie

ij
jie

jri
 if)},(],1[]1,[{min

1 if0
],[

=

=
j

il

lpjiw),(

dynprog - 35

Example

Construct an optimal binary search tree over five key values

k1 < k2 < k3 < k4 < k5 with access probability 0.3, 0.2, 0.1,

0.15, and 0.25, respectively.

dynprog - 36

Pseudo-code

j=0 1 2 3 4 5

i=1 0

2 0

3 0

4 0

5 0

6 0

e[i,j]

j=0 1 2 3 4 5

i=1 0

2 0

3 0

4 0

5 0

6 0

w[i,j]

11/8/2023

Example

Construct an optimal binary search tree over five key values

k1 < k2 < k3 < k4 < k5 with access probability 0.3, 0.2, 0.1,

0.15, and 0.25, respectively.

j=0 1 2 3 4 5

i=1 0 0.3

2 0 0.2

3 0 0.1

4 0 0.15

5 0 0.25

6 0

1. w[i,j] l = 1

OPTIMAL-BST(p, n)

1. for i ← 1 to n + 1

2. do e[i, i− 1] ← 0

3. w[i, i − 1] ← 0

4. for l ← 1 to n

5. do for i ← 1 to n − l + 1

6. do j ← i + l − 1

7. w[i, j] ← w[i, j − 1] + pj

8. e[i, j]← ∞

9. for r ←i to j

10. do t ← e[i, r− 1] + e[r + 1, j
+ w[i, j]

11. if t < e[i, j]

12. then e[i, j] ← t

13. root[i, j] ←r

10. return e and root

dynprog - 38

j=0 1 2 3 4 5

i=1 0 0.3

2 0 0.2

3 0 0.1

4 0 0.15

5 0 0.25

6 0

1. e[i,j]

j=0 1 2 3 4 5

i=1 1

2 2

3 3

4 4

5 5

6

1. r[i,j]

l = 1

l = 1

+++−

−=
=

jijiwjrerie

ij
jie

jri
 if)},(],1[]1,[{min

1 if0
],[

OPTIMAL-BST(p, n)

1. for i ← 1 to n + 1

2. do e[i, i− 1] ← 0

3. w[i, i − 1] ← 0

4. for l ← 1 to n

5. do for i ← 1 to n − l + 1

6. do j ← i + l − 1

7. w[i, j] ← w[i, j − 1] + pj

8. e[i, j]← ∞

9. for r ←i to j

10. do t ← e[i, r− 1] + e[r + 1, j
+ w[i, j]

11. if t < e[i, j]

12. then e[i, j] ← t

13. root[i, j] ←r

10. return e and root

dynprog - 39

2. w[i,j]
j=0 1 2 3 4 5

i=1 0 0.3 0.5

2 0 0.2 0.3

3 0 0.1 0.25

4 0 0.15 0.4

5 0 0.25

6 0

2. e[i,j]
j=0 1 2 3 4 5

i=1 0 0.3 0.7

2 0 0.2 0.4

3 0 0.1 0.35

4 0 0.15 0.55

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 1 1

2 2 2

3 3 4

4 4 5

5 5

6

2. r[i,j]

l = 2

l = 2

l = 2

dynprog - 40

3. w[i,j]

3. e[i,j]

3. r[i,j]

j=0 1 2 3 4 5

i=1 0 0.3 0.5 0.6

2 0 0.2 0.3 0.45

3 0 0.1 0.25 0.5

4 0 0.15 0.4

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 0 0.3 0.7 1

2 0 0.2 0.4 0.8

3 0 0.1 0.35 0.85

4 0 0.15 0.55

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 1 1 2

2 2 2 3

3 3 4 5

4 4 5

5 5

6

l = 3

l = 3

l = 3

dynprog - 41

4. w[i,j]

4. e[i,j]

4. r[i,j]

j=0 1 2 3 4 5

i=1 0 0.3 0.5 0.6 0.75

2 0 0.2 0.3 0.45 0.7

3 0 0.1 0.25 0.5

4 0 0.15 0.4

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 0 0.3 0.7 1 1.4

2 0 0.2 0.4 0.8 1.35

3 0 0.1 0.35 0.85

4 0 0.15 0.55

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 1 1 2 2

2 2 2 3 4

3 3 4 5

4 4 5

5 5

6

l = 4

l = 4

l = 4

5. w[i,j]

5. e[i,j]

5. r[i,j]

j=0 1 2 3 4 5

i=1 0 0.3 0.5 0.6 0.75 1

2 0 0.2 0.3 0.45 0.7

3 0 0.1 0.25 0.5

4 0 0.15 0.4

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 0 0.3 0.7 1 1.4 2.15

2 0 0.2 0.4 0.8 1.35

3 0 0.1 0.35 0.85

4 0 0.15 0.55

5 0 0.25

6 0

j=0 1 2 3 4 5

i=1 1 1 1 2 2

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6

11/8/2023

l = 5

l = 5

l = 5

dynprog - 43

r[1, 5] = 2 shows that the root of the tree over k1, k2, k3, k4, k5 is k2.

k2

k1 k3, k4, k5

r[3, 5] = 4 shows that the root of the subtree over k3, k4, k5 is k4.

k4

k3

k2

k1 k4

k3 k5

k3, k4, k5

j=0 1 2 3 4 5

i=1 1 1 1 2 2

2 2 2 2 4

3 3 4 4

4 4 5

5 5

6

r[i,j]

dynprog - 44

Elements of Dynamic Programming

 Optimal substructure

 Overlapping subproblems

dynprog - 45

Optimal Substructure

 Show that a solution to a problem consists of making a

choice, which leaves one or more subproblems to solve.

 Suppose that you are given this last choice that leads to an

optimal solution.

 Given this choice, determine which subproblems arise and

how to characterize the resulting space of subproblems.

 Show that the solutions to the subproblems used within

the optimal solution must themselves be optimal. Usually

use cut-and-paste.

 Need to ensure that a wide enough range of choices and

subproblems are considered.

dynprog - 46

Optimal Substructure

 Optimal substructure varies across problem domains:

» 1. How many subproblems are used in an optimal solution.

» 2. How many choices in determining which subproblem(s) to

use.

 Informally, running time depends on (# of subproblems

overall) (# of choices).

 How many subproblems and choices do the examples

considered contain?

 Dynamic programming uses optimal substructure bottom

up.

» First find optimal solutions to subproblems.

» Then choose which to use in optimal solution to the problem.

dynprog - 47

Optimal Substucture

 Does optimal substructure apply to all optimization

problems? No.

 Applies to determining the shortest path but NOT the

longest simple path of an unweighted directed graph.

 Why?

» Shortest path has independent subproblems.

» Solution to one subproblem does not affect solution to another

subproblem of the same problem.

» Subproblems are not independent in longest simple path.

• Solution to one subproblem affects the solutions to other subproblems.

» Example:

dynprog - 48

Overlapping Subproblems

 The space of subproblems must be “small”.

 The total number of distinct subproblems is a polynomial

in the input size.

» A recursive algorithm is exponential because it solves the same

problems repeatedly.

» If divide-and-conquer is applicable, then each problem solved

will be brand new.

11/8/2023

11/8/2023

...

 n/20+1

 n/21+1

 n/22+1
depth(a leaf) = log2 n

11/8/2023

k2

k1 k4

k3 k5

i depthT(ki) depthT(ki)·pi

1 1 0.2

2 0 0

3 2 0.4

4 1 0.2

5 2 0.4

1.2

Therefore, E[search cost] = 2.2.

i depthT(ki) depthT(ki)·pi

1 1 0.2

2 0 0

3 3 0.6

4 2 0.4

5 1 0.2

1.4

Therefore, E[search cost] = 2.4.

k2

k1 k5

k4

k3

