Dynamic Programming

- Several problems
- Principle of dynamic programming
- Structure analysis of optimal solutions
- Defining values of optimal solutions
- Top-down or bottom-up computation of values
- Computation of optimal solution from computed values
- Longest Common Subsequences
- Optimal binary search trees

Longest Common Subsequence

- Problem: Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, find a common subsequence whose length is maximum.

Springtime /l/l///
ncaa tournament

basketball

Subsequence needn't be consecutive, but must be in order.

Other sequence questions

- Edit distance: Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, what is the minimum number of deletions, insertions, and changes that you must do to change one to another?

$$
E D=\mid \text { operations }|=|X|+|Y|-2| \mathrm{LCS} \mid
$$

Example: for the first pair of sequences, we have

$$
\begin{aligned}
& \mid \text { operations }|=|X|+|Y|-2| \mathrm{LCS} \mid \\
& =10+8-2 \times 6=6
\end{aligned}
$$

Other sequence questions

- DNA sequence alignment: Given a score matrix M on amino acid pairs with $M(a, b)$ for $a, b \in\{\Lambda\} \cup A(A=$ $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}, \Lambda$ - space symbol), and 2 DNA sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle \in A^{m}$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle \in A^{n}$, find the alignment with highest score.
A

T C G | Λ |
| :--- |
| A |
| T |
| C |
| G |
| Λ |\(\left[\begin{array}{lllll}1 \& -1 \& -1 \& -1 \& -2

-1 \& 1 \& -1 \& -1 \& -2

-1 \& -1 \& 1 \& -1 \& -2

-1 \& -1 \& -1 \& 1 \& -2

-2 \& -2 \& -2 \& -2 \& 1\end{array}\right] \quad\)| G ATCG GCAT |
| :--- |

More problems

Optimal BST: Given sequence $K=k_{1}<k_{2}<\cdots<k_{n}$ of n sorted keys, with a search probability p_{i} for each key k_{i}, build a binary search tree (BST) with minimum expected search cost.
Matrix chain multiplication: Given a sequence of matrices $A_{1} A_{2} \ldots A_{n}$, with A_{i} of dimension $m_{i} \times n_{i}$, insert parenthesis to minimize the total number of scalar multiplications.
$\left(\left(\mathrm{A}_{1} \times\left(\mathrm{A}_{2} \times \mathrm{A}_{3}\right)\right) \times\left(\mathrm{A}_{4} \times \mathrm{A}_{5}\right)\right)$ or $\left.\left(\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right) \times \mathrm{A}_{3}\right) \times\left(\mathrm{A}_{4} \times \mathrm{A}_{5}\right)\right)$
Which is fast?

Number of scaler multiplications of $A_{m k} \times A_{k n}$: $m \times k \times n$.
$\left(A_{10,100} \times A_{100,5}\right) \times A_{5,50}:$
$10 \times 100 \times 5+10 \times 5 \times 50=7500$.

$$
B_{10,5} \times A_{5,50}
$$

$A_{10,100} \times\left(A_{100,5} \times A_{5,50}\right):$
$10 \times 100 \times 50+100 \times 5 \times 50=75000$.
$A_{10,100} \times C_{100,50}$

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
» Subproblems may share subsubproblems,
» However, solution to one subproblem may not affect the solutions to other subproblems of the same problem. (More on this later.)
- DP reduces computation by
» Solving subproblems in a bottom-up fashion.
» Storing solution to a subproblem the first time it is solved.
» Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.
3. Compute optimal solution values either topdown with caching or bottom-up in a table.
4. Construct an optimal solution from computed values.

We'll study these with the help of examples.

Longest Common Subsequence

- Problem: Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, find a common subsequence whose length is maximum.

Subsequence needn't be consecutive, but must be in order.

Naïve Algorithm

- For every subsequence of X, check whether it's a subsequence of Y.
- Time: $\Theta\left(n 2^{m}\right)$.
» 2^{m} subsequences of X to check.
» Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, for second, and so on.

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k-1}, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3.

or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.
Notation:
prefix $X_{i}=\left\langle x_{1}, \ldots, x_{i}\right\rangle$ is the first i letters of X. prefix $Y_{j}=\left\langle y_{1}, \ldots, y_{j}\right\rangle$ is the first j letters of Y.

Springtimeg
Printing

LCS: printing
pringtime
Printing
$\underline{\text { LCS: print }}$

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k-1}, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

Case 1:
springtimeg printing
springtime printin

LCS: printin +g

Case 2:
pringtime printing
pringtim pringtime printing printin】 】
$\underline{\text { LCS: }}$ print $=\max \{$ print, print $\}$

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. \quad or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

Proof: (case 1: $x_{m}=y_{n}$)
Any common sequence Z ' that does not end in $x_{m}=y_{n}$ can be made longer by adding $x_{m}=y_{n}$ to the end. Therefore,
(1) longest common subsequence (LCS) Z must end in $x_{m}=y_{n}$.
(2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1}, and
(3) there is no longer CS of X_{m-1} and Y_{n-1}, or Z would not be an LCS.

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. \quad or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

Proof: (case 2: $x_{m} \neq y_{n}$, and $z_{k} \neq x_{m}$)
Since Z does not end in x_{m},
(1) Z is a common subsequence of X_{m-1} and Y, and
(2) there is no longer CS of X_{m-1} and Y, or Z would not be an LCS.
(case 2: $x_{m} \neq y_{n}$, and $z_{k} \neq y_{n}$) Since Z does not end in y_{n},
(3) Z is a common subsequence of Y_{n-1} and X, and
(4) there is no longer CS of Y_{n-1} and X, or Z would not be an LCS.

Recursive Solution

- Define $c[i, j]=$ length of LCS of X_{i} and Y_{j}.
- We want to get $c[m, n]$.

$$
c[i, j]=\left\{\begin{array}{ll|}
0 & \text { if } i=0 \text { or } j=0, \\
c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\
\max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .
\end{array}\right.
$$

This gives a recursive algorithm and solves the problem. But does it solve it well?

Recursive Solution

$$
c[\alpha, \beta]= \begin{cases}0 & \text { if } \alpha \text { empty or } \beta \text { empty } \\ c[\text { prefix } \alpha, \text { prefix } \beta]+1 & \text { if } \operatorname{end}(\alpha)=\operatorname{end}(\beta), \\ \max (c[\text { prefix } \alpha, \beta], c[\alpha, \text { prefix } \beta]) & \text { if } \operatorname{end}(\alpha) \neq \operatorname{end}(\beta) .\end{cases}
$$

c [springtime, printing]

[springti, printing] [springtim, printin] [springtim, printin] [springtime, printi] [springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Recursive Solution

$$
c[i, j]=\left\{\begin{array}{ll|}
0 & \text { if } i=0 \text { or } j=0, \\
c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\
\max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .
\end{array}\right.
$$

- Keep track of $c[\alpha, \beta]$ in a table of $n m$ entries
- Top-down
- Bottom-up
$\mathrm{X}=$ springtime
$\mathrm{Y}=$ printing

		p	r		i	n		t	i	n	g
	0	0	0		0	0		0	0	0	0
S	0	----								$\because=$	\rightarrow
p	0	4--:	-								\rightarrow
r	0										
i	0										
n	0										
g	0										
t	0										
i	0										
m	0										
e	0										

Computing the length of an LCS

LCS-LENGTH ($\boldsymbol{X}, \boldsymbol{Y}$)

1. $m \leftarrow$ length $[X]$
2. $n \leftarrow$ length $[Y]$
3. for $i \leftarrow 1$ to m
4. do $c[i, 0] \leftarrow 0$
5. for $j \leftarrow 0$ to n
6. do $c[0, j] \leftarrow 0$
7. for $i \leftarrow 1$ to m
8. do for $j \leftarrow 1$ to n
9. do if $x_{i}=y_{j}$
10. \quad then $c[i, j] \leftarrow c[i-1, j-1]+1$
11.
12.
13.
14.
15.
16. $b[i, j] \leftarrow "$ "
else if $c[i-1, j] \geq c[i, j-1]$
then $c[i, j] \leftarrow c[i-1, j]$ $b[i, j] \leftarrow " \uparrow "$
else $c[i, j] \leftarrow c[i, j-1]$
$b[i, j] \leftarrow " \leftarrow "$
17. return c and b
$c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\ \max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .\end{cases}$
$b[i, j]$ points to table entry whose subproblem we used in solving LCS of X_{i} and Y_{j}.

$c[m, n]$ contains the length of an LCS of X and Y.

Time: $O(m n)$

Recursive Solution

$c[i, j]=\left\{\begin{array}{ll|}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\ \max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .\end{array}\right.$
$\mathrm{X}=\mathrm{ABCBDAB}$
$\mathrm{Y}=\mathrm{BDCABA}$

		B	D	C	A	B	A
	0	0	0	0	0	0	0
A	0						
B	0						
C	0						
B	0						
D	0						
A	0						
B	0						

Recursive Solution

$c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\ \max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .\end{cases}$
$\mathrm{X}=\mathrm{ABCBDAB}$
$\mathrm{Y}=\mathrm{BDCABA}$
$\mathrm{X}=\mathrm{ABCBDAB}$
$\mathrm{Y}=\mathrm{BDCABA}$
LCS: BCBA

		B	D	C	A	B	A
	0	0	0	0	0	0	0
A	0	0	0	0	1	-1	1
B	0	1	-1	-1	1	2	-2
C	0	1	1	1	2	-2	2
1	2						
B	0	1	1	1	1	2	2
	-3						
D	0	1	2	2	2	3	3
A	0	1	2	2	3	3	4
B	0	1	2	2	3	4	4

Constructing an LCS

```
PRINT-LCS (b, X,i,j)
1. if }i=0\mathrm{ or }j=
2. then return
3. if b[i,j]="\"
4. then PRINT-LCS(b,X,i-1,j-1)
5. print }\mp@subsup{x}{i}{
6. else if b[i,j]= "\uparrow"
        then PRINT-LCS( }b,X,i-1,j
8. else PRINT-LCS}(b,X,i,j-1
```

-Initial call is PRINT-LCS (b, X, m, n).
-When $b[i, j]=\backslash$, we have extended LCS by one character. So LCS = number of entries with \backslash in them.
-Time: $O(m+n)$

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.
3. Compute optimal solution values either topdown with caching or bottom-up in a table.
4. Construct an optimal solution from computed values.

We'll study these with the help of examples.

Optimal Binary Search Trees

- Problem
» Given sequence $K=k_{1}<k_{2}<\cdots<k_{n}$ of n sorted keys, with a search probability p_{i} for each key k_{i}.
» Want to build a binary search tree (BST) with minimum expected search cost.
» Actual cost = \# of items (nodes in the tree) examined.
» For key $k_{i}, \operatorname{cost}\left(k_{i}\right)=\operatorname{depth}_{T}\left(k_{i}\right)+1$, where $\operatorname{depth}_{T}\left(k_{i}\right)=\operatorname{depth}$ of k_{i} in BST T.

Expected Search Cost

$E[$ search cost in $T]$
Mathematical expectation of

$$
\begin{align*}
& =\sum_{i=1}^{n} \operatorname{cost}\left(k_{i}\right) \cdot p_{i} \\
& =\sum_{i=1}^{n}\left(\operatorname{depth}_{T}\left(k_{i}\right)+1\right) \cdot p_{i} \quad \text { searching costs of all nodes in } T \\
& =\sum_{i=1}^{n} \operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}+\sum_{i=1}^{n} p_{i} \tag{15.16}\\
& =1+\sum_{i=1}^{n} \operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i} \quad \text { Sum of probabilities is 1. }
\end{align*}
$$

Example

- Consider 5 keys with these search probabilities:

$$
p_{1}=0.25, p_{2}=0.2, p_{3}=0.05, p_{4}=0.2, p_{5}=0.3
$$

i	depth $_{T}\left(k_{i}\right)$	$\operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}$
1	1	0.25
2	0	0
3	2	0.1
4	1	0.2
5	2	0.6
		1.15

Therefore, E [search cost]
$k_{1}<k_{2}<\cdots<k_{5}$

$$
\begin{aligned}
& =1+\sum_{1}^{5} \operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i} \\
& =1+1.15=2.15 .
\end{aligned}
$$

Example

- $p_{1}=0.25, p_{2}=0.2, p_{3}=0.05, p_{4}=0.2, p_{5}=0.3$.

i	depth $_{T}\left(k_{i}\right)$	$\operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}$
1	1	0.25
2	0	0
3	3	0.15
4	2	0.4
5	1	0.3
		1.10

Therefore, $E[$ search cost $]=2.10$.

This tree turns out to be optimal for this set of keys.

Observation

- Observations:
» Optimal BST may not have smallest height.
» Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
» Construct each n-node BST.
» For each,
assign keys and compute expected search cost.
» But there are $\Omega\left(4^{n} / n^{3 / 2}\right)$ different BSTs with n nodes.

Optimal Substructure

- Any subtree of a BST contains keys in a contiguous range k_{i}, \ldots, k_{j} for some $1 \leq i \leq j \leq n$.

- If T is an optimal BST and
T contains subtree T^{\prime} with keys k_{i}, \ldots, k_{j}, then T^{\prime} must be an optimal BST for keys k_{i}, \ldots, k_{j}. - Proof:

Optimal Substructure

- One of the keys in k_{i}, \ldots, k_{j}, say k_{r}, where $i \leq r \leq j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_{r} contains k_{i}, \ldots, k_{r-1}.
- Right subtree of k_{r} contains k_{r+1}, \ldots, k_{j}.
- To find an optimal BST:

» Examine all candidate roots k_{r}, for $i \leq r \leq j$
» Determine all optimal BSTs containing k_{i}, \ldots, k_{r-1} and all optimal BSTs containing k_{r+1}, \ldots, k_{j}

Recursive Solution

- Find optimal BST for k_{i}, \ldots, k_{j}, where $i \geq 1, j \leq n, j \geq i-1$. When $j=i-1$, the tree is empty.
- Define $e[i, j]=$ expected search cost of optimal BST for k_{i}, \ldots, k_{j}.
- If $j=i-1$, then $e[i, j]=0$.
- If $j \geq i$,
» Select a root k_{r}, for some $i \leq r \leq j$.
» Recursively make an optimal BSTs

- for $k_{i}, . ., k_{r-1}$ as the left subtree, $e[i, r-1]$ and
- for k_{r+1}, \ldots, k_{j} as the right subtree, $e[r+1, j]$.

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
» Depth of every node in OPT subtree goes up by 1.
» Expected search cost increases by

$$
w(i, j)=\sum_{l=i}^{i} p_{l}
$$

from (15.16)

- If k_{r} is the root of an optimal BST for $k_{i}, \ldots, k_{j}: k_{i} \quad k_{r-1} k_{r+1} k_{j}$
»e[i,j] $=p_{r}+(e[i, r-1]+w(i, r-1))+(e[r+1, j]+w(r+1, j))$

$$
\left.=e[i, r-1]+e[r+1, j]+w(i, j) . \quad w(i, j)=w(i, r-1)+p_{r}+w(r+1, j)\right)
$$

- But, we don't know k_{r}. Hence,

$$
e[i, j]= \begin{cases}0 & \text { if } j=i-1 \\ \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w(i, j)\} & \text { if } i \leq j\end{cases}
$$

Computing an Optimal Solution

For each subproblem (i, j), store:

- expected search cost in a table $e[1 . . n+1,0 . . n]$
» Will use only entries $e[i, j]$, where $j \geq i-1$.
- $\operatorname{root}[i, j]=$ root of subtree with keys k_{i}, \ldots, k_{j}, for $1 \leq i \leq j \leq$ n.
- $w[1 . . n+1,0 . . n]=$ sum of probabilities
» $w[i, i-1]=0$ for $1 \leq i \leq n$.
» $w[i, j]=w[i, j-1]+p_{j}$ for $1 \leq i \leq j \leq n$.
$e[1 . . n+1,0 . . n] \quad \operatorname{root}[1 . . n, 1 . . n]$
$w[1 . . n+1,0 . . n]$

$$
\left(\begin{array}{ll}
& \\
\cdots
\end{array}\right)
$$

Pseudo-code

$$
\begin{aligned}
& \text { OPTIMAL-BST }(\boldsymbol{p}, \boldsymbol{n}) \\
& \text { 1. for } i \leftarrow 1 \text { to } n+1 \\
& \text { 2. } \quad d o e[i, i-1] \leftarrow 0 \\
& \text { 3. } w[i, i-1] \leftarrow 0 \\
& \text { 4. for } l \leftarrow 1 \text { to } n \\
& \text { 5. do for } i \leftarrow 1 \text { to } n-l+1 \leftarrow \\
& \text { 6. do } j \leftarrow i+l-1 \\
& \text { 7. } w[i, j] \leftarrow w[i, j-1]+p \\
& e[i, j] \leftarrow \infty \\
& \text { for } r \longleftarrow i \text { to } j \\
& \text { do } t \leftarrow e[i, r-1]+e[r+1, j]+w[i, j] \\
& \text { 11. if } t<e[i, j] \\
& 12 . \\
& \text { 13. } \operatorname{root}[i, j] \leftarrow r \\
& \text { 10. return } e \text { and root } \\
& \text { Time: } O\left(n^{3}\right) \\
& e[i, j]= \begin{cases}0 & \text { if } j=i-1 \\
\min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w(i, j)\} & \text { if } i \leq j\end{cases}
\end{aligned}
$$

Example

Construct an optimal binary search tree over five key values $\mathrm{k} 1<\mathrm{k} 2<\mathrm{k} 3<\mathrm{k} 4<\mathrm{k} 5$ with access probability $0.3,0.2,0.1$, 0.15 , and 0.25 , respectively.

$\underline{\text { Pseudo-code }}$

e[i,j]

	$\mathrm{j}=0$	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{j = 1}$	0					
$\mathbf{2}$		0				
$\mathbf{3}$			0			
$\mathbf{4}$				0		
$\mathbf{5}$					0	
$\mathbf{6}$						0

w[i,j]

	j=0	1	2	3	4	5
$\mathrm{i}=1$	0					
2		0				
3			0			
4				0		
5					0	
6						0

Example

Construct an optimal binary search tree over five key values $\mathrm{k} 1<\mathrm{k} 2<\mathrm{k} 3<\mathrm{k} 4<\mathrm{k} 5$ with access probability $0.3,0.2,0.1$, 0.15 , and 0.25 , respectively.

$$
\text { 1. w[i,j] } \quad l=1
$$

	$\mathrm{j}=0$	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
$\mathbf{i = 1}$	0	0.3				
$\mathbf{2}$		0	0.2			
$\mathbf{3}$			0	0.1		
$\mathbf{4}$				0	0.15	
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

```
OPTIMAL-BST \((\boldsymbol{p}, \boldsymbol{n})\)
1. \(\quad\) for \(i \leftarrow 1\) to \(n+1\)
2. do \(e[i, i-1] \leftarrow 0\)
3. \(\quad w[i, i-1] \leftarrow 0\)
4. \(\quad\) for \(l \leftarrow 1\) to \(n\)
5. do for \(i \leftarrow 1\) to \(n-l+1\)
6. do \(j \leftarrow i+l-1\)
7. \(w[i, j] \leftarrow w[i, j-1]+p_{j}\)
8. \(\quad e[i, j] \leftarrow \infty\)
9. for \(r \leftarrow i\) to \(j\)
10.
        do \(t \leftarrow e[i, r-1]+e[r+1\)
\(+w[i, j]\)
    if \(t<e[i, j]\)
    then \(e[i, j] \leftarrow t\)
    \(\operatorname{root}[i, j] \leftarrow r\)
10. return \(e\) and root
```

1. e[i,j] $l=1$

	$\mathbf{j}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{j}=\mathbf{1}$	0	0.3				
$\mathbf{2}$		0	0.2			
$\mathbf{3}$			0	0.1		
$\mathbf{4}$				0	0.15	
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

1. $r[i, j] l=1$

	$\mathrm{j}=0$	1	2	3	4	5
$\mathbf{i = 1}$		1				
2			2			
3				3		
4					4	
5						5
6						

OPTIMAL-BST $(\boldsymbol{p}, \boldsymbol{n})$

1. \quad for $i \leftarrow 1$ to $n+1$
2. do $e[i, i-1] \leftarrow 0$ $w[i, i-1] \leftarrow 0$
3. for $l \leftarrow 1$ to n do for $i \leftarrow 1$ to $n-l+1$
do $j \leftarrow i+l-1$ $w[i, j] \leftarrow w[i, j-1]+p_{j}$ $e[i, j] \leftarrow \infty$
for $r \leftarrow i$ to j
do $t \leftarrow e[i, r-1]+e[r+1$ $+w[i, j]$
4. if $t<e[i, j]$
then $e[i, j] \leftarrow t$
$\operatorname{root}[i, j] \leftarrow r$
5. return e and root

$$
e[i, j]= \begin{cases}0 & \text { if } j=i-1 \\ \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w(i, j)\} & \text { if } i \leq j\end{cases}
$$

2. w[i,j] $l=2$

	$\mathbf{i}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{i}=\mathbf{1}$	0	0.3	0.5			
$\mathbf{2}$		0	0.2	0.3		
$\mathbf{3}$			0	0.1	0.25	
$\mathbf{4}$				0	0.15	0.4
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

2. e[i,j] $l=2$

	$\mathbf{i}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{i}=\mathbf{1}$	0	0.3	0.7			
$\mathbf{2}$		0	0.2	0.4		
$\mathbf{3}$			0	0.1	0.35	
$\mathbf{4}$				0	0.15	0.55
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

2. $r[i, j] l=2$

$\mathbf{i = 1}$	i=0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$
$\mathbf{2}$		1	1			
$\mathbf{3}$			2	2		
4				3	4	
$\mathbf{5}$					4	5
6						5

3. w[i,jl $l=3$

	$\mathbf{j}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{j}=\mathbf{1}$	0	0.3	0.5	0.6		
$\mathbf{2}$		0	0.2	0.3	0.45	
$\mathbf{3}$			0	0.1	0.25	0.5
$\mathbf{4}$				0	0.15	0.4
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

3. e[i,j] $l=3$

	$\mathbf{j}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{j}=\mathbf{1}$	0	0.3	0.7	1		
$\mathbf{2}$		0	0.2	0.4	0.8	
$\mathbf{3}$			0	0.1	0.35	0.85
$\mathbf{4}$				0	0.15	0.55
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

3. $\mathrm{r}[\mathrm{i}, \mathrm{j}] \quad l=3$

	i=0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$
$\mathbf{i}=1$		1	1	2		
$\mathbf{2}$			2	2	3	
3				3	4	5
4					4	5
5						5
6						

4. $w[i, j] l=4$

	$\mathbf{i}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{i = 1}$	0	0.3	0.5	0.6	0.75	
$\mathbf{2}$		0	0.2	0.3	0.45	0.7
$\mathbf{3}$			0	0.1	0.25	0.5
$\mathbf{4}$				0	0.15	0.4
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

4. e[i,j] $l=4$

	$\mathbf{i}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{i}=\mathbf{1}$	0	0.3	0.7	1	1.4	
$\mathbf{2}$		0	0.2	0.4	0.8	1.35
$\mathbf{3}$			0	0.1	0.35	0.85
$\mathbf{4}$				0	0.15	0.55
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

4. $\mathrm{r}[\mathrm{i}, \mathrm{j}] \quad l=4$

	i=0	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$
$\mathbf{i = 1}$		1	1	2	2	
$\mathbf{2}$			2	2	3	4
3				3	4	5
4					4	5
5						5
6						

5. $w[i, j] l=5$

	$\mathbf{j}=0$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{j}=\mathbf{1}$	0	0.3	0.5	0.6	0.75	1
$\mathbf{2}$		0	0.2	0.3	0.45	0.7
$\mathbf{3}$			0	0.1	0.25	0.5
$\mathbf{4}$				0	0.15	0.4
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

5. e[i,j] $l=5$

	$\mathbf{j}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{j}=\mathbf{1}$	0	0.3	0.7	1	1.4	2.15
$\mathbf{2}$		0	0.2	0.4	0.8	1.35
$\mathbf{3}$			0	0.1	0.35	0.85
$\mathbf{4}$				0	0.15	0.55
$\mathbf{5}$					0	0.25
$\mathbf{6}$						0

5. $\mathrm{r}[\mathrm{i}, \mathrm{j}] \quad l=5$

	$\mathbf{j}=0$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
$\mathbf{j = 1}$		1	1	1	2	2
2			2	2	2	4
$\mathbf{3}$				3	4	4
$\mathbf{4}$					4	5
$\mathbf{5}$						5
$\mathbf{6}$						

	$\mathrm{i}=0$	1	2	3	4	5
i=1		1	1	1	2	2
2			2	2	2	4
3				3	4	4
4					4	5
5						5
6						

$r[1,5]=2$ shows that the root of the tree over $k 1, k 2, k 3, k 4, k 5$ is $k 2$.

$\mathrm{r}[3,5]=4$ shows that the root of the subtree over $\mathrm{k} 3, \mathrm{k} 4, \mathrm{k} 5$ is k 4 .

Elements of Dynamic Programming

- Optimal substructure
- Overlapping subproblems

Optimal Substructure

- Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
- Suppose that you are given this last choice that leads to an optimal solution.
- Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
- Need to ensure that a wide enough range of choices and subproblems are considered.

Optimal Substructure

- Optimal substructure varies across problem domains:
» 1. How many subproblems are used in an optimal solution.
» 2. How many choices in determining which subproblem(s) to use.
- Informally, running time depends on (\# of subproblems overall) \times (\# of choices).
- How many subproblems and choices do the examples considered contain?
- Dynamic programming uses optimal substructure bottom up.
» First find optimal solutions to subproblems.
» Then choose which to use in optimal solution to the problem.

Optimal Substucture

- Does optimal substructure apply to all optimization problems? No.
- Applies to determining the shortest path but NOT the longest simple path of an unweighted directed graph.
- Why?
» Shortest path has independent subproblems.
»Solution to one subproblem does not affect solution to another subproblem of the same problem.
» Subproblems are not independent in longest simple path.
- Solution to one subproblem affects the solutions to other subproblems.
» Example:

Overlapping Subproblems

- The space of subproblems must be "small".
- The total number of distinct subproblems is a polynomial in the input size.
» A recursive algorithm is exponential because it solves the same problems repeatedly.
» If divide-and-conquer is applicable, then each problem solved will be brand new.

Question: What kind of trees will be created, if the search probabilities of all the key words are the same?

Answer: A balanced binary search tree.
Reason: In this case, the mathematical expectation is:

$$
\frac{1}{n} \sum_{i} \operatorname{depth}_{T}\left(k_{i}\right)
$$

This value reaches minimum when the tree is balanced.

$$
\frac{1}{n} \sum_{i} \operatorname{depth}_{T}\left(k_{i}\right)=\frac{1}{n} O\left(n \log _{2} n\right)=O\left(\log _{2} n\right)
$$

Therefore, $E[$ search cost $]=2.2$.

i	$\operatorname{depth}_{T}\left(k_{i}\right)$	$\operatorname{depth}_{T}\left(k_{i}\right) \cdot p_{i}$
1	1	0.2
2	0	0
3	3	0.6
4	2	0.4
5	1	0.2
		1.4

Therefore, $E[$ search cost $]=2.4$.

