
10/25/2023

Graph Algorithms – 2

• DAGs

• Topological order

• Recognition of strongly connected components

graphs-2 - 2

Identification of Edges
 Edge type for edge (u, v) can be identified when it is first explored

by DFS.

 Identification is based on the color of v.

» If v is white, then (u, v) is a tree edge.

» If v is gray, then (u, v) is a back edge.

» If v is black, then (u, v) is a forward or cross edge.

[d(u), f(u)]

[d(v), f(v)]

[d(u), f(u)]

[d(v), f(v)]

[d(v), f(v)]

[d(u), f(u)]

[d(u), f(u)]
[d(v), f(v)]

s

z

y w

x

t

v u

C

C

C

C

B

B

F

graphs-2 - 3

Directed Acyclic Graph

 DAG – Directed Acyclic Graph (directed graph with no

cycles)

 Used for modeling processes and structures that have a

partial order:

» Let a, b, c be three elements in a set U.

» a > b and b > c  a > c. (Transitivity)

» But may have a and b such that neither a > b nor b > a.

 We can always make a total order (either a > b or b > a

for all a  b) from a partial order (by imposing a relation

on any two elements whose relation is not specified with

the original partial order, as long as the transitivity of this

partial order not violated.)

graphs-2 - 4

Example

DAG of dependencies for putting on goalie equipment.

socks shorts

hose

pants

skates

leg pads

T-shirt

chest pad

sweater

mask

catch glove

blocker

batting glove

graphs-2 - 5

Characterizing a DAG

Proof:

 : Show that back edge  cycle.

» Suppose there is a back edge (u, v). Then v is ancestor of u in

depth-first forest.

» Therefore, there is a path v u, so v u → v is a cycle.

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T

B

graphs-2 - 6

Characterizing a DAG

Proof (Contd.):

  : Show that a cycle implies a back edge.

» c : cycle in G. v : first vertex discovered in c. (u, v) : preceding
edge in c.

» At time d[v], vertices of c form a white path v u. Why?

» By white-path theorem, u is a descendent of v in depth-first

forest.

» Therefore, (u, v) is a back edge.

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T

B

graphs-2 - 7

Topological Sort

 Performed on a DAG.

 Linear ordering of the vertices of G(V, E) such that if (u,

v)  E, then u appears somewhere before v.

graphs-2 - 8

Topological Sort

Sort a directed acyclic graph (DAG) by the nodes’ finishing times.

B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

By sorting, we get a total order that extends this partial order.

C EDA B

graphs-2 - 9

Topological Sort

 Performed on a DAG.

 Linear ordering of the vertices of G such that if (u, v) 

E, then u appears somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f [v] for all v  V

2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices

Time: (|V| + |E|).

graphs-2 - 10

Example 1

Linked List:

A B D

C E

1/

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-2 - 11

Example 1

Linked List:

A B D

C E

1/

2/

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-2 - 12

Example 1

Linked List:

A B D

C E

1/

2/3

E

2/3

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-2 - 13

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D E

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-2 - 14

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/
DFS(G)

1. for each vertex u  V[G]

2. do color[u]  white

3. [u]  NIL

4. time  0

5. for each vertex u  V[G]

6. do if color[u] = white

7. then DFS-Visit(u)

graphs-2 - 15

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/

E

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-2 - 16

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/

6/7

6/7

C

graphs-2 - 17

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

graphs-2 - 18

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/

graphs-2 - 19

Example 1

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/8

6/7

6/7

C

5/8

B

9/10

9/10

A

graphs-2 - 20

Example 2

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/ 6/

7/

Access the nodes in different way:

graphs-2 - 21

Example 2

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/ 6/

7/8

C

7/8

graphs-2 - 22

Example 2

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/ 6/9

7/8

C

7/8

B

6/9

graphs-2 - 23

Example 2

Linked List:

A B D

C E

1/4

2/3

E

2/31/4

D

5/10 6/9

7/8

C

7/8

B

6/9

A

5/10

10/25/2023

Example 3

Linked List:

A B D

C E

1/

10/25/2023

Example 3

Linked List:

A B D

C E

1/

2/

10/25/2023

Example 3

Linked List:

A B D

C E

1/

2/3

C

2/3

10/25/2023

Example 3

Linked List:

A B D

C E

1/4

2/3

C

2/31/4

B

10/25/2023

Example 3

Linked List:

A B D

C E

1/4

2/3

C

2/31/4

5/

B

10/25/2023

Example 3

Linked List:

A B D

C E

1/4

2/3

C

2/31/4

5/

B

6/

10/25/2023

Example 3

Linked List:

A B D

C E

1/4

2/3

C

2/31/4

5/

B

6/

6/7

E

5/8

D

9/9

A

graphs-2 - 31

Correctness Proof
 Just need to show if (u, v)  E, then f [v] < f [u].

 When we explore (u, v), what are the colors of u and v?

» u is gray.

» Is v white?

• Then becomes descendant of u.

• By parenthesis theorem, d[u] < d[v] < f [v] < f [u].

» Is v black?

• Then v is already finished.

• Since we’re exploring (u, v), we have not yet finished u.

• Therefore, f [v] < f [u].

» Is v gray, too?

• No.

• because then v would be ancestor of u  (u, v) is a back edge.

•  contradiction of Lemma 22.11 (dag has no back edges).

10/25/2023

[d(u), f(u)]

[d(v), f(v)]

[d(u), f(u)]

[d(v), f(v)]

[d(v), f(v)]

[d(u), f(u)]

[d(u), f(u)]
[d(v), f(v)]

[1, 4]

[2, 3]

Example:

graphs-2 - 33

Strongly Connected Components

 G is strongly connected if every pair (u, v) of vertices in

G is reachable from one another.

 A strongly connected component (SCC) of G is a

maximal set of vertices C  V such that for all u, v  C,

both u v and v u exist.

A B C D

not an SCC

graphs-2 - 34

Component Graph

 GSCC = (VSCC, ESCC).

 VSCC has one vertex for each SCC in G.

 ESCC has an edge if there’s an edge between the

corresponding SCC’s in G.

 GSCC for the example considered:

A B

C

D

graphs-2 - 35

GSCC is a DAG

Proof:

 Suppose there is a path v v in G.

 Then there are paths u u v and v v u in G.

 Therefore, u and v are reachable from each other, so they

are not in separate SCC’s.

Lemma 22.13

Let C and C be distinct SCC’s in G, let u, v C, u, v  C, and

suppose there is a path u u in G. Then there cannot also be a path

v v in G.

C: C :
u

v

u

v


w w

graphs-2 - 36

Transpose of a Directed Graph

 GT = transpose of directed G.

» GT = (V, ET), ET = {(u, v) : (v, u)  E}.

» GT is G with all edges reversed.

 Can create GT in Θ(|V| +|E|) time if using adjacency

lists.

 G and GT have the same SCC’s. (u and v are reachable

from each other in G if and only if reachable from each

other in GT.)

graphs-2 - 37

Algorithm to determine SCCs
SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of

decreasing f [u] (as computed in the first DFS)

4. output the vertices in each tree of the depth-first forest formed in

the second DFS as a separate SCC

Time: (|V| + |E|).

graphs-2 - 38

Example

13/14

12/15 3/4 2/7

11/16 1/10

a b c

e f g

5/6

8/9

h

d

G

graphs-2 - 39

Example

GT

-/15 -/4 -/7

-/16 -/10

a b c

e f g

-/6

-/9

h

d

-/14

graphs-2 - 40

Example

b

e

a

c

d

g

f

h

-/15 -/4 -/7

-/16 -/10

a b c

e f g

-/6

-/9

h

d

-/14

graphs-2 - 41

How does it work?

 Idea:

» By considering vertices in second DFS in decreasing order of

finishing times from first DFS, we are visiting vertices of the

component graph in topologically sorted order.

» Because we are running DFS on GT, we will not be visiting any

v from a u, where v and u are in different components.

 Notation:

» d[u] and f [u] always refer to first DFS.

» Extend notation for d and f to sets of vertices U  V:

» d(U) = minuU{d[u]} (earliest discovery time)

» f (U) = maxuU{ f [u]} (latest finishing time)

graphs-2 - 42

SCCs and DFS finishing times

Proof:

 Case 1: d(C) < d(C)

» Let x be the first vertex discovered in C.

» At time d[x], all vertices in C and C are

white. Thus, there exist paths of white

vertices from x to all vertices in C and C.

» By the white-path theorem, all vertices in

C and C are descendants of x in depth-

first tree.

» By the parenthesis theorem, f [x] = f (C) >
f(C).

Lemma 22.14

Let C and C be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v)  E such that u  C and v C. Then f (C) > f (C).

C C

u v

x

d(C) = minuC{d[u]})

f (C) = maxuC{ f [u]}
d(x) < d(v) < f(v) < f(x)

graphs-2 - 43

SCCs and DFS finishing times

Proof:

 Case 2: d(C) > d(C)
» Let y be the first vertex discovered in C.

» At time d[y], all vertices in C are white and
there is a white path from y to each vertex in
C  all vertices in C become descendants
of y. Again, f [y] = f (C).

» At time d[y], all vertices in C are also white.

» By earlier lemma, since there is an edge (u,
v), we cannot have a path from C to C.

» So no vertex in C is reachable from y.

» Therefore, at time f [y], all vertices in C are
still white.

» Therefore, for all v  C, f [v] > f [y], which
implies that f (C) > f (C).

Lemma 22.14

Let C and C be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v)  E such that u  C and v C. Then f (C) > f (C).

C C

u v

y

d(C) = minuC{d[u]})

f (C) = maxuC{ f [u]}

graphs-2 - 44

SCCs and DFS finishing times

Proof:

 (u, v)  ET (v, u)  E.

 Since SCC’s of G and GT are the same, f(C) > f (C), by
Lemma 22.14.

Corollary 22.15

Let C and C be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v)  ET, where u  C and v  C. Then f(C) < f(C).

graphs-2 - 45

Correctness of SCC

 When we do the second DFS, on GT, start with SCC C

such that f(C) is maximum.

» The second DFS starts from some x  C, and it visits all

vertices in C.

» Corollary 22.15 says that since f(C) > f (C) for all C  C, there

are no edges from C to C in GT.

» Therefore, DFS will visit only vertices in C.

» Which means that the depth-first tree rooted at x contains

exactly the vertices of C.

graphs-2 - 46

Correctness of SCC

 The next root chosen in the second DFS is in SCC C

such that f (C) is maximum over all SCC’s other than C.

» DFS visits all vertices in C, but the only edges out of C go to

C, which we’ve already visited.

» Therefore, the only tree edges will be to vertices in C.

 We can continue the process.

 Each time we choose a root for the second DFS, it can

reach only

» vertices in its SCC—get tree edges to these,

» vertices in SCC’s already visited in second DFS—get no tree

edges to these.

