Graph Algorithms — 2 |

 DAGS
 Topological order
 Recognition of strongly connected components

10/25/2023

|dentification of Edges

+ Edge type for edge (u, v) can be identified when it is first explored
by DFS.
+ |dentification is based on the color of v.

» If v is white, then (u, v) Is a tree edge.
» Ifvis gray, then (u, v) is a back edge.

e
B
1
\

» Ifvis black, then (u, v) is a forward or cross edge.

[d(u), t(u)] [d(u), t(u)] [d(v), T(v)] /O /\

[d(u), f(u)]

[d(v), i(v)]
[d(v), (V)]

\/
[d(v), f(v)] A, £(u)]

graphs-2 - 2

Directed Acyclic Graph

¢+ DAG — Directed Acyclic Graph (directed graph with no
cycles)

+ Used for modeling processes and structures that have a
partial order:
» Let a, b, ¢ be three elements in a set U.
» a>bandb>c= a>c. (Transitivity)
» But may have a and b such that neither a > b nor b > a.

+ We can always make a total order (eithera>borb >a
for all a # b) from a partial order (by imposing a relation
on any two elements whose relation iIs not specified with

the original partial order, as long as the transitivity of this
partial order not violated.)

graphs-2 - 3

Example

DAG of dependencies for putting on goalie equipment.

batting glove

> G
o> D

locker

graphs-2 - 4

Characterizing a DAG

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

+ —: Show that back edge = cycle.

» Suppose there is a back edge (u, v). Then v is ancestor of u In
depth-first forest.

» Therefore, there is a path va~u, s0 v~ U — visa cycle.

T ~ T T
YW O—0—W
B

graphs-2 -5

Characterizing a DAG

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

+ < : Show that a cycle implies a back edge.

» C:cyclein G. v: first vertex discovered in c. (u, v) : preceding
edge in C.

» At time d[v], vertices of ¢ form a white path vA~u. Why?

» By white-path theorem, u is a descendent of v in depth-first
forest.

» Therefore, (u, v) is a back edge. @ T w
B

graphs-2 - 6

Topological Sort

¢ Performed on a DAG.

+ Linear ordering of the vertices of G(V, E) such that if (u,
V) € E, then u appears somewhere before v.

graphs-2 - 7

Topological Sort

Sort a directed acyclic graph (DAG) by the nodes’ finishing times.

A—E—O

Think of original DAG as a partial order.

By sorting, we get a total order that extends this partial order.

graphs-2 - 8

Topological Sort

¢ Performed on a DAG.

¢ Linear ordering of the vertices of G such that if (u, v)
E, then u appears somewhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f [v] forall v e V
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(|V| + |E|).

graphs-2 - 9

Example 1

A B D DES-Visit(u)

1. color[u] <« GRAY // White vertex u
has been discovered
2 time < time + 1
3 d[u] < time
Q 4 for each v e Adj[u]

C = 5, do if color[v] = WHITE

6 then n[v] <« u
Linked List: 7 DFS-Visit(v)
8 colorfu] « BLACK // Blacken u;
It is finished.

Q. flu] < time <« time +1

graphs-2 - 10

graphs-2 - 11

Example 1

1
@

Linked List:

DES-Visit(u)

1. colorfu] « GRAY // White vertex u
has been discovered

time < time + 1
d[u] < time
for each v e Adj[u]

do if color[v] = WHITE

then n[v] <« u
DFS-Visit(v)
colorfu] « BLACK // Blacken u;
It is finished.

© N o O Ae W

Q. flu] < time <« time +1

Example 1

A B D DES-Visit(u) |

1. color[u] « GRAY // White vertex u
has been discovered

2 time < time + 1
3 d[u] < time
4 for each v e Adj[u]

C E 5. do if color[v] = WHITE
6 then n[v] <« u

Linked List: I DFS-Visit(v)
8. colorfu] « BLACK // Blacken u;
‘ it is finished.

Q. flu] < time <« time +1

graphs-2 - 12

Example 1

DES-Visit(u)
1 color[u] « GRAY // White vertex u

A B D .
has been discovered
. time «time +1
. d[u] < time
. for each v e Adj[u]
C E

do if color[v] = WHITE
then n[v] <« u
DFS-Visit(v)
color[u] <~ BLACK // Blacken u;

Linked List:

© ~N o U~ WN

‘4.‘ | it i finished.
D E

Q. flu] < time <« time +1

graphs-2 - 13

Example 1

B D
E
Linked List:

¢

graphs-2 - 14

DES(G)

1. for each vertex u € V[G]

2. do color[u] <« white

3. n[u] < NIL

4. time < 0

5. for each vertex u € V[G]

6. do if color[u] = white
7. then DFS-Visit(u)

A

(O

O
C

graphs-2 - 15

B D
> %
23
E
Linked List:

¢

Example 1

DES-Visit(u)

1. color[u] « GRAY // White vertex u
has been discovered

2. time<«time+1

3. d[u] < time

4. for each v e Adj[u]

5. do if color[v] = WHITE

6. then n[v] <« u

7. DFS-Visit(v)

8. colorfu] « BLACK // Blacken u;

it is finished.
Q. flu] < time <« time +1

Example 1

A B D
C E
Linked List:

e e

graphs-2 - 16

Example 1

A B D
C E
Linked List:

L

graphs-2 - 17

Example 1

C E
Linked List:

L

graphs-2 - 18

Example 1

A B D
C E
Linked List:

*eeee

graphs-2 - 19

Example 2

Access the nodes in different way:
A B D
C E
Linked List:

¢

graphs-2 - 20

Example 2

A B D
C E
Linked List:

Q0

graphs-2 - 21

Example 2

A B D
C E
Linked List:

e Q0

graphs-2 - 22

Example 2

A B D
C E
Linked List:

oo

graphs-2 - 23

Example 3

A B D
C E
Linked List:

10/25/2023

Example 3

A B D
0/' i
2
C E
Linked List:

10/25/2023

Example 3

A B D
C E
Linked List:

C

10/25/2023

Example 3

A B D
Linked List:
e

10/25/2023

Example 3

A B D
Linked List:
e

10/25/2023

Example 3

A B D
?'—/
6/,
C E
Linked List:
e

10/25/2023

Example 3

@
.
D=

10/25/2023

Correctness Proof

¢ Just need to show if (u, v) € E, then f [v] < T [ul].

+ \When we explore (u, v), what are the colors of u and v?
» U IS gray.
» IS v white?
« Then becomes descendant of u.
« By parenthesis theorem, d[u] < d[v] < f [v] <f [u].
» Is v black?
« Then v is already finished.
 Since we’re exploring (U, v), we have not yet finished u.
» Therefore, f [v] < f [u].
» Is v gray, too?
* No.

 because then v would be ancestor of u = (u, v) is a back edge.
« = contradiction of Lemma 22.11 (dag has no back edges).

graphs-2 - 31

[d(U)’f(i)]/ d(u), W] o [dv), (V)] f f\
[d(v), ()] /

[dv), (V)] @ [d(u), fW)] &
d(v) f(v)]\/ °
’ [d(u), f(u)]

Example:

[1, 4]
2, 3] /

10/25/2023

Strongly Connected Components

* G is strongly connected if every pair (u, v) of vertices In
G Is reachable from one another.

+ A strongly connected component (SCC) of G is a
maximal set of vertices C — V such that forall u, v e C,
both u~~vand va~u exist.

not an SCC

graphs-2 - 33

Component Graph

 (SCC = (VSCC ESCC).

¢ \/SCC has one vertex for each SCC in G.

¢ E>CC has an edge if there’s an edge between the
corresponding SCC’s 1n G.

¢ G>CC for the example considered:

O o)

A

graphs-2 - 34

G>“Cisa DAG

Lemma 22.13

Let C and C’' be distinct SCC’s In G, letu,ve C,u, Vv € C’, and
suppose there is a path u ~~ u’ in G. Then there cannot also be a path

VA~Vin G.

Proof:
¢ Suppose there Is a path v~~v in G.
¢ Then there are paths u ~~u'~~Vv' and v'a~v~~U In G.

* Therefore, u and v' are reachable from each other, so they

are not 1n separate SCC’s.

C: C'

graphs-2 - 35

Transpose of a Directed Graph

¢ G = transpose of directed G.
» GT = (V,ET),E" = {(u, v) : (v, u) e E}.
» GTis G with all edges reversed.

+ Can create G in ©(|V| +|E|) time if using adjacency
lists.

¢ G and G' have the same SCC’s. (u and v are reachable

from each other in G if and only if reachable from each
other in G.)

graphs-2 - 36

Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times f [u] for all u

2. compute GT

3. call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in the first DFS)

4. output the vertices in each tree of the depth-first forest formed in
the second DFS as a separate SCC

Time: O(|V] + |E|).

graphs-2 - 37

graphs-2 - 39

How does 1t work?

¢ |dea:

» By considering vertices in second DFS in decreasing order of
finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.

» Because we are running DFS on G, we will not be visiting any
v from a u, where v and u are in different components.
+ Notation:
» d[u] and f [u] always refer to first DFS.
» Extend notation for d and f to sets of vertices U c V.
» d(U) = min,_,{d[u]} (earliest discovery time)
» f(U) = max,_{ f[u]} (latest finishing time)

graphs-2 - 41

SCCs and DFES finishing times

Lemma 22.14
Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v) € Esuchthatu € Cand v eC’. Then f (C) > f (C").

Proof:

¢ Case 1: d(C) < d(C)
» Let x be the first vertex discovered in C.

» At time d[x], all vertices in C and C' are
white. Thus, there exist paths of white
vertices from x to all vertices in C and C'.

» By the white-path theorem, all vertices in
C and C’ are descendants of x in depth-
first tree.

» By the parenthesis theorem, f [x] = f (C) > d(C) = min,_c{d[u]})
f(C"). -
f(C) = max, c{ f [u]}

d(x) < d(v) < f(v) <f(x)

graphs-2 - 42

SCCs and DFES finishing times

Lemma 22.14
Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v) € Esuchthatu € Cand v eC’. Then f (C) > f (C").

Proof:
¢ Case 2: d(C) >d(C)
» Lety be the first vertex discovered in C'. C C’

» At time d[y], all vertices in C" are white and
there is a white path from y to each vertex in
C' = all vertices in C' become descendants
of y. Again, f [y] = f(C’).

» At time d[y], all vertices in C are also white.

» By earlier lemma, since there is an edge (u,
V), we cannot have a path from C’ to C.

» S0 no vertex in C is reachable from y.
» Therefore, at time f [y], all vertices in C are

still white. e
» Therefore, forall v e C, f [v] >f [y], which d(C) = min,c{d[ul})
implies that f (C) > f (C'). f(C) = max,_{ f [u]}

graphs-2 - 43

SCCs and DFES finishing times

Corollary 22.15
Let C and C' be distinct SCC’s in G = (V, E). Suppose there is an
edge (u, v) € ET, whereu € Cand v € C’. Then f(C) < f(C').

Proof:
¢ (Uuv)e ET= (v, u) € E.

¢+ Since SCC’s of G and G are the same, f(C') >f (C), by
Lemma 22.14.

graphs-2 - 44

Correctness of SCC

+ \When we do the second DFS, on GT, start with SCC C
such that f(C) 1s maximum.

» The second DFS starts from some x € C, and it visits all
vertices in C.

» Corollary 22.15 says that since f(C) > f (C’) for all C = C’, there
are no edges from Cto C' in GT.

» Therefore, DFS will visit only vertices in C.

» Which means that the depth-first tree rooted at x contains
exactly the vertices of C.

graphs-2 - 45

Correctness of SCC

¢ The next root chosen in the second DFS i1s In SCC C’
such that f (C’) 1s maximum over all SCC’s other than C.

» DFS visits all vertices in C’, but the only edges out of C’ go to
C, which we’ve already visited.

» Therefore, the only tree edges will be to vertices in C'.

+ \We can continue the process.

+ Each time we choose a root for the second DFS, it can
reach only

» vertices in its SCC—qget tree edges to these,

» vertices in SCC’s already visited in second DFS—qget no tree
edges to these.

graphs-2 - 46

