Elementary Graph Algorithms

- Graph representation
- Graph traversal
- Breadth-first search
- Depth-first search
- Parenthesis theorem

Graphs

Graph $G=(V, E)$
» $V=$ set of vertices
» $E=$ set of edges $\subseteq(V \times V)$

Graphs

- Types of graphs
» Undirected: edge $(u, v)=(v, u)$; for all $v,(v, v) \notin E$ (No self loops.)
» Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
» Weighted: each edge has an associated weight, given by a weight function $w: E \rightarrow R$. $(R-$ set of all possible real numbers)
» Dense: $|E| \approx|V|^{2}$.
» Sparse: $|E| \ll|V|^{2}$.
- $|E|=O\left(|V|^{2}\right)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
» Symmetric if G is undirected.
» Not necessarily so if G is directed.
- If an undirected graph G is connected:
» There is a path between every pair of vertices.
$»|E| \geq|V|-1$.
» Furthermore, if $|E|=|V|-1$, then G is a tree.
- If a directed graph G is connected:
» Its undirected version is connected.
- Other definitions in Appendix B (B. 4 and B.5) as needed.

Representation of Graphs

- Two standard ways.
» Adjacency Lists.

» Adjacency Matrix.

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V, \operatorname{Adj}[u]$ consists of all vertices adjacent to u.
 adjacency lists.

Storage Requirement

- For directed graphs:
» Sum of lengths of all adj. lists is

$$
\begin{gathered}
\sum_{v \in V} \text { out-degree }(v)=\sum_{v \in V} \text { in-degree }(v)=|E| \\
\text { No. of edges leaving } v
\end{gathered}
$$

» Total storage: $\Theta(|V|+|E|)$

- For undirected graphs:
» Sum of lengths of all adj. lists is

$$
\sum_{v \in V} \operatorname{degree}(v)=2|E| \quad \begin{gathered}
\text { No. of edges incident on } v \text {. Edge }(u, v) \text { is incident } \\
\text { on vertices } u \text { and } v .
\end{gathered}
$$

» Total storage: $\Theta(|V|+|E|)$

Pros and Cons: adj list

- Pros
» Space-efficient, when a graph is sparse.
» Can be modified to support many graph variants.
- Cons
» Determining if an edge $(u, v) \in G$ is not efficient.
- Have to search in u 's adjacency list. $\Theta($ degree $(u))$ time.
- $\Theta(|V|)$ in the worst case.

Adjacency Matrix

- $|V| \times|V|$ matrix A.
- Number vertices from 1 to $|V|$ in some arbitrary manner.
- A is then given by:

$$
A[i, j]=a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

	1	2	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

$A=A^{T}$ for undirected graphs.

Space and Time

- Space: $\Theta\left(|V|^{2}\right)$.
» Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(|V|)$.
- Time: to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Sparse Matrix

- Sparse matrices are typically stored in a format, or a representation, which avoids storing zero elements.
- CSR (Compressed Sparse Row) - store only non-zero values in a a one-dimentional data storage: data[].
- Two auxiliary data structures col_index[] and row_ptr[] to preserve the stucture of the original sparse matrix in the compressed representation.
- col_index[] gives the column index of every nonzero value in the original sparse matrix.
- Row_ptr[] indicates the starting nonzero location of every row in the compressed format.

	0	1	2	3
0	3	0	1	0
1	0	0	0	0
2	0	2	4	1
3	1	0	0	1

Sparse Matrix

$$
\begin{array}{l|llll}
& 0 & 1 & 2 & 3 \\
\hline 0 & 3 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
2 & 0 & 2 & 4 & 1 \\
3 & 1 & 0 & 0 & 1
\end{array}
$$

Nonzero values data[]

$$
\underline{\text { row0 }} \text { row2 row3 }
$$

Column indeces col_index[] $\left.\quad \begin{array}{lllllll}0 & 2 & 1 & 2 & 3 & 0 & 3\end{array}\right\}$

Row pointers row_ptr[] $\quad\left\{\begin{array}{lllll}0 & 2 & 2 & 5 & 7\end{array}\right\}$

- In data[], value 3 and 1 came from column 0 and 2 in the original sparse matrix. The col_index[0] and col_index[1] elements are assigned to store the column indices for these two values. For another example, values 2,4 , and 1 came from column 1, 2, and 3 of row 2 in the original sparse matrix. Therefore, col_index[2], col_index[3], and col_index[4] store indices 1,2 , and 3 .
- In row_ptr[], the values are the indices for the beginning locations of each row. For example, row_ptr[0] $=0$ indicates the row 0 starts at location 0 of data[]. row_ptr[2] $=2$ indicates the row 2 starts at location 2 of data[]. But we notice that row_ptr\{1] is set to be 2, equal to row_ptr[2], showing all elements in row 1 in the original matrx are 0. Finally, row_ptr[4] stores the starting location of a non-existing 'row 4'. (This choice is the convenience, as some algorithms need to use the starting location of the next row to delineate the end of the current row.)

Sparse Graph

	0	1	2	3	4	5	6	7	8
0	0	1	1	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0
2	0	0	0	0	0	1	1	1	0
3	0	0	0	0	1	0	0	0	1
4	0	0	0	0	0	1	0	0	1
5	0	0	0	0	0	0	1	0	0
6	0	0	0	0	0	0	0	0	1
7	0	0	0	0	0	0	1	0	0
8	0	0	0	0	0	0	0	0	0

Nonzero values data[] destination[]
edges[]

024791112131516
11111111111111
123456748586808

Graph-searching Algorithms

- Searching a graph:
» Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
» Breadth-first Search (BFS).
» Depth-first Search (DFS).

Breadth-first Search

- Input: Graph $G=(V, E)$, either directed or undirected, and source vertex $s \in V$.
- Output:
»d[v] = distance (smallest \# of edges, or shortest path) from s to v, for all $v \in V . d[v]=\infty$ if v is not reachable from s.
$» \pi[v]=u$ such that (u, v) is last edge on shortest path $s \sim \Delta v$.
- u is v 's predecessor.
» Builds breadth-first tree with root s that contains all reachable vertices.

```
Definitions:
Path between vertices }u\mathrm{ and v: Sequence of vertices ( }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{k}{})\mathrm{ such that }u
v
Length of the path: Number of edges in the path.
Path is simple if no vertex is repeated.
```


Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
" A vertex is "discovered" the first time it is encountered during the search.
» A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
» White - Undiscovered.
» Gray - Discovered but not finished.
» Black - Finished.

BFS for Shortest Paths

- Finished
- Discovered
o Undiscovered


```
BFS(G,s)
1. for each vertex }u\mathrm{ in }V[G]-{\textrm{s}
lcl}\begin{array}{lc}{2}&{\mathrm{ do color }[u]\leftarrow\mathrm{ white }}\\{3}&{d[u]\leftarrow\propto}\\{4}&{\pi[u]\leftarrow\mathrm{ nil }}\\{5}&{\mathrm{ color }[s]\leftarrow\mathrm{ gray }}\\{6}&{\mathrm{ d}[s]\leftarrow0}\\{7}&{\pi[s]\leftarrow\mathrm{ nil }}\end{array}}\mathrm{ initialization 
\pi[s]\leftarrow\textrm{nil}
    Q\leftarrow\Phi
    enqueue( }Q,s
    while Q = Ф
11 do }u\leftarrow\mathrm{ dequeue(Q)
for each v}\mathrm{ in }\operatorname{Adj[u] do
i3 if color[v] = white
14 then color[v]}\leftarrow\mathrm{ gray
15 d[v]}\leftarrowd[u]+
16}\pi[v]\leftarrow
17 enqueue( }Q,v
18 color[u]\leftarrow black
```


Example (BFS)

$\mathbf{B F S}(\mathbf{G}, \mathbf{s})$		
1.	for each vertex u in $V[G]-\{\mathrm{s}\}$	
2	do color $[u] \leftarrow$ white	
3	$d[u] \leftarrow \propto$	
4	$\pi[u] \leftarrow$ nil	
5	color $[s] \leftarrow$ gray	
6	$\mathrm{~d}[s] \leftarrow 0$	
7	$\pi[s] \leftarrow$ nil	
8	$Q \leftarrow \Phi$	
9	enqueue (Q, s)	
10	while $\mathrm{Q} \neq \Phi$	
11	do $u \leftarrow \operatorname{dequeue}(Q)$	
12	for each v in Adj $[u]$ do	
13	if color $[v]=$ white	
14	then $\operatorname{color}[v] \leftarrow$ gray	
15	$d[v] \leftarrow d[u]+1$	
16	$\pi[v] \leftarrow u$	
17	enqueue (Q, v)	
18	color $[u] \leftarrow$ black	

Example (BFS)

BFS(G,S)	
	for each vertex u in $V[G]-\{\mathrm{s}\}$
2	do color $[u] \leftarrow$ white
3	$d[u] \leftarrow \propto$
4	$\pi[u] \leftarrow$ nil
	color $[s] \leftarrow$ gray
	$\mathrm{d}[s] \leftarrow 0$
	$\pi[s] \leftarrow$ nil
	$Q \leftarrow \Phi$
	enqueue (Q, s)
	while $\mathrm{Q} \neq \Phi$
11	do $u \leftarrow$ dequeue (Q)
12	for each v in $\operatorname{Adj}[u]$ do
13	if color [v] = white
14	then color $[v] \leftarrow$ gray
15	$d[v] \leftarrow d[u]+1$
16	$\pi[v] \leftarrow u$
17	enqueue (Q, v)
18	color $[u] \leftarrow$ black

$$
\text { Q: } \begin{array}{rlr}
\mathrm{w} & \mathrm{r} \\
1 & 1 \\
\hline
\end{array}
$$

Example (BFS)

Example (BFS)

$\mathbf{B F S}(\mathbf{G}, \mathbf{s})$		
1.	for each vertex u in $V[G]-\{\mathrm{s}\}$	
2	do color $[u] \leftarrow$ white	
3	$d[u] \leftarrow \propto$	
4	$\pi[u] \leftarrow$ nil	
5	color $[s] \leftarrow$ gray	
6	$\mathrm{~d}[s] \leftarrow 0$	
7	$\pi[s] \leftarrow$ nil	
8	$Q \leftarrow \Phi$	
9	enqueue (Q, s)	
10	while $\mathrm{Q} \neq \Phi$	
11	do $u \leftarrow \operatorname{dequeue}(Q)$	
12	for each v in Adj $[u]$ do	
13	if color $[v]=$ white	
14	then $\operatorname{color}[v] \leftarrow$ gray	
15	$d[v] \leftarrow d[u]+1$	
16	$\pi[v] \leftarrow u$	
17	enqueue (Q, v)	
18	color $[u] \leftarrow$ black	

Q: t x v
222

Example (BFS)

BFS(G, ${ }^{\text {S }}$	
	for each vertex u in $V[G]-\{\mathrm{s}$
2	do color $[u] \leftarrow$ white
3	$d[u] \leftarrow \propto$
4	$\pi[u] \leftarrow$ nil
	color $[s] \leftarrow$ gray
	$\mathrm{d}[s] \leftarrow 0$
	$\pi[s] \leftarrow$ nil
	$Q \leftarrow \Phi$
	enqueue (Q, s)
	while $\mathrm{Q} \neq \Phi$
11	do $u \leftarrow$ dequeue (Q)
12	for each v in $\operatorname{Adj}[u]$ do
13	if color $[v]=$ white
14	then color $[v] \leftarrow$ gray
15	$d[v] \leftarrow d[u]+1$
16	$\pi[v] \leftarrow u$
17	enqueue (Q, v)
18	color $[u] \leftarrow$ black

Example (BFS)

BFS(G, ${ }^{\text {S }}$	
	for each vertex u in $V[G]-\{\mathrm{s}$
2	do color $[u] \leftarrow$ white
3	$d[u] \leftarrow \propto$
4	$\pi[u] \leftarrow$ nil
	color $[s] \leftarrow$ gray
	$\mathrm{d}[s] \leftarrow 0$
	$\pi[s] \leftarrow$ nil
	$Q \leftarrow \Phi$
	enqueue (Q, s)
	while $\mathrm{Q} \neq \Phi$
11	do $u \leftarrow$ dequeue (Q)
12	for each v in $\operatorname{Adj}[u]$ do
13	if color $[v]=$ white
14	then color $[v] \leftarrow$ gray
15	$d[v] \leftarrow d[u]+1$
16	$\pi[v] \leftarrow u$
17	enqueue (Q, v)
18	color $[u] \leftarrow$ black

$$
Q: \begin{array}{ccc}
\mathrm{v} & \mathrm{u} & \mathrm{y} \\
2 & 3 & 3
\end{array}
$$

Example (BFS)

BFS(G, ${ }^{\text {S }}$	
	for each vertex u in $V[G]-\{\mathrm{s}$
2	do color $[u] \leftarrow$ white
3	$d[u] \leftarrow \propto$
4	$\pi[u] \leftarrow$ nil
	color $[s] \leftarrow$ gray
	$\mathrm{d}[s] \leftarrow 0$
	$\pi[s] \leftarrow$ nil
	$Q \leftarrow \Phi$
	enqueue (Q, s)
	while $\mathrm{Q} \neq \Phi$
11	do $u \leftarrow$ dequeue (Q)
12	for each v in $\operatorname{Adj}[u]$ do
13	if color $[v]=$ white
14	then color $[v] \leftarrow$ gray
15	$d[v] \leftarrow d[u]+1$
16	$\pi[v] \leftarrow u$
17	enqueue (Q, v)
18	color $[u] \leftarrow$ black

Q: u y
 33

Example (BFS)

$\mathbf{B F S}(\mathbf{G}, \mathbf{S})$		
1.	for each vertex u in $V[G]-\{\mathrm{s}\}$	
2	do color $[u] \leftarrow$ white	
3	$d[u] \leftarrow \propto$	
4	$\pi[u] \leftarrow$ nil	
5	color $[s] \leftarrow$ gray	
6	$\mathrm{~d}[s] \leftarrow 0$	
7	$\pi[s] \leftarrow$ nil	
8	$Q \leftarrow \Phi$	
9	enqueue (Q, s)	
10	while $\mathrm{Q} \neq \Phi$	
11	do $u \leftarrow \operatorname{dequeue}(Q)$	
12	for each v in Adj $[u]$ do	
13	if color $[v]=$ white	
14	then $\operatorname{color}[v] \leftarrow$ gray	
15	$d[v] \leftarrow d[u]+1$	
16	$\pi[v] \leftarrow u$	
17	enqueue (Q, v)	
18	color $[u] \leftarrow$ black	

Example (BFS)

BFS(G,S)		
1.	for each vertex u in $V[G]-\{\mathrm{s}\}$	
2	do color $[u] \leftarrow$ white	
3	$d[u] \leftarrow \propto$	
4	$\pi[u] \leftarrow$ nil	
5	color $[s] \leftarrow$ gray	
6	$\mathrm{~d}[s] \leftarrow 0$	
7	$\pi[s] \leftarrow$ nil	
8	$Q \leftarrow \Phi$	
9	enqueue (Q, s)	
10	while $\mathrm{Q} \neq \Phi$	
11	do $u \leftarrow \operatorname{dequeue}(Q)$	
12	for each v in Adj $[u]$ do	
13	if color $[v]=$ white	
14	then $\operatorname{color}[v] \leftarrow$ gray	
15	$d[v] \leftarrow d[u]+1$	
16	$\pi[v] \leftarrow u$	
17	enqueue (Q, v)	
18	color $[u] \leftarrow$ black	

Example (BFS)

BF Tree

Analysis of BFS

- Initialization takes $O(|V|)$.
- Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(|V|)$.
» The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(|E|)$.
- Summing up over all vertices => total running time of BFS is $O(|V|+|E|)$, linear in the size of the adjacency list representation of graph.
- Correctness Proof
» We omit for BFS and DFS.
» Will do for later algorithms.

Breadth-first Tree

- For a graph $G=(V, E)$ with source s, the predecessor subgraph of G is $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where
» $V_{\pi}=\{v \in V: \pi[v] \neq n i l\} \cup\{s\}$
$» E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
» V_{π} consists of the vertices reachable from s and
" for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges. $\left|E_{\pi}\right|=\left|V_{\pi}\right|-1$.

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.

- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."

- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Input: $G=(V, E)$, directed or undirected. No source vertex given!
- Output:
» 2 timestamps on each vertex. Integers between 1 and $2|\mathrm{~V}|$.
- $d[v]=$ discovery time (v turns from white to gray)
- $f[v]=$ finishing time (v turns from gray to black)
$» \pi[v]:$ predecessor of $v=u$, such that v was discovered during the scan of u 's adjacency list.
- Coloring scheme for vertices as BFS. A vertex is
»"undiscovered" (white) when it is not yet encountered.
" "discovered" (grey) the first time it is encountered during the search.
" "finished" (black) if it is a leaf node or all vertices adjacent to it have been finished.

Pseudo-code

DFS(G)

1. for each vertex $u \in V[G]$
2. do color $[u] \leftarrow$ white
3. $\pi[u] \leftarrow$ NIL
4. time $\leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if $\operatorname{color}[u]=$ white
7. then DFS-Visit (u)

Uses a global timestamp time.

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2. \quad time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
5. do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$
DFS-Visit(v)
6. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
7. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2. \quad time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
5. do if color $[v]=$ WHITE
6. \quad then $\pi[v] \leftarrow u$
7.
8.

DFS-Visit(v)
8. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
9. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

$$
\left.\begin{array}{lc}
\text { DFS-Visit }(u) \\
\hline \text { 1. } & \text { color }[u] \leftarrow \text { GRAY // White vertex } u \\
\text { has been discovered }
\end{array}\right] \begin{array}{lc}
\text { 2. } & \text { time } \leftarrow \text { time }+1 \\
\text { 3. } & d[u] \leftarrow \text { time } \\
\text { 4. } & \text { for each } v \in \text { Adj }[u] \\
\text { 5. } & \text { do if } \operatorname{color}[v]=\text { WHITE } \\
\text { 6. } & \text { then } \pi[v] \leftarrow u \\
\text { 7. } & \text { DFS-Visit }(v) \\
\text { 8. } & \operatorname{color}[u] \leftarrow \text { BLACK // Blacken } u ; \\
\text { 9. } & f[u] \leftarrow \text { time } \leftarrow \text { time }+1
\end{array}
$$

Example (DFS)

$$
\begin{aligned}
& \text { DFS-Visit(u) } \\
& \text { 1. color }[u] \leftarrow \text { GRAY // White vertex } u \\
& \text { has been discovered } \\
& \text { 2. time } \leftarrow \text { time }+1 \\
& \text { 3. } d[u] \leftarrow \text { time } \\
& \text { 4. for each } v \in \operatorname{Adj}[u] \\
& \text { do if color }[v]=\text { WHITE } \\
& \text { then } \pi[v] \leftarrow u \\
& \text { DFS-Visit(} v \text {) } \\
& \text { 8. } \operatorname{color}[u] \leftarrow \text { BLACK // Blacken } u \text {; } \\
& \text { it is finished. } \\
& \text { 9. } \quad f[u] \leftarrow \text { time } \leftarrow \text { time }+1
\end{aligned}
$$

Example (DFS)

color $[u] \leftarrow$ GRAY // White vertex u
has been discovered

Example (DFS)

Example (DFS)

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2. \quad time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
do if color $[v]=$ WHITE then $\pi[v] \leftarrow u$ DFS-Visit((v)
5. $\quad \operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
6. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

DFS-Visit(u)
 1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
 2. time \leftarrow time +1
 3. $d[u] \leftarrow$ time
 4. for each $v \in \operatorname{Adj}[u]$
 do if $\operatorname{color}[v]=$ WHITE
 then $\pi[v] \leftarrow u$
 DFS-Visit(v)
 8. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
 9. $\quad f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

DFS-Visit(u)	
1.	color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2.	time \leftarrow time +1
3.	$d[u] \leftarrow$ time
4.	for each $v \in \operatorname{Adj}[u]$
5.	do if color $[v]=$ WHITE
6.	then $\pi[v] \leftarrow u$
7.	DFS-Visit(v)
8.	color $[u] \leftarrow$ BLACK // Blacken u; it is finished.
9.	$f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2. time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$ do if color $[v]=$ WHITE then $\pi[v] \leftarrow u$ DFS-Visit(v)
5. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
6. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

DFS-Visit(u)

1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2. \quad time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
5.
6.
7.

do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$ DFS-Visit(v)
8. $\quad \operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
9. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

DFS(G)

1. for each vertex $u \in V[G]$
2. do color $[u] \leftarrow$ white
3. $\quad \pi[u] \leftarrow$ NIL
4. time $\leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if $\operatorname{color}[u]=$ white
7. then DFS-Visit (u)

Example (DFS)

DFS-Visit (u)

1. color $[u] \leftarrow$ GRAY // White vertex u has been discovered
2. \quad time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
5.
6.
7.

do if color $[v]=$ WHITE then $\pi[v] \leftarrow u$ DFS-Visit((v)
8. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
9. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

Example (DFS)

DFS-Visit(u)
 1. $\operatorname{color}[u] \leftarrow$ GRAY // White vertex u has been discovered
 2. time \leftarrow time +1
 3. $d[u] \leftarrow$ time
 4. for each $v \in \operatorname{Adj}[u]$
 do if $\operatorname{color}[v]=$ WHITE then $\pi[v] \leftarrow u$
 DFS-Visit(v)
 8. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
 9. $f[u] \leftarrow$ time \leftarrow time +1

Example (DFS)

Example (DFS)

DFS-Visit(u)

1. $\operatorname{color}[u] \leftarrow$ GRAY // White vertex u has been discovered
2. time \leftarrow time +1
3. $d[u] \leftarrow$ time
4. for each $v \in \operatorname{Adj}[u]$
do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$ DFS-Visit(v)
5. $\operatorname{color}[u] \leftarrow$ BLACK // Blacken u; it is finished.
6. $f[u] \leftarrow$ time \leftarrow time +1

Analysis of DFS

- Loops on lines 1-2 \& 5-7 take $\Theta(|V|)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFSVisit is executed $|\operatorname{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V}|\operatorname{Adj}[\nu]|=\Theta(|E|)$
- Total running time of DFS is $\Theta(|V|+|E|)$.

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi}=\left(V, E_{\pi}\right)$ where $E_{\pi}=\{(\pi[v], v): v \in V$ and $\pi[v] \neq n i l\}$.
» How does it differ from that of BFS?
» The predecessor subgraph G_{π} forms a depth-first forest composed of several depth-first trees. The edges in E_{π} are called tree edges.

Definition:

Forest: An acyclic graph G that may be disconnected.

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. $d[u]<f[u]<d[v]<f[v]$ or $d[v]<f[v]<d[u]<f[u]$ and neither u nor v is a descendant of the other in the $D F$-tree.
2. $d[u]<d[v]<f[v]<f[u]$ and v is a descendant of u in DF-tree.
3. $d[v]<d[u]<f[u]<f[v]$ and u is a descendant of v in DF-tree.

- So $d[u]<d[v]<f[u]<f[v]$ cannot happen.
- Like parentheses:
 $d[v] \quad f[v]$
Corollary
v is a proper descendant of u if and only if $d[u]<d[v]<f[v]<f[u]$.

Parenthesis Theorem

Case 1:

$(d[u], f[u]) \quad(d[v], f[v])$

$(d[v], f[v]) \quad(d[u], f[u])$

Case 2:

Case 3:

Example (Parenthesis Theorem)

$$
\frac{(\mathrm{s}(\mathrm{z}(\mathrm{y}(\mathrm{x} \mathrm{x}) \mathrm{y})(\mathrm{w} w) \mathrm{z}) \mathrm{s})}{1<2<3<4<5<6<7<8<9<10} \frac{(\mathrm{t}(\mathrm{v} v)(\mathrm{u} u) \mathrm{t})}{11<12<13<14<15<16}
$$

In general, if we use ' $(v$ ' to represent $d[v]$, and ' v)' to represent $f[v]$, the inequalities in the Parenthesis Theorem are just like parentheses in an arithmetical expression.

White-path Theorem

Theorem 22.9

v is a descendant of u in $D F$-tree if and only if at time $d[u]$, there is a path $u \sim \sim v$ consisting of only white vertices. (Except for u, which was just colored gray.)

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge (u, v) such that u is not a descendant of v (in the depth-first tree) and vice versa.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Classification of Edges

DFS graph search using stack

Depth-first (x)

1. $\operatorname{push}(S, x)$
2. while $S \neq$ empty do
3. $v:=\boldsymbol{\operatorname { p o p }}(S)$
4. print key $[x]$
5. let v_{1}, \ldots, v_{k} be the children of x
S is a stack.
6. for $(i=k$ to 1$)$ do
7. if v_{i} has not yet been accessed then
8. $\operatorname{push}\left(S, v_{i}\right)$

It is also called the preoreder search and top-down search.

Bottom-up search of a directed graph

Bottom-up(x)

Bottom-up(\boldsymbol{x})
1.let v_{1}, \ldots, v_{k} be the children of x
2.for ($i=k$ to 1) do
3. if v_{i} has not yet accessed then
4. Bottom-up $\left(v_{i}\right)$
5. $\operatorname{Print}(x)$

