
10/18/2023

Elementary Graph Algorithms

• Graph representation

• Graph traversal
- Breadth-first search

- Depth-first search

• Parenthesis theorem

graphs-1 - 2

Graphs

V = {a, b, c, d}

E = {(a, b), (a, c), (b, d), (c, d)}

a

d

cb

 Graph G = (V, E)

» V = set of vertices

» E = set of edges  (VV)

graphs-1 - 3

Graphs

 Types of graphs

» Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No self
loops.)

» Directed: (u, v) is edge from u to v, denoted as u → v. Self loops
are allowed.

» Weighted: each edge has an associated weight, given by a weight
function w : E → R. (R – set of all possible real numbers)

» Dense: |E|  |V|2.

» Sparse: |E| << |V|2.

 |E| = O(|V|2)

graphs-1 - 4

Graphs

 If (u, v)  E, then vertex v is adjacent to vertex u.

 Adjacency relationship is:

» Symmetric if G is undirected.

» Not necessarily so if G is directed.

 If an undirected graph G is connected:

» There is a path between every pair of vertices.

» |E|  |V| – 1.

» Furthermore, if |E| = |V| – 1, then G is a tree.

 If a directed graph G is connected:

» Its undirected version is connected.

 Other definitions in Appendix B (B.4 and B.5) as

needed.

graphs-1 - 5

Representation of Graphs

 Two standard ways.

» Adjacency Lists.

» Adjacency Matrix.

a

dc

b

a

dc

b
1 2

3 4

1 2 3 4

1 0 1 1 1

2 1 0 1 0

3 1 1 0 1

4 1 0 1 0

a

b

c

d

b

a

d

d c

c

a b

a c

graphs-1 - 6

Adjacency Lists

 Consists of an array Adj of |V| lists.

 One list per vertex.

 For u  V, Adj[u] consists of all vertices adjacent to u.

a

dc

b a

b

c

d

b

c

d

d c

a

dc

b

If weighted, store weights also in

adjacency lists.

a

b

c

d

b

a

d

d c

c

a b

a c

graphs-1 - 7

Storage Requirement

 For directed graphs:

» Sum of lengths of all adj. lists is

vV out-degree(v) = vV in-degree(v) = |E|

» Total storage:(|V| + |E|)

 For undirected graphs:

» Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

» Total storage:(|V| + |E|)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) is incident

on vertices u and v.

graphs-1 - 8

Pros and Cons: adj list

 Pros

» Space-efficient, when a graph is sparse.

» Can be modified to support many graph variants.

 Cons

» Determining if an edge (u, v)  G is not efficient.

• Have to search in u’s adjacency list. (degree(u)) time.

• (|V|) in the worst case.

graphs-1 - 9

Adjacency Matrix

 |V|  |V| matrix A.

 Number vertices from 1 to |V| in some arbitrary manner.

 A is then given by:



 

==
otherwise0

),(if1
],[

Eji
ajiA ij

a

dc

b
1 2

3 4

1 2 3 4

1 0 1 1 1

2 0 0 1 0

3 0 0 0 1

4 0 0 0 0

a

dc

b
1 2

3 4

1 2 3 4

1 0 1 1 1

2 1 0 1 0

3 1 1 0 1

4 1 0 1 0

A = AT for undirected graphs.

graphs-1 - 10

Space and Time

 Space: (|V|2).

» Not memory efficient for large graphs.

 Time: to list all vertices adjacent to u: (|V|).

 Time: to determine if (u, v)  E: (1).

 Can store weights instead of bits for weighted graph.

graphs-1 - 11

Sparse Matrix

• Sparse matrices are typically stored in a format, or a representation,

which avoids storing zero elements.

• CSR (Compressed Sparse Row) - store only non-zero values in a

a one-dimentional data storage: data[].

• Two auxiliary data structures col_index[] and row_ptr[] to

preserve the stucture of the original sparse matrix in the compressed

representation.

• col_index[] gives the column index of every nonzero value in the

original sparse matrix.

• Row_ptr[] indicates the starting nonzero location of every row in

the compressed format.
0 1 2 3

0 3 0 1 0

1 0 0 0 0

2 0 2 4 1

3 1 0 0 1

graphs-1 - 12

Nonzero values data[]

0 1 2 3

0 3 0 1 0

1 0 0 0 0

2 0 2 4 1

3 1 0 0 1

Sparse Matrix

{3 1 2 4 1 1 1}

{0 2 1 2 3 0 3}

{0 2 2 5 7}

row0 row2 row3

Column indeces col_index[]

Row pointers row_ptr[]

graphs-1 - 13

• In data[], value 3 and 1 came from column 0 and 2 in the original

sparse matrix. The col_index[0] and col_index[1] elements are

assigned to store the column indices for these two values. For another

example, values 2, 4, and 1 came from column 1, 2, and 3 of row 2

in the original sparse matrix. Therefore, col_index[2], col_index[3],

and col_index[4] store indices 1, 2, and 3.

• In row_ptr[], the values are the indices for the beginning locations

of each row. For example, row_ptr[0] = 0 indicates the row 0 starts

at location 0 of data[]. row_ptr[2] = 2 indicates the row 2 starts at

location 2 of data[]. But we notice that row_ptr{1] is set to be 2,

equal to row_ptr[2], showing all elements in row 1 in the original

matrx are 0. Finally, row_ptr[4] stores the starting location of a

non-existing ‘row 4’. (This choice is the convenience, as some

algorithms need to use the starting location of the next row to

delineate the end of the current row.)

graphs-1 - 14

Nonzero values data[]

0 1 2 3 4 5 6 7 8

0 0 1 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0

2 0 0 0 0 0 1 1 1 0

3 0 0 0 0 1 0 0 0 1

4 0 0 0 0 0 1 0 0 1

5 0 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 0

Sparse Graph

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 4 8 5 8 6 8 0 8

0 2 4 7 9 11 12 13 15 16

3

0

1 4 8

2 5

7 6

destination[]

edges[]

graphs-1 - 15

Graph-searching Algorithms

 Searching a graph:

» Systematically follow the edges of a graph

to visit the vertices of the graph.

 Used to discover the structure of a graph.

 Standard graph-searching algorithms.

» Breadth-first Search (BFS).

» Depth-first Search (DFS).

graphs-1 - 16

Breadth-first Search

 Input: Graph G = (V, E), either directed or undirected,
and source vertex s  V.

 Output:

» d[v] = distance (smallest # of edges, or shortest path) from s to v,
for all v  V. d[v] =  if v is not reachable from s.

» [v] = u such that (u, v) is last edge on shortest path s v.

• u is v’s predecessor.

» Builds breadth-first tree with root s that contains all reachable
vertices.

Definitions:

Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that u =

v1 and v = vk, and (vi, vi+1)  E, for all 1 i  k-1.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

graphs-1 - 17

Breadth-first Search

 Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth
of the frontier.

» A vertex is “discovered” the first time it is encountered
during the search.

» A vertex is “finished” if all vertices adjacent to it have
been discovered.

 Colors the vertices to keep track of progress.

» White – Undiscovered.

» Gray – Discovered but not finished.

» Black – Finished.

graphs-1 - 18

BFS for Shortest Paths

Finished

Discovered

Undiscovered
S

1
1

1

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3

graphs-1 - 19

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

white: undiscovered

gray: discovered

black: finished

Q: a queue of discovered

vertices

color[v]: color of v

d[v]: distance from s to v

[u]: predecessor of v

initialization

access source s

graphs-1 - 20

Example (BFS)

 0

  

 



r s t u

v w x y

Q: s

0

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 21

Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w r

1 1

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 22

Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r t x

1 2 2

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 23

Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t x v

2 2 2

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 24

Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x v u

2 2 3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 25

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y

2 3 3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 26

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y

3 3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 27

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y

3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 28

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

graphs-1 - 29

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

graphs-1 - 30

Analysis of BFS

 Initialization takes O(|V|).

 Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most

once, and each operation takes O(1). So, total time for queuing is
O(|V|).

» The adjacency list of each vertex is scanned at most once. The
sum of lengths of all adjacency lists is (|E|).

 Summing up over all vertices => total running time of BFS
is O(|V| + |E|), linear in the size of the adjacency list
representation of graph.

 Correctness Proof
» We omit for BFS and DFS.

» Will do for later algorithms.

graphs-1 - 31

Breadth-first Tree

 For a graph G = (V, E) with source s, the predecessor

subgraph of G is G = (V , E) where

» V ={vV : [v]  nil}  {s}

» E ={([v], v)  E : v  V - {s}}

 The predecessor subgraph G is a breadth-first tree

if:

» V consists of the vertices reachable from s and

» for all v  V , there is a unique simple path from s to v in G

that is also a shortest path from s to v in G.

 The edges in E are called tree edges.

|E| = |V| - 1.

graphs-1 - 32

Depth-first Search (DFS)

 Explore edges out of the most recently

discovered vertex v.

 When all edges of v have been explored, backtrack to

explore other edges leaving the vertex from

which v was discovered (its predecessor).

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original

source are discovered.

 If any undiscovered vertices remain, then one of them

is chosen as a new source and search is repeated from

that source.

v

v

graphs-1 - 33

Depth-first Search

 Input: G = (V, E), directed or undirected. No source

vertex given!

 Output:

» 2 timestamps on each vertex. Integers between 1 and 2|V|.

• d[v] = discovery time (v turns from white to gray)

• f [v] = finishing time (v turns from gray to black)

» [v] : predecessor of v = u, such that v was discovered during

the scan of u’s adjacency list.

 Coloring scheme for vertices as BFS. A vertex is

» “undiscovered” (white) when it is not yet encountered.

» “discovered” (grey) the first time it is encountered during the search.

» “finished” (black) if it is a leaf node or all vertices adjacent to it have

been finished.

graphs-1 - 34

Pseudo-code

DFS(G)

1. for each vertex u  V[G]

2. do color[u]  white

3. [u]  NIL

4. time  0

5. for each vertex u  V[G]

6. do if color[u] = white

7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

s0

s1

graphs-1 - 35

Example (DFS)

1/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 36

Example (DFS)

1/ 2/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 37

Example (DFS)

1/

3/

2/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 38

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 39

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 40

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 41

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 42

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 43

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 44

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 45

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

DFS(G)

1. for each vertex u  V[G]

2. do color[u]  white

3. [u]  NIL

4. time  0

5. for each vertex u  V[G]

6. do if color[u] = white

7. then DFS-Visit(u)

graphs-1 - 46

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 47

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 48

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 49

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 50

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

it is finished.

9. f[u]  time  time + 1

graphs-1 - 51

Analysis of DFS

 Loops on lines 1-2 & 5-7 take (|V|) time, excluding

time to execute DFS-Visit.

 DFS-Visit is called once for each white vertex vV

when it’s painted gray the first time. Lines 3-6 of DFS-

Visit is executed |Adj[v]| times. The total cost of

executing DFS-Visit is vV|Adj[v]| = (|E|)

 Total running time of DFS is (|V| + |E|).

graphs-1 - 52

Depth-First Trees

 Predecessor subgraph defined slightly different from

that of BFS.

 The predecessor subgraph of DFS is G = (V, E) where

E ={([v], v) : v  V and [v]  nil}.

» How does it differ from that of BFS?

» The predecessor subgraph G forms a depth-first forest

composed of several depth-first trees. The edges in E are

called tree edges.

Definition:

Forest: An acyclic graph G that

may be disconnected.

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

graphs-1 - 53

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u

nor v is a descendant of the other in the DF-tree.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u in DF-tree.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v in DF-tree.

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:

 OK: () [] ([]) [()]

 Not OK: ([)] [(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

(

d[u]

)

f[u](

d[v]

)

f[v]

d[v]

[

f[v]

]

()[]

graphs-1 - 54

Parenthesis Theorem

u v

(d[u], f[u]) (d[v], f[v])

Case 1:

u

v

(d[u], f[u])

(d[v], f[v])

Case 2:

v

u

(d[v], f[v])

(d[u], f[u])

Case 3:

v u

(d[v], f[v]) (d[u], f[u])

or

graphs-1 - 55

Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

In general, if we use ‘(v’ to represent d[v], and ‘v)’ to represent f[v],

the inequalities in the Parenthesis Theorem are just like parentheses

in an arithmetical expression.

1<2<3<4<5<6<7<8<9<10 11<12<13<14<15<16

graphs-1 - 56

White-path Theorem

Theorem 22.9

v is a descendant of u in DF-tree if and only if at time d[u], there

is a path u v consisting of only white vertices. (Except for u,

which was just colored gray.)

u

v

(d[u], f[u])

(d[v], f[v])

u

v

graphs-1 - 57

Classification of Edges

 Tree edge: in the depth-first forest. Found by exploring
(u, v).

 Back edge: (u, v), where u is a descendant of v (in the
depth-first tree).

 Forward edge: (u, v), where v is a descendant of u, but
not a tree edge.

 Cross edge: any other edge (u, v) such that u is not a
descendant of v (in the depth-first tree) and vice versa.

Theorem:

In DFS of an undirected graph, we get only tree and back edges.

No forward or cross edges.

graphs-1 - 58

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

Classification of Edges

s

z

y w

x

t

v u

C

C

C

C

B

B

F

graphs-1 - 59

Depth-first(x)

1. push(S, x)

2. while S  empty do

3. v := pop(S)

4. print key[x]

5. let v1, …, vk be the children of x

6. for (i = k to 1) do

7. if vi has not yet been accessed then

8. push(S, vi)

DFS graph search using stack

S is a stack.

It is also called the preoreder search and top-down search.

56

26 200

18 28 213

12 24 27

graphs-1 - 60

Bottom-up(x)

Bottom-up(x)

1.let v1, …, vk be the children of x

2.for (i = k to 1) do

3. if vi has not yet accessed then

4. Bottom-up(vi)

5. Print(x)

Bottom-up search of a directed graph

56

26 200

18 28 213

12 24 27

