
10/4/2023

Red-Black Trees

• What is a red-black tree?

- node color: red or black

- nil[T] and black height

• Subtree rotation

• Node insertion

• Node deletion

redblack - 2

Red-black trees: Overview

 Red-black trees are a variation of binary search

trees to ensure that the tree is balanced.

» Height is O(lg n), where n is the number of nodes.

 Operations take O(lg n) time in the worst case.

 A red-black tree is normally not perfectly

balanced, but satisfying:

The length of the longest path from a node to a

leaf is less than two times of the length of the

shortest path from that node to a leaf.

redblack - 3

Red-black Tree

 Every node is a red-black tree is associated with a bit:

the attribute color, which is either red or black.

 All other attributes of BSTs are inherited:

» key, left, right, and p.

 If a child or the parent of a node does not exist, the

corresponding pointer field of the node contains the

value nil.

 Sentinel - nil[T], representing all the virtual nil nodes.

- A node, if it has only one child, a virtual nil child will be created. If it has

no children (i.e., it is a leaf node), two virtual nil children will be created.

- For the tree root, a virtual nil parent will be created.

redblack - 4

Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every virtual node (nil) is black.

4. If a node is red, then both its children are

black.

5. For each node, all paths from the node to

descendant leaves contain the same number of

black nodes.

redblack - 5

Red-black Tree – Example

26

17

30 47

38 50

41

redblack - 6

Red-black Tree – Example

26

17

30 47

38 50

41

nil nil

nil

nil nil nil nil

nil

nil

redblack - 7

Red-black Tree – Example

26

17

30 47

38 50

41

nil[T]

redblack - 8

Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every virtual leaf (nil) is black.

4. If a node is red, then both its children are

black.

5. For each node, all paths from the node to

descendant leaves contain the same number of

black nodes.

redblack - 9

Height of a Red-black Tree

 Height of a node:

» h(x) = number of edges in a longest path to a leaf.

 Black-height of a node x, bh(x):

» bh(x) = number of black nodes (including nil[T])

on the path from x to leaf, not counting x.

 Black-height of a red-black tree is the black-height

of its root.

» By Property 5, black height is well defined.

redblack - 10

Height of a Red-black Tree

 Example:

 Height of a node:

h(x) = # of edges in a

longest path to a leaf.

 Black-height of a node

bh(x) = # of black nodes

on path from x to leaf,

not counting x.

 How are they related?

» bh(x) ≤ h(x) ≤ 2bh(x)

26

17

30 47

38 50

41

nil[T]

h=4

bh=2

h=3

bh=2

h=2

bh=1

h=2

bh=1
h=1

bh=1

h=1

bh=1

h=1

bh=1

redblack - 11

Lemma “RB Height”

Consider a node x in an RB tree: The longest

descending path from x to a leaf has length h(x),

which is at most twice the length of the shortest

descending path from x to a leaf.

Proof:

black nodes on any path from x = bh(x) (prop 5)

 # nodes on shortest path from x, s(x). (prop 1)

But, there are no consecutive red (prop 4),

and we end with black (prop 3), so h(x) ≤ 2 bh(x).

Thus, h(x) ≤ 2s(x). QED

redblack - 12

Bound on RB Tree Height
 Lemma: The subtree rooted at any node x has
 2bh(x)–1 internal nodes.

 Proof: By induction on height of x, h(x).

» Base Case: Height h(x) = 0  x is a leaf  bh(x) = 0.
Subtree has 20–1 = 0 nodes.

» Induction Step: Assume that for any node with
height < h the lemma holds.

Consider node x with h(x) = h > 0 and bh(x) = b.

• Each child of x has height at most h - 1 and
black-height either b (child is red) or b - 1 (child is black).

• By ind. hyp., each child has  2bh(x)– 1 – 1 internal nodes.

• Subtree rooted at x has  2(2bh(x) – 1 – 1) + 1
= 2bh(x) – 1 internal nodes. (The +1 is for x itself.)

redblack - 13

Bound on RB Tree Height

number of

black nodes

= b

number of

black nodes

= b - 1

bh(x) = b h

number of internal

nodes of T1

> 2b-1 > 2b-1-1

T:

T1: T2:

number of internal

nodes of T2

 |T1| + |T2| + 1
 (2b – 1) + (2b – 1 – 1) + 1  2b - 1

number of internal nodes of T

x

redblack - 14

Bound on RB Tree Height

 Lemma: The subtree rooted at any node x has

 2bh(x)–1 internal nodes.

 Lemma 13.1: A red-black tree with n internal

nodes has height at most 2lg (n+1).

 Proof:

» By the above lemma, n  2bh – 1,

» and since bh  h/2, we have n  2h/2 – 1.

»  h  2lg(n + 1).

redblack - 15

Operations on RB Trees

 All operations can be performed in O(lg n) time.

 The query operations, which don’t modify the

tree, are performed in exactly the same way as

they are in binary search trees.

 Insertion and Deletion are not straightforward.

Why?

redblack - 16

Rotations

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)

redblack - 17

Rotations

 Rotations are the basic tree-restructuring operation for
almost all balanced search trees.

 Rotation takes a red-black-tree and a node as the input,

 Change pointers to change the local structure, and

 Won’t violate the binary-search-tree property.

 Left rotation and right rotation are inverses.

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)

redblack - 18

Left Rotation – Pseudo-code
Left-Rotate (T, x)

1. y  right[x] // Set y.

2. right[x]  left[y] //Turn y’s left subtree  into x’s right subtree.

3. if left[y]  nil[T]

4. then p[left[y]]  x //Set x to be the parent of left[y] = .

5. p[y]  p[x] //Link x’s parent to y.

6. if p[x] = nil[T] //If x is the root.

7. then root[T]  y

8. else if x = left[p[x]]

9. then left[p[x]]  y

10. else right[p[x]]  y

11. left[y]  x // Put x as y’s left child.

12. p[x]  y

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)

redblack - 19

Rotation

 The pseudo-code for Left-Rotate assumes that

» right[x]  nil[T], and

» root’s parent is nil[T].

 Left Rotation on x, makes x the left child of y, and the

left subtree of y into the right subtree of x.

 Pseudocode for Right-Rotate is symmetric: exchange

left and right accordingly.

 Time: O(1) for both Left-Rotate and Right-Rotate,

since a constant number of pointers are modified.

redblack - 20

Reminder: Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then both its children are

black.

5. For each node, all paths from the node to

descendant leaves contain the same number of

black nodes.

redblack - 21

Insertion in RB Trees

 Insertion must preserve all red-black properties.

 Should an inserted node be colored Red? Black?

 Basic steps:

» Use Tree-Insert from BST (slightly modified) to

insert a node z into T.

• Procedure RB-Insert(z).

» Color the node z red.

» Fix the modified tree by re-coloring nodes and

performing rotation to preserve RB tree property.

• Procedure RB-Insert-Fixup.

redblack - 22

Insertion

RB-Insert(T, z)

1. y  nil[T]

2. x  root[T]

3. while x  nil[T]

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = nil[T]

10. then root[T]  z

11. else if key[z] < key[y]

12. then left[y]  z

13. else right[y]  z

RB-Insert(T, z) Contd.

14. left[z]  nil[T]

15. right[z]  nil[T]

16. color[z]  RED

17. RB-Insert-Fixup(T, z)

How does it differ from the

Tree-Insert procedure of BSTs?

Which of the RB properties

might be violated?

Fix the violations by calling

RB-Insert-Fixup.

redblack - 23

Insertion – Fixup
 Problem: we may have a pair of consecutive

reds where we did the insertion.

 Solution: rotate it up the tree and away…

Six cases have to be handled:
Case 1:

new node
z

y

Case 2:

z

y



 

a

b

Case 3:

y

az

 



b

c

Case 4:

new node

z

y

Case 5:

z

y



 

a

b

Case 6:

y

az

 



b

c

p[z] is the

left child

p[z] is the

right child

redblack - 24

Insertion – Fixup

RB-Insert-Fixup (T, z)

1. while color[p[z]] = RED

2. do if p[z] = left[p[p[z]]] //for cases 1 – 3

then y  right[p[p[z]]]

3. if color[y] = RED

4. then color[p[z]]  BLACK // Case 1

5. color[y]  BLACK // Case 1

6. color[p[p[z]]]  RED // Case 1

7. z  p[p[z]] // Case 1

z

z

y

z

y

z

y
Case 1:

z’s parent is the left child

of its own parent

Change this node to red to

keep the number of black

nodes not increased

redblack - 25

Insertion – Fixup
RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p[z]] // color[y]  RED

10. then z  p[z] // Case 2

11. LEFT-ROTATE(T, z) // Case 2

12. color[p[z]]  BLACK // Case 3

13. color[p[p[z]]]  RED // Case 3

14. RIGHT-ROTATE(T, p[p[z]]) // Case 3

15. else (if p[z] = right[p[p[z]]]) (for cases 4 – 6, same

16. as 3-14 with “right” and “left” exchanged)

17. color[root[T]]  BLACK

y
Case 2:

z

y



 

a

b az

 



b
Case 3:

y

az

 



b z
y 

b

a c

c

redblack - 26

Correctness

Loop invariant:

 At the start of each iteration of the while loop,

» z is red.

» If p[z] is the root, then p[z] is black.

» There is at most one red-black violation:

• Property 2: z is a red root, or

• Property 4: z and p[z] are both red.

redblack - 27

Correctness – Contd.

 Initialization: OK.

 Termination: The loop terminates only if p[z] is black.

Hence, property 4 is OK.

The last line ensures property 2 always holds.

 Maintenance: We drop out when z is the root (since

then p[z] is sentinel nil[T], which is black). When we

start the loop body, the only violation is of property 4.

» There are 6 cases, 3 of which are symmetric to the other 3.

We consider cases in which p[z] is a left child.

» Let y be z’s uncle (p[z]’s sibling).

redblack - 28

Case 1 – uncle y is red

 p[p[z]] (z’s grandparent) must be black, since z and p[z] are both red and there
are no other violations of property 4.

 Make p[z] and y black  now z and p[z] are not both red. But property 5

might now be violated.

 Make p[p[z]] red  restores property 5.

 The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

C

A D

B


 

 
z

y

C

A D

B


 

 

new z

p[z] is a left child here.

Similar steps if p[z] is a right child.

p[z]

p[p[z]]

redblack - 29

Case 2 – y is black, z is a right child

 Left rotate around p[z], p[z] and z switch roles  now z is a left

child, and both z and p[z] are red.

 Takes us immediately to case 3.

C

A

B


 



z

y

C

B

A

 





new z

y

p[z]
p[z]

redblack - 30

Case 3 – y is black, z is a left child

 Make p[z] black and p[p[z]] red.

 Then right rotate on p[p[z]]. Ensures property 4 is maintained.

 No longer have 2 reds in a row.

 p[z] is now black  no more iterations.

B

A

   

C

B

A

 



 y

p[z]
C

z

redblack - 31

Algorithm Analysis

 O(lg n) time to get through RB-Insert up to the

call of RB-Insert-Fixup.

 Within RB-Insert-Fixup:

» Each iteration takes O(1) time.

» Each iteration but the last moves z up 2 levels.

» O(lg n) levels  O(lg n) time.

» Thus, insertion in a red-black tree takes O(lg n) time.

» Note: there are at most 2 rotations overall.

redblack - 32

Deletion

 Deletion, like insertion, should preserve all the
RB properties.

 The properties that may be violated depends on
the color of the deleted node.

» Red – OK. Why?

» Black?

 Steps:

» Do regular BST deletion.

» Fix any violations of RB properties that may be
caused by a deletion.

redblack - 33

Deletion

RB-Delete(T, z)
1. if left[z] = nil[T] or right[z] = nil[T]

2. then y  z

3. else y  TREE-SUCCESSOR(z)
4. if left[y]  nil[T]

5. then x  left[y]

6. else x  right[y]

7. p[x]  p[y] // Do this, even if x is nil[T]

redblack - 34

Deletion

RB-Delete (T, z) (Contd.)

8. if p[y] = nil[T]

9. then root[T]  x

10. else if y = left[p[y]] (*if y is a left child.*)

11. then left[p[y]]  x

12. else right[p[y]]  x (*if y is a right

13. if y  z child.*)

14. then key[z]  key[y]

15. copy y’s satellite data
into z

16. if color[y] = BLACK

17. then RB-Delete-Fixup(T, x)

18. return y

The node passed to

the fixup routine is

the only child of the

spliced up node, or

the sentinel.

redblack - 35

RB Properties Violation

 If y is black, we could have violations of red-

black properties:

» Prop. 1. OK.

» Prop. 2. If y is the root and x is red,

then the root has become red.

» Prop. 3. OK.

» Prop. 4. Violation if p[y] and x are both red.

» Prop. 5. Any path containing y now has 1 fewer

black node.

y

x

x

redblack - 36

RB Properties Violation

 Prop. 5. Any path containing y now has 1 fewer black
node.

» Correct by giving x an “extra black.”

» Add 1 to the count of black nodes on paths

containing x.

» Now property 5 is OK, but property 1 is not.

» x is either doubly black (if color[x] = BLACK) or red &
black (if color[x] = RED).

» The attribute color[x] is still either RED or BLACK. No new
values for color attribute.

» In other words, the extra blackness on a node is by virtue of
“x pointing to the node”. (If a node is pointed to by x, it has
an extra black.)

 Remove the violations by calling RB-Delete-Fixup.

y

x

redblack - 37

Deletion – Fixup

RB-Delete-Fixup(T, x)

1. while x  root[T] and color[x] = BLACK

2. do if x = left[p[x]] //for cases 1 - 4

3. then w  right[p[x]]

4. if color[w] = RED // Case 1

5. then color[w]  BLACK // Case 1

6. color[p[x]]  RED // Case 1

7. LEFT-ROTATE(T, p[x]) // Case 1

8. w  right[p[x]] // Case 1

A D

C E

B

A

x w
D

C

E

x new w

left rotationCase 1: B

not necessary

redblack - 38

RB-Delete-Fixup(T, x) (Contd.)

/* x is still left[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] = BLACK

10. then color[w]  RED // Case 2

11. x  p[x] // Case 2

12. else if color[right[w]] = BLACK // Case 3

13. then color[left[w]]  BLACK // Case 3

14. color[w]  RED // Case 3

15. RIGHT-ROTATE(T, w) // Case 3

16. w  right[p[x]] // Case 3

B

A D

C E

x w

B

A D

C E

Case 2: Case 3:

B

A D

C E

x w

B

A C

D

c
c

E

new wx

new x

redblack - 39

RB-Delete-Fixup(T, x) (Contd.)

/* x is still left[p[x]] */

17. color[w]  color[p[x]] // Case 4

18. color[p[x]]  BLACK // Case 4

19. color[right[w]]  BLACK // Case 4

20. LEFT-ROTATE(T, p[x]) // Case 4

21. x  root[T] // Case 4

22. else (for cases 5 – 8, same as lines 3 - 21 with “right” and “left”
exchanged)

23. color[x]  BLACK

B

A D

C E
 

   

B

A

   

 

x w
D

C

E

x

c

c’

Case 4:

to go out the while-loop

redblack - 40

Deletion – Fixup
 Idea: Move the extra black (represented by x) up the tree until

 x points to a red node (this node is considered to be a red &
black node since “x points to” means an extra black)  turn it
into a black node,

 x points to the root  just remove the extra black, or

 We can do certain rotations and recoloring and finish.

 8 cases in all, 4 of which are symmetric to the other. (4 cases for
the situation that x is the left child of p[x]; 4 cases for the
situation that x is the right child of p[x].)

 Within the while loop:

» x always points to a nonroot doubly black node.

» w is x’s sibling.

» w cannot be nil[T]. Otherwise, it would violate property 5 at
p[x].

redblack - 41

case 1

case 2

case 2

case 3

case 4

do something then

terminate or repeat

begin

case 3

case 4 rotate, terminate

For cases 1 - 4, x is the left

child of p[x] after y is deleted.

redblack - 42

case 5

case 6

case 6

case 7

case 8

do something then

terminate or repeat

begin

case 7

case 8 rotate, terminate

y

x For cases 5 - 8, x is the right

child of p[x] after y is deleted.

redblack - 43

Case 1 – w is red

 w must have black children.

 Make w black and p[x] red (because w is red p[x] cannot be red).

 Then left rotate on p[x].

 New sibling of x was a child of w before rotation  it must be
black.

 Go immediately to case 2, case 3, or case 4.

p[x]

B must be black.

B

A D

C E

 

   

B

A

   

 

x w
D

C

E

x new wx is a left child here.

Similar steps if x is

a right child.

left rotation

redblack - 44

Case 2 – w is black, both w’s children

are black

 Take 1 black off x ( singly black) and 1 black off w ( red).

 Move that black to p[x].

 Do the next iteration with p[x] as the new x.

 If entered this case from case 1, then p[x] was red  new x is

red & black  color attribute of new x is RED  loop

terminates. Then new x is made black in the last line of the

algorithm.

new x
c

c
p[x]

B’s color is unknown.
B

A D

C E

 

   

x w
B

A D

C E

 

   

redblack - 45

Case 3 – w is black, w’s left child is red,

w’s right child is black

 Make w red and w’s left child black.

 Then right rotate on w.

 New sibling w of x is black with a red right child  case 4.

B

A D

C E

 

   

x w
B

A C

D  



 

c c

E

new wx

B’s color is unknown.

right rotation

redblack - 46

Case 4 – w is black, w’s right child is red

 Make w be p[x]’s color (c).

 Make p[x] black and w’s right child black.

 Then left rotate on p[x].

 Remove the extra black on x ( x is now singly black) without
violating any red-black properties.

 All done. Setting x to root (see line 21 in the algorithm) causes
the loop to terminate.

B

A D

C E
 

   

B

A

   

 

x w
D

C

E

x

c

c’

left rotation

redblack - 47

Analysis

 O(lg n) time to get through RB-Delete up to the
call of RB-Delete-Fixup.

 Within RB-Delete-Fixup:

» Case 2 is the only case in which more iterations
occur.

• x moves up 1 level.

• Hence, O(lg n) iterations.

» Each of cases 1, 3, and 4 has 1 rotation   3
rotations in all.

» Hence, O(lg n) time.

redblack - 48

Hysteresis : or the value of lazyness

 The red nodes give us some slack – we don’t

have to keep the tree perfectly balanced.

 The colors make the analysis and code much

easier than some other types of balanced trees.

 Still, these aren’t free – balancing costs some

time on insertion and deletion.

