Red-Black Trees

- What is a red-black tree?
 - node color: red or black
 - *nil*[*T*] and black height
- Subtree rotation
- Node insertion
- Node deletion

Red-black trees: Overview

- Red-black trees are a variation of binary search trees to ensure that the tree is *balanced*.
 - » Height is $O(\lg n)$, where *n* is the number of nodes.
- Operations take $O(\lg n)$ time in the worst case.
- A red-black tree is normally not perfectly balanced, but satisfying:

The length of the longest path from a node to a leaf is less than two times of the length of the shortest path from that node to a leaf.

Red-black Tree

- Every node is a red-black tree is associated with a bit: the attribute *color*, which is either **red** or **black**.
- All other attributes of BSTs are inherited:
 - » *key*, *left*, *right*, and *p*.
- If a child or the parent of a node does not exist, the corresponding pointer field of the node contains the value *nil*.
- Sentinel *nil*[*T*], representing all the *virtual nil* nodes.
 - A node, if it has only one child, a virtual nil child will be created. If it has no children (i.e., it is a leaf node), two virtual nil children will be created.
 - For the tree root, a virtual nil parent will be created.

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every *virtual* node (*nil*) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Red-black Tree – Example

<u>Red-black Tree – Example</u>

<u>Red-black Tree – Example</u>

redblack - 7

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every *virtual* leaf (*nil*) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Height of a Red-black Tree

• Height of a node:

» h(x) = number of edges in a longest path to a leaf.

- Black-height of a node *x*, *bh*(*x*):
 - » bh(x) = number of black nodes (including nil[T])
 on the path from x to leaf, not counting x.
- Black-height of a red-black tree is the black-height of its root.
 - » By Property 5, black height is well defined.

Height of a Red-black Tree

- Example:
- Height of a node:
 h(x) = # of edges in a longest path to a leaf.
- Black-height of a node
 bh(x) = # of black nodes
 on path from x to leaf,
 not counting x.
- How are they related? $bh(x) \le h(x) \le 2bh(x)$

Lemma "RB Height"

Consider a node x in an RB tree: The longest descending path from x to a leaf has length h(x), which is at most twice the length of the shortest descending path from x to a leaf.

Proof:

black nodes on any path from x = bh(x) (prop 5) \leq # nodes on shortest path from x, s(x). (prop 1) But, there are no consecutive red (prop 4), and we end with black (prop 3), so $h(x) \leq 2 bh(x)$. Thus, $h(x) \leq 2s(x)$. QED

Bound on RB Tree Height

- Lemma: The subtree rooted at any node x has $\geq 2^{bh(x)}-1$ internal nodes.
- **Proof:** By induction on height of x, h(x).
 - » **Base Case:** Height $h(x) = 0 \Rightarrow x$ is a leaf ⇒ bh(x) = 0. Subtree has $2^0-1 = 0$ nodes.
 - » Induction Step: Assume that for any node with height < h the lemma holds.</p>

Consider node x with h(x) = h > 0 and bh(x) = b.

- Each child of x has height at most h 1 and black-height either b (child is red) or b - 1 (child is black).
- By ind. hyp., each child has $\geq 2^{bh(x)-1} 1$ internal nodes.
- Subtree rooted at x has $\geq 2(2^{bh(x)-1}-1) + 1$
 - = $2^{bh(x)} 1$ internal nodes. (The +1 is for x itself.)

Bound on RB Tree Height X *T*: *T*₂: T_1 : bh(x) = b hnumber of number of black nodes black nodes = *b* - 1 =b

number of internal nodes of $T_1 \ge 2^b - 1$

number of internal $\geq 2^{b-1}-1$ nodes of T_2

number of internal nodes of $T \ge |T_1| + |T_2| + 1$ $\ge (2^b - 1) + (2^{b-1} - 1) + 1 \ge 2^b - 1$

Bound on RB Tree Height

- Lemma: The subtree rooted at any node x has $\geq 2^{bh(x)}-1$ internal nodes.
- Lemma 13.1: A red-black tree with *n* internal nodes has height at most 2lg (*n*+1).

• Proof:

- » By the above lemma, $n \ge 2^{bh} 1$,
- » and since $bh \ge h/2$, we have $n \ge 2^{h/2} 1$.
- $\Rightarrow h \leq 2 \lg(n + 1).$

Operations on RB Trees

- All operations can be performed in $O(\lg n)$ time.
- The query operations, which don't modify the tree, are performed in exactly the same way as they are in binary search trees.
- Insertion and Deletion are not straightforward.
 <u>Why?</u>

Rotations

Rotations

- Rotations are the basic tree-restructuring operation for almost all *balanced* search trees.
- Rotation takes a red-black-tree and a node as the input,
- Change pointers to change the local structure, and
- Won't violate the binary-search-tree property.
- Left rotation and right rotation are inverses.

Left Rotation – Pseudo-code

Left-Rotate (T, x)

- 1. $y \leftarrow right[x]$ // Set y.
- 2. $right[x] \leftarrow left[y]$ //Turn y's left subtree β into x's right subtree.
- **3.** if $left[y] \neq nil[T]$
- 4. then $p[left[y]] \leftarrow x //Set x$ to be the parent of $left[y] = \beta$.
- 5. $p[y] \leftarrow p[x]$ //Link x's parent to y.
- 6. if p[x] = nil[T] //If x is the root.
- 7. then $root[T] \leftarrow y$
- 8. else if x = left[p[x]]
- 9. then $left[p[x]] \leftarrow y$
- **10.** else $right[p[x]] \leftarrow y$

- 11. $left[y] \leftarrow x$ // Put x as y's left child.
- 12. $p[x] \leftarrow y$

Rotation

- The pseudo-code for Left-Rotate assumes that
 - » $right[x] \neq nil[T]$, and
 - » root's parent is nil[T].
- Left Rotation on *x*, makes *x* the left child of *y*, and the left subtree of *y* into the right subtree of *x*.
- Pseudocode for Right-Rotate is symmetric: exchange *left* and *right* accordingly.
- *Time: O*(1) for both Left-Rotate and Right-Rotate, since a constant number of pointers are modified.

Reminder: Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (*nil*) is black.
- 4. If a node is red, then both its children are black.
- For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Insertion in RB Trees

- Insertion must preserve all red-black properties.
- Should an inserted node be colored Red? Black?
- Basic steps:
 - » Use Tree-Insert from BST (slightly modified) to insert a node *z* into *T*.
 - Procedure **RB-Insert**(*z*).
 - » Color the node *z* red.
 - » Fix the modified tree by re-coloring nodes and performing rotation to preserve RB tree property.
 - Procedure **RB-Insert-Fixup**.

Insertion

<u>RB-Insert(T, z)</u>

- **1.** $y \leftarrow nil[T]$
- 2. $x \leftarrow root[T]$
- **3.** while $x \neq nil[T]$
- 4. **do** $y \leftarrow x$
- 5. **if** key[z] < key[x]
- 6. **then** $x \leftarrow left[x]$
- 7. **else** $x \leftarrow right[x]$
- 8. $p[z] \leftarrow y$
- **9. if** y = nil[T]
- 10. **then** $root[T] \leftarrow z$
- 11. **else if** key[z] < key[y]
- 12. **then** $left[y] \leftarrow z$
- 13. **else** $right[y] \leftarrow z$

<u>RB-Insert(T, z) Contd.</u>

- $14. \quad left[z] \leftarrow nil[T]$
- 15. $right[z] \leftarrow nil[T]$
- 16. $color[z] \leftarrow \text{RED}$
- 17. **RB-Insert-Fixup**(T, z)

How does it differ from the Tree-Insert procedure of BSTs? Which of the RB properties might be violated?

Fix the violations by calling RB-Insert-Fixup.

Insertion – Fixup

- Problem: we may have a pair of consecutive reds where we did the insertion.
- Solution: rotate it up the tree and away...
 Six cases have to be handled:

Insertion – Fixup

redblack - 24

Insertion – Fixup

RB-Insert-Fixup(*T*, *z***) (Contd.)**

9.	else if $z = right[p[z]] // color[y] \neq RED$
10.	then $z \leftarrow p[z]$ // Case 2
11.	LEFT-ROTATE(<i>T</i> , <i>z</i>) // Case 2
12.	$color[p[z]] \leftarrow BLACK // Case 3$
13.	$color[p[p[z]]] \leftarrow \text{RED} //\text{Case 3}$
14.	RIGHT-ROTATE(T , $p[p[z]]$) // Case 3
15.	else (if $p[z] = right[p[p[z]]])$ (for cases 4 – 6, same
16.	as 3-14 with "right" and "left" exchanged)
17. $color[root[T]] \leftarrow BLACK$	

Correctness

Loop invariant:

- At the start of each iteration of the while loop, *z* is red.
 - » If p[z] is the root, then p[z] is black.
 - » There is at most one red-black violation:
 - Property 2: *z* is a red root, or
 - Property 4: *z* and *p*[*z*] are both red.

<u>Correctness – Contd.</u>

- Initialization: OK.
- Termination: The loop terminates only if p[z] is black. Hence, property 4 is OK. The last line ensures property 2 always holds.
- Maintenance: We drop out when *z* is the root (since then *p*[*z*] is sentinel *nil*[*T*], which is black). When we start the loop body, the only violation is of property 4.
 - » There are 6 cases, 3 of which are symmetric to the other 3. We consider cases in which p[z] is a left child.
 - » Let *y* be *z*'s uncle (p[z]'s sibling).

- p[p[z]] (*z*'s grandparent) must be black, since *z* and p[z] are both red and there are no other violations of property 4.
- Make *p*[*z*] and *y* black ⇒ now *z* and *p*[*z*] are not both red. But property 5 might now be violated.
- Make p[p[z]] red \implies restores property 5.
- The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

redblack - 28

Case 2 - y is black, z is a right child

- Left rotate around p[z], p[z] and z switch roles ⇒ now z is a left child, and both z and p[z] are red.
- Takes us immediately to case 3.

- Make p[z] black and p[p[z]] red.
- Then right rotate on p[p[z]]. Ensures property 4 is maintained.
- No longer have 2 reds in a row.
- p[z] is now black \Rightarrow no more iterations.

Algorithm Analysis

- O(lg n) time to get through RB-Insert up to the call of RB-Insert-Fixup.
- Within RB-Insert-Fixup:
 - » Each iteration takes O(1) time.
 - » Each iteration but the last moves z up 2 levels.
 - » $O(\lg n)$ levels $\Rightarrow O(\lg n)$ time.
 - » Thus, insertion in a red-black tree takes $O(\lg n)$ time.
 - » Note: there are at most 2 rotations overall.

Deletion

- Deletion, like insertion, should preserve all the RB properties.
- The properties that may be violated depends on the color of the deleted node.
 - » Red OK. <u>Why?</u>
 - » Black?
- Steps:
 - » Do regular BST deletion.
 - » Fix any violations of RB properties that may be caused by a deletion.

<u>RB-Delete(*T*, *z*)</u>

- 1. if left[z] = nil[T] or right[z] = nil[T]
- **2.** then $y \leftarrow z$
- **3.** else $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- 4. if $left[y] \neq nil[T]$
- 5. then $x \leftarrow left[y]$
- **6.** else $x \leftarrow right[y]$
- 7. $p[x] \leftarrow p[y]$ // Do this, even if x is nil[T]

Deletion

RB-Delete (*T*, *z***) (Contd.)**

8. if $p[y] = nil[T]$
9. then $root[T] \leftarrow x$
10. else if $y = left[p[y]]$ (*if y is a left child.*)
11. then $left[p[y]] \leftarrow x$
12. else $right[p[y]] \leftarrow x$ (*if y is a right
13. if $y \neq z$ child.*)
14. then $key[z] \leftarrow key[y]$
15. copy y's satellite data
into z
16. if <i>color</i> [<i>y</i>] = BLACK
17. then RB-Delete-Fixup (T, x)
18. return <i>y</i>

The node passed to the fixup routine is the only child of the spliced up node, or the sentinel.

RB Properties Violation

- If y is black, we could have violations of redblack properties:
 - » Prop. 1. OK.
 - » Prop. 2. If y is the root and x is red, then the root has become red.
 - » Prop. 3. OK.
 - » Prop. 4. Violation if *p*[*y*] and *x* are both red.
 - » Prop. 5. Any path containing y now has 1 fewer black node.

RB Properties Violation

- Prop. 5. Any path containing y now has 1 fewer black node.
 - » Correct by giving *x* an "extra black."
 - » Add 1 to the count of black nodes on paths containing *x*.
 - » Now property 5 is OK, but property 1 is not.
 - » x is either *doubly black* (if *color*[x] = BLACK) or *red & black* (if *color*[x] = RED).
 - » The attribute *color*[*x*] is still either RED or BLACK. No new values for *color* attribute.

X

- » In other words, the extra blackness on a node is by virtue of "x pointing to the node". (If a node is pointed to by x, it has an extra black.)
- Remove the violations by calling RB-Delete-Fixup.

Deletion – Fixup

RB-Delete-Fixup(*T*, *x*)

redblack - 37

RB-Delete-Fixup(T, x) (Contd.)		
	/* x is still <i>left</i> [p[x]] */	
9.	if <i>color</i> [<i>left</i> [<i>w</i>]] = BLACK and <i>color</i> [<i>right</i> [<i>w</i>]] = BLACK	
10.	then $color[w] \leftarrow \text{RED}$	// Case 2
11.	$x \leftarrow p[x]$	// Case 2
12.	<pre>else if color[right[w]] = BLACK</pre>	// Case 3
13.	then $color[left[w]] \leftarrow BLACK$	// Case 3
14.	$color[w] \leftarrow \text{RED}$	// Case 3
15.	RIGHT-ROTATE(T, w)	// Case 3
16.	$w \leftarrow right[p[x]]$	// Case 3

redblack - 39

Deletion – Fixup

- *Idea*: Move the extra black (represented by *x*) up the tree until
- *x* points to a red node (this node is considered to be a red & black node since "*x* points to" means an extra black) ⇒ turn it into a black node,
- x points to the root \Rightarrow just remove the extra black, or
- We can do certain rotations and recoloring and finish.
- 8 cases in all, 4 of which are symmetric to the other. (4 cases for the situation that x is the left child of p[x]; 4 cases for the situation that x is the right child of p[x].)
- Within the **while** loop:
 - » *x* always points to a nonroot doubly black node.
 - » w is x's sibling.
 - » w cannot be *nil*[T]. Otherwise, it would violate property 5 at *p*[x].

Case 1 - w is red

B must be black.

- *w* must have black children.
- Make w black and p[x] red (because w is red p[x] cannot be red).
- Then left rotate on p[x].
- New sibling of x was a child of w before rotation ⇒ it must be black.
- Go immediately to case 2, case 3, or case 4.

- Take 1 black off $x \Rightarrow singly black$ and 1 black off $w \Rightarrow red$.
- Move that black to p[x].
- Do the next iteration with p[x] as the new x.
- If entered this case from case 1, then *p*[*x*] was red ⇒ new *x* is red & black ⇒ color attribute of new *x* is RED ⇒ loop terminates. Then new *x* is made black in the last line of the redblack algorithm.

$\frac{\text{Case } 3 - w \text{ is black, } w'\text{s left child is red,}}{w'\text{s right child is black}}$

- Make *w* red and *w*'s left child black.
- Then right rotate on *w*.
- New sibling w of x is black with a red right child \Rightarrow case 4.

Case 4 - w is black, w's right child is red

- Make w be p[x]'s color (c).
- Make *p*[*x*] black and *w*'s right child black.
- Then left rotate on p[x].
- Remove the extra black on $x \implies x$ is now singly black) without violating any red-black properties.
- All done. Setting *x* to root (see line 21 in the algorithm) causes the loop to terminate.

<u>Analysis</u>

- O(lg n) time to get through RB-Delete up to the call of RB-Delete-Fixup.
- Within RB-Delete-Fixup:
 - » Case 2 is the only case in which more iterations occur.
 - *x* moves up 1 level.
 - Hence, $O(\lg n)$ iterations.
 - » Each of cases 1, 3, and 4 has 1 rotation \Rightarrow ≤ 3 rotations in all.
 - » Hence, $O(\lg n)$ time.

Hysteresis : or the value of lazyness

- The red nodes give us some slack we don't have to keep the tree perfectly balanced.
- The colors make the analysis and code much easier than some other types of balanced trees.
- Still, these aren't free balancing costs some time on insertion and deletion.