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Red-Black Trees

• What is a red-black tree?

- node color: red or black

- nil[T] and black height

• Subtree rotation

• Node insertion

• Node deletion 
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Red-black trees: Overview

 Red-black trees are a variation of binary search 

trees to ensure that the tree is balanced.

» Height is O(lg n), where n is the number of nodes.

 Operations take O(lg n) time in the worst case.

 A red-black tree is normally not perfectly 

balanced, but satisfying:

The length of the longest path from a node to a 

leaf is less than two times of the length of the 

shortest path from that node to a leaf.
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Red-black Tree

 Every node is a red-black tree is associated with a bit: 

the attribute color, which is either red or black.

 All other attributes of BSTs are inherited:

» key, left, right, and p.

 If a child or the parent of a node does not exist, the 

corresponding pointer field of the node contains the 

value nil.

 Sentinel - nil[T], representing all the virtual nil nodes. 

- A node, if it has only one child, a virtual nil child will be created. If it has 

no children (i.e., it is a leaf node), two virtual nil children will be created.

- For the tree root, a virtual nil parent will be created.
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Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every virtual node (nil) is black.

4. If a node is red, then both its children are 

black.

5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes.
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Red-black Tree – Example 
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Red-black Tree – Example 
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Red-black Tree – Example 
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Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every virtual leaf (nil) is black.

4. If a node is red, then both its children are 

black.

5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes.
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Height of a Red-black Tree

 Height of a node:

» h(x) = number of edges in a longest path to a leaf.

 Black-height of a node x, bh(x):

» bh(x) = number of black nodes (including nil[T ]) 

on the path from x to leaf, not counting x.

 Black-height of a red-black tree is the black-height 

of its root.

» By Property 5, black height is well defined.
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Height of a Red-black Tree

 Example:

 Height of a node:

h(x) = # of edges in a 

longest path to a leaf.

 Black-height of a node 

bh(x) = # of black nodes 

on path from x to leaf, 

not counting x.

 How are they related?

» bh(x) ≤ h(x) ≤ 2bh(x)
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41

nil[T]

h=4

bh=2

h=3

bh=2

h=2

bh=1

h=2

bh=1
h=1

bh=1

h=1

bh=1

h=1

bh=1
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Lemma “RB Height”

Consider a node x in an RB tree: The longest 

descending path from x to a leaf has length h(x),  

which is at most twice the length of the shortest 

descending path from x to a leaf.

Proof:

# black nodes on any path from x = bh(x)  (prop 5)

 # nodes on shortest path from x, s(x). (prop 1)

But, there are no consecutive red (prop 4),

and we end with black (prop 3), so h(x) ≤ 2 bh(x).

Thus, h(x) ≤ 2s(x). QED
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Bound on RB Tree Height
 Lemma: The subtree rooted at any node x has 
 2bh(x)–1 internal nodes.

 Proof: By induction on height of x, h(x).

» Base Case: Height h(x) = 0  x is a leaf  bh(x) = 0.
Subtree has 20–1 = 0 nodes.

» Induction Step: Assume that for any node with 
height < h the lemma holds.

Consider node x with h(x) = h > 0 and bh(x) = b.

• Each child of x has height at most h - 1 and 
black-height either b (child is red) or b - 1 (child is black).

• By ind. hyp., each child has  2bh(x)– 1 – 1 internal nodes.

• Subtree rooted at x has   2(2bh(x) – 1 – 1) + 1 
= 2bh(x) – 1 internal nodes. (The +1 is for x itself.) 
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Bound on RB Tree Height

number of 

black nodes

= b

number of 

black nodes

= b - 1

bh(x) = b h

number of internal 

nodes of T1

> 2b-1 > 2b-1-1

T:

T1: T2:

number of internal 

nodes of T2

 |T1| + |T2| + 1
 (2b – 1) + (2b – 1 – 1) + 1  2b - 1 

number of internal nodes of T

x
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Bound on RB Tree Height

 Lemma: The subtree rooted at any node x has 

 2bh(x)–1 internal nodes.

 Lemma 13.1: A red-black tree with n internal 

nodes has height at most 2lg (n+1).

 Proof:

» By the above lemma, n  2bh – 1,

» and since bh  h/2, we have n  2h/2 – 1.

»  h  2lg(n + 1).
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Operations on RB Trees

 All operations can be performed in O(lg n) time.

 The query operations, which don’t modify the 

tree, are performed in exactly the same way as 

they are in binary search trees.

 Insertion and Deletion are not straightforward. 

Why?
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Rotations

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)
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Rotations

 Rotations are the basic tree-restructuring operation for 
almost all balanced search trees.

 Rotation takes a red-black-tree and a node as the input, 

 Change pointers to change the local structure, and

 Won’t violate the binary-search-tree property.

 Left rotation and right rotation are inverses.

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)
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Left Rotation – Pseudo-code
Left-Rotate (T, x)

1. y  right[x]   // Set y.

2. right[x]  left[y]  //Turn y’s left subtree  into x’s right subtree.

3. if left[y]  nil[T]

4. then p[left[y]]  x //Set x to be the parent of left[y] = .

5. p[y]  p[x]           //Link x’s parent to y.

6. if p[x] = nil[T] //If x is the root.

7. then root[T]  y

8. else if x = left[p[x]]

9. then left[p[x]]  y

10. else right[p[x]]  y

11. left[y]  x             // Put x as y’s left child.

12. p[x]  y

y

x

 



Left-Rotate(T, x)





x

y



Right-Rotate(T, y)
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Rotation

 The pseudo-code for Left-Rotate assumes that 

» right[x]  nil[T], and

» root’s parent is nil[T].

 Left Rotation on x, makes x the left child of y, and the 

left subtree of y into the right subtree of x.

 Pseudocode for Right-Rotate is symmetric: exchange 

left and right accordingly.

 Time: O(1) for both Left-Rotate and Right-Rotate, 

since a constant number of pointers are modified.
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Reminder: Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then both its children are 

black.

5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes.
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Insertion in RB Trees

 Insertion must preserve all red-black properties.

 Should an inserted node be colored Red? Black?

 Basic steps:

» Use Tree-Insert from BST (slightly modified) to 

insert a node z into T.

• Procedure RB-Insert(z).

» Color the node z red.

» Fix the modified tree by re-coloring nodes and 

performing rotation to preserve RB tree property.

• Procedure RB-Insert-Fixup.
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Insertion

RB-Insert(T, z)

1. y  nil[T]

2. x  root[T]

3. while x  nil[T]

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = nil[T]

10. then root[T]  z

11. else if key[z] < key[y]

12. then  left[y]  z

13. else right[y]  z

RB-Insert(T, z) Contd.

14. left[z]  nil[T]

15. right[z]  nil[T]

16. color[z]  RED

17. RB-Insert-Fixup(T, z)

How does it differ from the 

Tree-Insert procedure of BSTs?

Which of the RB properties 

might be violated?

Fix the violations by calling 

RB-Insert-Fixup.
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Insertion – Fixup
 Problem: we may have a pair of consecutive 

reds where we did the insertion.

 Solution: rotate it up the tree and away…

Six cases have to be handled:
Case 1:

new node
z

y

Case 2:

z

y



 

a

b

Case 3:

y

az

 



b

c

Case 4:

new node

z

y

Case 5:

z

y



 

a

b

Case 6:

y

az

 



b

c

p[z] is the

left child

p[z] is the

right child
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Insertion – Fixup 

RB-Insert-Fixup (T, z)

1. while color[p[z]] = RED

2. do if p[z] = left[p[p[z]]]  //for cases 1 – 3

then y  right[p[p[z]]]

3. if color[y] = RED

4. then color[p[z]]  BLACK // Case 1

5. color[y]  BLACK // Case 1

6. color[p[p[z]]]  RED // Case 1

7. z  p[p[z]] // Case 1

z

z

y

z

y

z

y
Case 1:

z’s parent is the left child

of its own parent

Change this node to red to

keep the number of black

nodes not increased
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Insertion – Fixup 
RB-Insert-Fixup(T, z) (Contd.)

9. else if z = right[p[z]]  // color[y]  RED

10. then z  p[z] // Case 2

11. LEFT-ROTATE(T, z) // Case 2

12. color[p[z]]  BLACK // Case 3

13. color[p[p[z]]]  RED // Case 3

14. RIGHT-ROTATE(T, p[p[z]]) // Case 3

15. else (if p[z] = right[p[p[z]]]) (for cases 4 – 6, same

16. as 3-14 with “right” and “left” exchanged)

17. color[root[T ]]  BLACK

y
Case 2:

z

y



 

a

b az

 



b
Case 3:

y

az

 



b z
y 

b

a c

c
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Correctness

Loop invariant:

 At the start of each iteration of the while loop,

» z is red.

» If p[z] is the root, then p[z] is black.

» There is at most one red-black violation:

• Property 2: z is a red root, or

• Property 4: z and p[z] are both red.
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Correctness – Contd.

 Initialization: OK.

 Termination: The loop terminates only if p[z] is black. 

Hence, property 4 is OK. 

The last line ensures property 2 always holds.

 Maintenance: We drop out when z is the root (since 

then p[z] is sentinel nil[T ], which is black). When we 

start the loop body, the only violation is of property 4.

» There are 6 cases, 3 of which are symmetric to the other 3. 

We consider cases in which p[z] is a left child.

» Let y be z’s uncle (p[z]’s sibling).
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Case 1 – uncle y is red

 p[p[z]] (z’s grandparent) must be black, since z and p[z] are both red and there 
are no other violations of property 4.

 Make p[z] and y black  now z and p[z] are not both red. But property 5 

might now be violated.

 Make p[p[z]] red  restores property 5.

 The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

C

A D

B


 

 
z

y

C

A D

B


 

 

new z

p[z] is a left child here.

Similar steps if p[z] is a right child.

p[z]

p[p[z]]
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Case 2 – y is black, z is a right child

 Left rotate around p[z], p[z] and z switch roles  now z is a left 

child, and both z and p[z] are red.

 Takes us immediately to case 3.

C

A

B


 



z

y

C

B

A

 





new z

y

p[z]
p[z]
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Case 3 – y is black, z is a left child

 Make p[z] black and p[p[z]] red.

 Then right rotate on p[p[z]]. Ensures property 4 is maintained.

 No longer have 2 reds in a row.

 p[z] is now black  no more iterations.

B

A

   

C

B

A

 



 y

p[z]
C

z
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Algorithm Analysis

 O(lg n) time to get through RB-Insert up to the 

call of RB-Insert-Fixup.

 Within RB-Insert-Fixup:

» Each iteration takes O(1) time.

» Each iteration but the last moves z up 2 levels.

» O(lg n) levels  O(lg n) time.

» Thus, insertion in a red-black tree takes O(lg n) time.

» Note: there are at most 2 rotations overall.
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Deletion

 Deletion, like insertion, should preserve all the 
RB properties.

 The properties that may be violated depends on 
the color of the deleted node.

» Red – OK. Why?

» Black?

 Steps:

» Do regular BST deletion.

» Fix any violations of RB properties that may be 
caused by a deletion.
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Deletion

RB-Delete(T, z)
1. if left[z] = nil[T] or right[z] = nil[T]

2. then y  z

3. else y  TREE-SUCCESSOR(z)
4. if left[y]  nil[T ]

5. then x  left[y]

6. else x  right[y]

7. p[x]  p[y]   // Do this, even if x is nil[T]
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Deletion

RB-Delete (T, z) (Contd.)

8. if p[y] = nil[T ]

9. then root[T ]  x

10. else if y = left[p[y]] (*if y is a left child.*)

11. then left[p[y]]  x

12. else right[p[y]]  x  (*if y is a right

13. if y  z child.*)

14. then key[z]  key[y]

15. copy y’s satellite data 
into z

16. if color[y] = BLACK

17. then RB-Delete-Fixup(T, x)

18. return y

The node passed to 

the fixup routine is 

the only child of the 

spliced up node, or 

the sentinel.
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RB Properties Violation

 If y is black, we could have violations of red-

black properties:

» Prop. 1. OK.

» Prop. 2. If y is the root and x is red,

then the root has become red.

» Prop. 3. OK.

» Prop. 4. Violation if p[y] and x are both red.

» Prop. 5. Any path containing y now has 1 fewer 

black node.

y

x

x
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RB Properties Violation

 Prop. 5. Any path containing y now has 1 fewer black 
node.

» Correct by giving x an “extra black.”

» Add 1 to the count of black nodes on paths

containing x.

» Now property 5 is OK, but property 1 is not.

» x is either doubly black (if color[x] = BLACK) or red & 
black (if color[x] = RED).

» The attribute color[x] is still either RED or BLACK. No new 
values for color attribute.

» In other words, the extra blackness on a node is by virtue of 
“x pointing to the node”. (If a node is pointed to by x, it has 
an extra black.)

 Remove the violations by calling RB-Delete-Fixup.

y

x
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Deletion – Fixup 

RB-Delete-Fixup(T, x)

1. while x  root[T] and color[x] = BLACK

2. do if x = left[p[x]] //for cases 1 - 4

3. then w  right[p[x]]

4. if color[w] = RED // Case 1

5. then color[w]  BLACK // Case 1

6. color[p[x]]  RED // Case 1

7. LEFT-ROTATE(T, p[x]) // Case 1

8. w  right[p[x]]                  // Case 1

A D

C E

B

A

x w
D

C

E

x new w

left rotationCase 1: B

not necessary



redblack - 38

RB-Delete-Fixup(T, x) (Contd.)

/* x is still left[p[x]] */

9. if color[left[w]] = BLACK and color[right[w]] = BLACK

10. then color[w]  RED // Case 2

11. x  p[x] // Case 2

12. else if color[right[w]] = BLACK // Case 3

13. then color[left[w]]  BLACK // Case 3

14. color[w]  RED // Case 3

15. RIGHT-ROTATE(T, w) // Case 3

16. w  right[p[x]] // Case 3

B

A D

C E

x w

B

A D

C E

Case 2: Case 3:

B

A D

C E

x w

B

A C

D

c
c

E

new wx

new x
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RB-Delete-Fixup(T, x) (Contd.)

/* x is still left[p[x]] */

17. color[w]  color[p[x]] // Case 4

18. color[p[x]]  BLACK // Case 4

19. color[right[w]]  BLACK // Case 4

20. LEFT-ROTATE(T, p[x]) // Case 4

21. x  root[T ] // Case 4

22. else (for cases 5 – 8, same as lines 3 - 21 with “right” and “left” 
exchanged)

23. color[x]  BLACK

B

A D

C E
 

   

B

A

   

 

x w
D

C

E

x

c

c’

Case 4:

to go out the while-loop
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Deletion – Fixup 
 Idea: Move the extra black (represented by x) up the tree until

 x points to a red node (this node is considered to be a red & 
black node since “x points to” means an extra black)  turn it 
into a black node,

 x points to the root  just remove the extra black, or 

 We can do certain rotations and recoloring and finish.

 8 cases in all, 4 of which are symmetric to the other. (4 cases for 
the situation that x is the left child of p[x]; 4 cases for the 
situation that x is the right child of p[x].)

 Within the while loop:

» x always points to a nonroot doubly black node.

» w is x’s sibling.

» w cannot be nil[T]. Otherwise, it would violate property 5 at 
p[x].
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case 1

case 2

case 2

case 3

case 4

do something then

terminate or repeat

begin

case 3

case 4 rotate, terminate

For cases 1 - 4, x is the left

child of p[x] after y is deleted.



redblack - 42

case 5

case 6

case 6

case 7

case 8

do something then

terminate or repeat

begin

case 7

case 8 rotate, terminate

y

x For cases 5 - 8, x is the right

child of p[x] after y is deleted.
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Case 1 – w is red

 w must have black children.

 Make w black and p[x] red (because w is red p[x] cannot be red).

 Then left rotate on p[x].

 New sibling of x was a child of w before rotation  it must be 
black.

 Go immediately to case 2, case 3, or case 4.

p[x]

B must be black.

B

A D

C E

 

   

B

A

   

 

x w
D

C

E

x new wx is a left child here.

Similar steps if x is

a right child.

left rotation
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Case 2 – w is black, both w’s children 

are black

 Take 1 black off x ( singly black) and 1 black off w ( red).

 Move that black to p[x].

 Do the next iteration with p[x] as the new x.

 If entered this case from case 1, then p[x] was red  new x is 

red & black  color attribute of new x is RED  loop 

terminates. Then new x is made black in the last line of the 

algorithm.

new x
c

c
p[x]

B’s color is unknown.
B

A D

C E

 

   

x w
B

A D

C E
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Case 3 – w is black, w’s left child is red, 

w’s right child is black

 Make w red and w’s left child black.

 Then right rotate on w.

 New sibling w of x is black with a red right child  case 4.

B

A D

C E

 

   

x w
B

A C

D  



 

c c

E

new wx

B’s color is unknown.

right rotation
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Case 4 – w is black, w’s right child is red

 Make w be p[x]’s color (c).

 Make p[x] black and w’s right child black.

 Then left rotate on p[x].

 Remove the extra black on x ( x is now singly black) without 
violating any red-black properties.

 All done. Setting x to root (see line 21 in the algorithm) causes 
the loop to terminate.

B

A D

C E
 

   

B

A

   

 

x w
D

C

E

x

c

c’

left rotation
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Analysis

 O(lg n) time to get through RB-Delete up to the 
call of RB-Delete-Fixup.

 Within RB-Delete-Fixup:

» Case 2 is the only case in which more iterations 
occur.

• x moves up 1 level.

• Hence, O(lg n) iterations.

» Each of cases 1, 3, and 4 has 1 rotation   3 
rotations in all.

» Hence, O(lg n) time.
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Hysteresis : or the value of lazyness

 The red nodes give us some slack – we don’t 

have to keep the tree perfectly balanced.

 The colors make the analysis and code much 

easier than some other types of balanced trees.

 Still, these aren’t free – balancing costs some 

time on insertion and deletion. 


