
9/25/2024

Binary Search Trees

• What is a binary search tree?

• Tree searching 

• Inorder traversal of a binary search tree

• Find Min & Max

• Predecessor and successor

• BST insertion and deletion



btrees - 2

Binary Trees

 Recursive definition

1. An empty tree is a binary tree

2. A node with two child subtrees is a binary tree

3. Let A and B be two binary trees. A tree with root r, 

and A and B as its left and right subtrees, 

respectively, is a binary tree.

Is this a binary tree?

56

26 200

18 28 190 213

12 24 35



btrees - 3

Binary Search Tree

 Stored keys must 

satisfy the binary 

search tree property.

»  y in left subtree of 

x, then key[y] < 

key[x].

»  y in right subtree of 

x, then key[y] 

key[x].

56

26 200

18 28 190 213

12 24 27



btrees - 4

Binary Search Trees

 A BST is a data structures that can support 

dynamic set operations.

» Search, Inorder traversal, Minimum, Maximum, 

Predecessor, Successor, Insert, and Delete.

 Can be used to build

» Dictionaries.

» Priority Queues.

 Basic operations take time proportional to the 

height of the tree – O(h).



btrees - 5

BST – Representation 

 Represented by a linked data structure of nodes.

 root(T) points to the root of tree T.

 Each node contains fields:  

» key

» left – pointer to left child: root of left subtree.

» right – pointer to right child : root of right subtree.

» p – pointer to parent. p[root[T]] = NIL (optional).

Class Node {

key string;

left Node;

right Node;

p Node;

}



btrees - 6

Binary Search Tree Construction

56, 200, 26, 213, 190, 28, 27, 18, 12, 24 

56

56

200

56

26 200

56

200

213

26

56

200

213

26

190



btrees - 7

Tree Search

Tree-Search(x, k)

1.  if x = NIL or k = key[x]

2.     then return x

3.  if k < key[x]

4.     then return Tree-Search(left[x], k)

5.     else return Tree-Search(right[x], k)

Running time: O(h)

Aside: tail-recursion

56

26 200

18 28 190 213

12 24 27



btrees - 8

Iterative Tree Search

Iterative-Tree-Search(x, k)

1.  while x  NIL and k  key[x]

2.     do if k < key[x]

3.          then x  left[x]

4.          else x  right[x]

5.  return x

The iterative tree search is more efficient on most computers.

The recursive tree search is more straightforward.

56

26 200

18 28 190 213

12 24 27



9/25/2024

Inorder Traversal

Inorder-Tree-Walk (x)

1. if x  NIL

2. then Inorder-Tree-Walk(left[x])

3. print key[x]

4. Inorder-Tree-Walk(right[x])

 How long does the walk take?

 Can you prove its correctness?

The binary-search-tree property allows the keys of a binary search 

tree to be printed, in (monotonically increasing) order,  recursively.

56

26 200

18 28 190 213

12 24 27



btrees - 10

Correctness of Inorder-Walk

 Must prove that it prints all elements, in order, 

and that it terminates.

 By induction on size of tree.  Size=0: Easy.

 Size >1:

» Prints left subtree in order by induction.

» Prints root, which comes after all elements in left 

subtree (still in order).

» Prints right subtree in order (all elements come after 

root, so still in order).



btrees - 11

Querying a Binary Search Tree

 All dynamic-set search operations can be supported in 

O(h) time.

 h = (lg n) for a balanced binary tree (and for an 

average tree built by adding nodes in random order.)

 h = (n) for an unbalanced tree that resembles a linear 

chain of n nodes in the worst case.



btrees - 12

Exercise: Sorting Using BSTs

Sort (A)

for i  1 to n

do tree-insert(A[i])

inorder-tree-walk(root)

» What are the worst case and best case running 
times?

» In practice, how would this compare to other 
sorting algorithms?



btrees - 13

Finding Min & Max

Tree-Minimum(x) Tree-Maximum(x)

1.  while left[x]  NIL 1.  while right[x]  NIL 

2.     do x  left[x] 2.         do x  right[x]

3.  return x 3.  return x

Q:  How long do they take?

The binary-search-tree property guarantees that:

» The minimum is located at the left-most node.

» The maximum is located at the right-most node.



btrees - 14

Predecessor and Successor

 Predecessor of node x is the node y such that key[y] is the greatest 

key smaller than key[x].

 Successor of node x is the node y such that key[y] is the smallest 

key greater than key[x].

 The successor of the largest key is NIL.

 Search consists of two cases.

» If node x has a non-empty right subtree, then x’s successor is 

the minimum in the right subtree of x.

» If node x has an empty right subtree, then:
• As long as we move to the left up the tree (move up through right 

children), we are visiting smaller keys.

• x’s successor y is the node that is the predecessor of x (x is the maximum 

in y’s left subtree).

• In other words, x’s successor y, is the lowest ancestor of x whose left 

child is also an ancestor of x or is x itself.



btrees - 15

Successor

Case 1: x has a non-empty

right subtree.

Case 2: x has an empty

right subtree.

x

x

successor

successor

x



btrees - 16

Pseudo-code for Successor

Tree-Successor(x)

1. if right[x]  NIL 

2.          then return Tree-Minimum(right[x]) 

3.     y  p[x]

4.     while y  NIL and x = right[y]

5.     do x  y

6.          y  p[y]

7.     return y

Code for predecessor is symmetric.

Running time: O(h)

56

26 200

18 28 190 213

12 24 27

NIL



btrees - 17

BST Insertion – Pseudocode 

Tree-Insert(T, z)

1. y  NIL

2. x  root[T]

3. while x  NIL

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = NIL

10. then root[T]  z

11. else if key[z] < key[y]

12. then left[y]  z

13. else right[y]  z

 Change the dynamic set 
represented by a BST.

 Ensure the binary-
search-tree property 
holds after change.

 Insertion is easier than 
deletion.

insert 29
56

26 200

18 28 190 213

12 24 27

y

x



btrees - 18

Analysis of Insertion

 Initialization: O(1)

 While loop in lines 3-7 
searches for place to 
insert z, maintaining 
parent y.
This takes O(h) time.

 Lines 8-13 insert the 
value: O(1)

 TOTAL: O(h) time to 
insert a node.

Tree-Insert(T, z)

1. y  NIL

2. x  root[T]

3. while x  NIL

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = NIL

10. then root[t]  z

11. else if key[z] < key[y]

12. then  left[y]  z

13. else right[y]  z



btrees - 19

Tree-Delete (T, z)

if z has no children                   case 1

then remove z

if z has one child  case 2

then make p[z] point to child

if z has two children (subtrees)  case 3

then swap z with its successor

perform case 1 or case 2 to delete it

 TOTAL: O(h) time to delete a node

z

z z

z



btrees - 20

Tree-Delete (T, z)

Illustration for case 3:

z

successor(z)

exchange



btrees - 21

Deletion – Pseudocode 
Tree-Delete(T, z)

/* Determine which node to splice out: either z or z’s successor. */

1. if left[z] = NIL or right[z] = NIL

2. then y  z /*Case 1 or Case 2*/

3. else y  Tree-Successor[z] /*Case 3*/

/* Set x to a non-NIL child of y, or to NIL if y has no children. */

4. if left[y]  NIL /*y has one child or no child.*/

5. then x  left[y] /*x can be a child of y or NIL.*/

6. else x  right[y]

/* y is removed from the tree by manipulating pointers of  p[y] 
and x */

7. if x  NIL

8. then p[x]  p[y]

/* Continued on next slide */

y is the node be deleted, which

has at most one child.

x is the unique child of y.



btrees - 22

Deletion – Pseudocode 

Tree-Delete(T, z) (Contd. from previous slide)

9. if p[y] = NIL /*if y is the root*/

10. then root[T]  x

11. else if y = left[p[y]] /*y is a left child.*/

12. then left[p[y]]  x

13. else right[p[y]]  x

/* If z’s successor was spliced out, copy its data into z */

14. if y  z /*y is z’s successor.*/

15. then key[z]  key[y]

16. copy y’s satellite data into z.

17. return y



btrees - 23

Correctness of Tree-Delete

 How do we know case 2 should go to case 1 or case 

2 instead of back to case 3? 

» Because when x has 2 children, its successor is the 

minimum in its right subtree, and that successor 

has no left child (hence 1 or 2 child).

 Equivalently, we could swap with predecessor 

instead of successor.  It might be good to alternate to 

avoid creating lopsided tree.



btrees - 24

preOrder-Tree-Walk (x)

1. if x  NIL

2. then print key[x]

3. preOrder-Tree-Walk(left[x])

4. preOrder-Tree-Walk(right[x])

More on tree traversal

Also called top-down searching, depth-first searching

56

26 200

18 28 190 213

12 24 27



btrees - 25

postOrder-Tree-Walk (x)

1. if x  NIL

2. then postOrder-Tree-Walk(left[x])

3. postOrder-Tree-Walk(right[x])

4. print key[x]

More on tree traversal

Also called bottom-up searching

56

26 200

18 28 190 213

12 24 27



btrees - 26

Breadth-first (x)

1. enqueue(Q, x)

2. while Q  empty do

3. v := dequeue(Q)

4. print key[x]

5. Let v1, …, vk be the children of v

6. for (i = 1 to k) enqueue(Q, vi)

More on tree traversal

Q is a queue.

56

26 200

18 28 190 213

12 24 27



9/25/2024

Depth-first(x) (recursive)

Algorithm DFS(x)

1. if x  NIL

2. then print key[x]

3. Let v1, …, vk be the children of x

4. for (i = k to 1) DFS(vi)

More on tree traversal

56

26 200

18 28 190 213

12 24 27



btrees - 28

Depth-first(x) (non-recursive)

1. push(S, x)

2. while S  empty do

3. v := pop(S)

4. print key[x]

5. Let v1, …, vk be the children of x

6. for (i = k to 1) push(S, vi)

More on tree traversal

S is a stack.

It is also called the preoreder search and top-down search.

56

26 200

18 28 190 213

12 24 27



9/25/2024

PostOrder(x) (recursive)

Algorithm PostOrder(x)

1. if x  NIL

2. then Let v1, …, vk be the children of x

3. for (i = k to 1) PostOrder(vi)

4. Print key[x]

More on tree traversal

It is also called the bottom-up search.

56

26 200

18 28 190 213

12 24 27



9/25/2024

PostOrder(x) (non-recursive)

1. push(S, x)

2. while S  empty do

3. v := top(S)

4. if v is leaf or marked

5. then print key[v], pop(S)

6. else mark v

7. Let v1, …, vk be the children of v

8. for (i = k to 1) push(S, vi)

More on tree traversal

S is a stack.

56

26 200

18 28 190 213

12 24 27



btrees - 31

Binary Search Trees

 View today as data structures that can support 

dynamic set operations.

» Search, Minimum, Maximum, Predecessor, 

Successor, Insert, and Delete.

 Can be used to build

» Dictionaries.

» Priority Queues.

 Basic operations take time proportional to the 

height of the tree – O(h).



btrees - 32

Red-black trees: Overview

 Red-black trees are a variation of binary search 

trees to ensure that the tree is balanced.

» Height is O(lg n), where n is the number of nodes.

 Operations take O(lg n) time in the worst case.



btrees - 33

Red-black Tree

 Binary search tree + 1 bit per node: the attribute 

color, which is either red or black.

 All other attributes of BSTs are inherited:

» key, left, right, and p.

 If a child or the parent of a node does not exist, 

the corresponding pointer field of the node 

contains the value nil.

 Sentinel - nil[T ], representing all the nil nodes.



btrees - 34

Red-black Tree – Example 

26

17

30 47

38 50

41



btrees - 35

Red-black Tree – Example 

26

17

30 47

38 50

41

nil nil

nil

nil nil nil nil

nil



btrees - 36

Red-black Tree – Example 

26

17

30 47

38 50

41

nil[T]



btrees - 37

Red-black Properties

1. Every node is either red or black.

2. The root is black.

3. Every leaf (nil) is black.

4. If a node is red, then both its children are 

black.

5. For each node, all paths from the node to 

descendant leaves contain the same number of 

black nodes.



btrees - 38

Height of a Red-black Tree

 Height of a node:

» Number of edges in a longest path to a leaf.

 Black-height of a node x, bh(x):

» bh(x) is the number of black nodes (including nil[T ]) 

on the path from x to leaf, not counting x.

 Black-height of a red-black tree is the black-height 

of its root.

» By Property 5, black height is well defined.



btrees - 39

Height of a Red-black Tree

 Example:

 Height of a node:

» Number of edges in a 

longest path to a leaf.

 Black-height of a node 

bh(x) is the number of 

black nodes on path from 

x to leaf, not counting x.

26

17

30 47

38 50

41

nil[T]

h=4

bh=2

h=3

bh=2

h=2

bh=1

h=2

bh=1
h=1

bh=1

h=1

bh=1

h=1

bh=1


