
9/27/2023

Heapsort

• What is a heap? Max-heap? Min-heap?

• Maintenance of Max-heaps

- MaxHeapify

- BuildMaxHeap

• Heapsort

- Heapsort

- Analysis

• Priority queues

- Maintenance of priority queues

heapsort - 2

Heapsort

• Combines the better attributes of merge sort
and quick sort.

» Like merge sort, but unlike quick sort, running time
is O(n lg n).

» Like quick sort, but unlike merge sort, sorts in
place.

• Introduces an algorithm design technique

» Create data structure (heap) to manage information
during the execution of an algorithm.

• The heap has other applications beside sorting.

» Priority Queues

heapsort - 3

Data Structure Binary Heap

• Array viewed as a nearly complete binary tree.

• Physically – linear array.

• Logically – binary tree, filled on all levels (except lowest.)

• Map from array elements to tree nodes and vice versa

• Root – A[1], Left[Root] – A[2], Right[Root] – A[3]

• Left[i] – A[2i]

• Right[i] – A[2i+1]

• Parent[i] – A[i/2]

A[i]

A[2i] A[2i + 1]

A[2] A[3]

A[i/2]

heapsort - 4

Data Structure Binary Heap
• length[A] – number of elements in array A.

• heap-size[A] – number of elements in heap stored in A.

» heap-size[A]  length[A]

24 21 23 22 36 29 30 34 28 27 24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

Searching the tree in breadth-first

fashion, we will get the array.

heapsort - 5

Heap Property (Max and Min)

 Max-Heap
» For every node excluding the root, the value stored in that

node is at most that of its parent: A[parent[i]]  A[i]

 Largest element is stored at the root.

 In any subtree, no values are larger than the

value stored at subtree’s root.

 Min-Heap
» For every node excluding the root, the value stored in that

node is at least that of its parent: A[parent[i]]  A[i]

 Smallest element is stored at the root.

 In any subtree, no values are smaller than the value
stored at subtree’s root

heapsort - 6

Heaps – Example

26 24 20 18 17 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

24 20

18 17 19 13

12 14 11

Max-heap as an

array.

Max-heap as a binary

tree.

Last row filled from left to right.

1

2 3

4 5 6 7

8 9 10

heapsort - 7

No longer a Max-heap:

26

24 20

18 17 19 13

12 14 11

1

2 3

4 5 6 7

8 9 10

11

24 20

18 17 19 13

12 14 26

1

2 3

4 5 6 7

8 9 10

swap

heapsort - 8

Heaps in Sorting
• Use max-heaps for sorting.

• The array representation of a max-heap is not sorted.

• Steps in sorting

i) Convert a given array of size n to a max-heap (BuildMaxHeap)

ii) Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it belongs.

• That leaves n – 1 elements to be placed in their appropriate locations.

• However, the array of first n – 1 elements is no longer a max-heap.

• Float the element at the root down one of its subtrees so that the array

remains a max-heap (MaxHeapify)

• Repeat step (ii) until the array is sorted.

heapsort - 9

Maintaining the heap property

 Suppose two subtrees are max-heaps,
but the root violates the max-heap
property.

 Fix the offending node by exchanging the value at the
node with the larger of the values at its children.

» May lead to the subtree at the child not being a max heap.

 Recursively fix the children until all of them satisfy the
max-heap property.

heapsort - 10

MaxHeapify – Example

26

20

17 19 13

12 18 11

24

14

10

MaxHeapify(A, 2)

26

10 20

24 17 19 13

12 18 1114

1

2 3

4 5 6 7

8 9 10

heapsort - 11

26

20

17 19 13

12 11

24

14

10

heapsort - 12

Procedure MaxHeapify

MaxHeapify(A, i)

1. l  left(i) (* A[l] is the left child of A[i] .*)

2. r  right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest  l

5. else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest  r

8. if largest  i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i)

are max-heaps.

A[largest] must be

the largest among

A[i], A[l] and A[r].

r

i

l

heapsort - 13

Running Time for MaxHeapify

MaxHeapify(A, i)

1. l  left(i)

2. r  right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest  l

5. else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest  r

8. if largest i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Time to fix node i and

its children = (1)

Time to fix the

subtree rooted at one

of i’s children =

T(size of subree at

largest)

PLUS

heapsort - 14

Running Time for MaxHeapify(A, n)

 T(n) = T(size of subree at largest) + (1)

 size of subree at largest  2n/3 (worst case occurs

when the last row of tree is exactly half full)

 T(n)  T(2n/3) + (1)  T(n) = O(log1.5 n)

 Alternately, MaxHeapify takes O(h) where h is the

height of the node where MaxHeapify is applied

heapsort - 15

heapsort - 16

Building a heap

 Use MaxHeapify to convert an array A into a max-heap.

 How?

 Call MaxHeapify on each element in a bottom-up

manner.

BuildMaxHeap(A)

1. heap-size[A]  length[A]

2. for i  length[A]/2 downto 1 (*A[length[A]/2 +1],

3. do MaxHeapify(A, i) A[length[A]/2 +2],

… are leaf nodes.*)

heapsort - 17

BuildMaxHeap – Example

24 21 23 22 36 29 30 34 28 27

Input Array:

24

21 23

22 36 29 30

34 28 27

Initial Heap:

(not max-heap)
1

2 3

4 5 6 7

8 9 10

heapsort - 18

24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

24

21 23

34 36 29 30

22 28 27

1

2 3

4 5 6 7

8 9 10

heapsort - 19

24

21 23

34 36 29 30

22 28 27

1

2 3

4 5 6 7

8 9 10

24

21 30

34 36 29 23

22 28 27

1

2 3

4 5 6 7

8 9 10

heapsort - 20

24

21 30

34 36 29 23

22 28 27

1

2 3

4 5 6 7

8 9 10

24

36 30

34 21 29 23

22 28 27

1

2 3

4 5 6 7

8 9 10

heapsort - 21

24

36 30

34 21 29 23

22 28 27

1

2 3

4 5 6 7

8 9 10

24

36 30

34 27 29 23

22 28 21

1

2 3

4 5 6 7

8 9 10

heapsort - 22

24

36 30

34 27 29 23

22 28 21

1

2 3

4 5 6 7

8 9 10

36

24 30

34 27 29 23

22 28 21

1

2 3

4 5 6 7

8 9 10

heapsort - 23

BuildMaxHeap – Example

24

21 23

22 36 29 30

34 28 27

MaxHeapify(10/2 = 5)

3636

MaxHeapify(4)

2234

22

MaxHeapify(3)

2330

23

MaxHeapify(2)

2136

21

MaxHeapify(1)

2436

2434

2428

24

21

21

27

1

2 3

4 5 6 7

8 9 10

heapsort - 24

Correctness of BuildMaxHeap
 Loop Invariant: At the start of each iteration of the for

loop, each node i + 1, i + 2, …, n is the root of a max-

heap.

 Initialization:
» Before first iteration i = n/2

» Nodes n/2+1, n/2+2, …, n are leaves and hence roots of max-heaps.

 Maintenance:
» By LI, subtrees at children of node i are max heaps.

» Hence, MaxHeapify(i) renders node i a max heap root (while preserving the

max heap root property of higher-numbered nodes).

» Decrementing i reestablishes the loop invariant for the next iteration.

 Termination:
» On the termination, the root will be maxheapified. Thus, the whole tree is a

Max-heap.

heapsort - 25

Running Time of BuildMaxHeap
 Loose upper bound:

» Cost of a MaxHeapify call  No. of calls to MaxHeapify

» O(lgn)  O(n) = O(nlg n)

 Tighter bound:

» Cost of a call to MaxHeapify at a node depends on the height,

h, of the node – O(h).

» Height of most nodes smaller than lg n.

» Height of nodes h ranges from 0 to lg n.

» No. of nodes of height h is at most n/2h+1?

v

u Costmaxheapify(v) > Costmaxheapify(u)

heapsort - 26

Height

 Height of a node in a tree: the number of edges on

the longest simple downward path from the node

to a leaf.

 Height of a tree: the height of the root.

 Height of a heap: lg n 

» Basic operations on a heap run in O(lg n) time

heapsort - 27

Heap Characteristics

 Height = h

 No. of leaves  n/2

 No. of nodes of height h  n/2h+1?

...

 n/20+1

 n/21+1

 n/22+1
height(a leaf) = 0

heapsort - 28

Running Time of BuildMaxHeap

 

 









=












=

=
+

n

h
h

n

h
h

h
nO

hO
n

lg

0

lg

0
1

2

)(
2

 

)(

22 0

lg

0

nO

h
nO

h
nO

h
h

n

h
h

=









=











==

Tighter Bound for T(BuildMaxHeap)

T(BuildMaxHeap)

Can build a heap from an unordered array in linear time.

 

2

)2/11(

2/1

2

2

2

0

lg

0

=

-
=






=

=

h

h

h
h

n

h
h

x = 1 in (A.8)

heapsort - 29

Heapsort

 Sort by maintaining the as yet unsorted elements as a
max-heap.

 Start by building a max-heap on all elements in A.

» Maximum element is in the root, A[1].

 Move the maximum element to its correct final
position.

» Exchange A[1] with A[n].

 Discard A[n] – it is now sorted.

» Decrement heap-size[A] by one.

 Restore the max-heap property on A[1..n–1].

» Call MaxHeapify(A, 1).

 Repeat until heap-size[A] is reduced to 2.

heapsort - 30

Heapsort(A)

HeapSort(A)

1. Build-Max-Heap(A)

2. for i  length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A]  heap-size[A] – 1

5. MaxHeapify(A, 1)

heapsort - 31

Heapsort – Example

26 17 20 18 24 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

17 20

18 24 19 13

12 14 11

26

24 20

18 17 19 13

12 14 11

Build-Max-heap

heapsort - 32

24

18 20

14 17 19 13

12 11 26

11

18 20

14 17 19 13

12 24 26

26

24 20

18 17 19 13

12 14 11

11

24 20

18 17 19 13

12 14 26

Maxheapify

Maxheapify

heapsort - 33

19

18 13

14 17 11 12

20 24 26

12

18 13

14 17 11 19

20 24 26

20

18 19

14 17 11 13

12 24 26

12

18 19

14 17 11 13

20 24 26

Maxheapify

Maxheapify

heapsort - 34

17

14 13

11 12 20 19

20 24 26

12

14 13

11 17 18 19

20 24 26

18

17 13

14 12 11 19

20 24 26

11

17 13

14 12 18 19

20 24 26

Maxheapify

Maxheapify

heapsort - 35

13

12 11

14 17 18 19

20 24 26

11

12 13

14

12 13

17 18 19

20 24 26

11

12 13

14 17 18 19

20 24 26

Maxheapify

11

14 17 18 19

20 24 26

heapsort - 36

11

11

11

12 13

14 17 18 19

20 24 26

Maxheapify

12

13

14 17 18 19

20 24 26

12 13

14 17 18 19

20 24 26

11

12 13

14 17 18 19

20 24 26

heapsort - 37

Algorithm Analysis

 In-place

 Build-Max-Heap takes O(n) and each of the n-1

calls to Max-Heapify takes time O(lg n).

 Therefore, T(n) = O(n lg n)

HeapSort(A)

1. Build-Max-Heap(A)

2. for i  length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A]  heap-size[A] – 1

5. MaxHeapify(A, 1)

heapsort - 38

Heap Procedures for Sorting

 MaxHeapify O(lg n)

 BuildMaxHeap O(nlg n), O(n)?

 HeapSort O(n lg n)

heapsort - 39

Priority Queue

 Popular & important application of heaps.

 Max and min priority queues.

 Maintains a dynamic set S of elements.

 Each set element has a key – an associated value.

 Goal is to support insertion and extraction efficiently.

 Applications:

» Ready list of processes in operating systems by their

priorities – the list is highly dynamic

» In event-driven simulators to maintain the list of events to be

simulated in order of their time of occurrence.

heapsort - 40

Basic Operations

 Operations on a max-priority queue:

» Insert(S, x) - inserts the element x into the queue S

• S  S  {x}.

» Maximum(S) - returns the element of S with the largest key.

» Extract-Max(S) - removes and returns the element of S with
the largest key.

» Increase-Key(S, x, k) – increases the value of element x’s key
to the new value k.

 Min-priority queue supports Insert, Minimum, Extract-
Min, and Decrease-Key.

 Heap gives a good compromise between fast insertion
but slow extraction and vice versa.

heapsort - 41

Heap Property (Max and Min)

 Max-Heap
» For every node excluding the root, the value stored in that

node is at most that of its parent: A[parent[i]]  A[i]

 Largest element is stored at the root.

 In any subtree, no values are larger than the value
stored at subtree root.

 Min-Heap
» For every node excluding the root, the value stored in that

node is at least that of its parent: A[parent[i]]  A[i]

 Smallest element is stored at the root.

 In any subtree, no values are smaller than the value
stored at subtree root

heapsort - 42

Heap-Extract-Max(A)

Heap-Extract-Max(A)

1. if heap-size[A] < 1

2. then error “heap underflow”

3. max  A[1]

4. A[1]  A[heap-size[A]]

5. heap-size[A]  heap-size[A] - 1

6. MaxHeapify(A, 1)

7. return max

Running time : Dominated by the running time of MaxHeapify

= O(lg n)

Implements the Extract-Max operation.

heapsort - 43

Heap-Insert(A, key)

Heap-Insert(A, key)

1. heap-size[A]  heap-size[A] + 1

2. i  heap-size[A]

4. while i > 1 and A[Parent(i)] < key

5. do A[i]  A[Parent(i)]

6. i  Parent(i)

7. A[i]  key

Running time is O(lg n)

The path traced from the new leaf to the root has

length O(lg n)

heapsort - 44

Examples

heapsort - 45

Heap-Increase-Key(A, i, key)

Heap-Increase-Key(A, i, key)

1 If key < A[i]

2 then error “new key is smaller than the current key”

3 A[i]  key

4 while i > 1 and A[Parent[i]] < A[i]

5 do exchange A[i]  A[Parent[i]]

6 i  Parent[i]

Heap-Insert(A, key)

1 heap-size[A]  heap-size[A] + 1

2 A[heap-size[A]]  – 

3 Heap-Increase-Key(A, heap-size[A], key)

