# Quicksort

- Quick sort
- Correctness of partition
  - loop invariant
- Performance analysis
  - Recurrence relations

#### **Performance**

- A triumph of analysis by C.A.R. Hoare
- Worst-case execution time  $-\Theta(n^2)$ .
- Average-case execution time  $-\Theta(n \lg n)$ .
  - » How do the above compare with the complexities of other sorting algorithms?
- Empirical and analytical studies show that quicksort can be *expected* to be twice as fast as its competitors.



- Follows the **divide-and-conquer** paradigm.
- ◆ *Divide*: Partition (separate) the array A[p .. r] into two (possibly empty) subarrays A[p .. q−1] and A[q+1 .. r].
  - » Each element in  $A[p ... q-1] \le A[q]$ .
  - »  $A[q] < \text{each element in } A[q+1 \dots r].$
  - » Index q is often referred to as a pivot.
- *Conquer*: Sort the two subarrays by recursive calls to quicksort.
- Combine: The subarrays are sorted in place no work is needed to combine them.
- How do the divide and combine steps of quicksort compare with those of merge sort?

#### **Pseudocode**



 $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p - 1; \\ \textbf{for } j := p \textbf{ to } r - 1 \textbf{ do} \\ \textbf{if } A[j] \leq x \textbf{ then} \\ i := i + 1; \\ A[i] \leftrightarrow A[j] \\ \textbf{fi} \\ \textbf{od}; \\ A[i + 1] \leftrightarrow A[r]; \\ \textbf{return } i + 1 \end{array}$ 

#### Example

| <u>initially:</u> | р<br>2<br>і ј | 5      | 8      | 3      | 9      | 4 | 1 | 7 | 10 | r<br>6 |
|-------------------|---------------|--------|--------|--------|--------|---|---|---|----|--------|
| next iteration:   | -             | 5<br>j | 8      | 3      | 9      | 4 | 1 | 7 | 10 | 6      |
| next iteration:   | 2             | 5<br>i | 8<br>j | 3      | 9      | 4 | 1 | 7 | 10 | 6      |
| next iteration:   | 2             | 5<br>i | 8      | 3<br>j | 9      | 4 | 1 | 7 | 10 | 6      |
| next iteration:   | 2             | 5      | 3<br>i | 8      | 9<br>j | 4 | 1 | 7 | 10 | 6      |

**<u>note</u>:** pivot (x) = 6

 $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p-1; \\ \textbf{for } j := p \textbf{ to } r-1 \textbf{ do} \\ \textbf{ if } A[j] \leq x \textbf{ then} \\ i := i+1; \\ A[i] \leftrightarrow A[j] \\ \textbf{ fi} \\ \textbf{ od}; \\ A[i+1] \leftrightarrow A[r]; \\ \textbf{ return } i+1 \end{array}$ 

## Example (Continued)

| <u>next iteration:</u>                | 2 | 5 | 3<br>i | 8      | 9<br>j | 4      | 1      | 7      | 10      | 6             |
|---------------------------------------|---|---|--------|--------|--------|--------|--------|--------|---------|---------------|
| next iteration:                       | 2 | 5 | 3<br>i | 8      | 9      | 4<br>j | 1      | 7      | 10      | 6             |
| next iteration:                       | 2 | 5 | 3      | 4<br>i | 9      | 8      | 1<br>j | 7      | 10      | 6             |
| next iteration:                       | 2 | 5 | 3      | 4      | 1<br>i | 8      | 9      | 7<br>j | 10      | 6             |
| <u>next iteration:</u>                | 2 | 5 | 3      | 4      | 1<br>i | 8      | 9      | 7      | 10<br>j | 6             |
| <u>next iteration:</u>                | 2 | 5 | 3      | 4      | 1<br>i | 8      | 9      | 7      | 10      | <b>6</b><br>j |
| <u>after final swap:</u><br>qsort - 6 | 2 | 5 | 3      | 4      | 1<br>i | 6      | 9      | 7      | 10      | 8<br>j        |

 $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p - 1; \\ \textbf{for } j := p \textbf{ to } r - 1 \textbf{ do} \\ \textbf{ if } A[j] \leq x \textbf{ then} \\ i := i + 1; \\ A[i] \leftrightarrow A[j] \\ \textbf{ fi} \\ \textbf{ od}; \\ A[i + 1] \leftrightarrow A[r]; \\ \textbf{ return } i + 1 \end{array}$ 

## Partitioning

- Select the last element A[r] in the subarray A[p .. r] as the *pivot* – the element around which to partition.
- As the procedure executes, the array is partitioned into four (possibly empty) regions.
  - 1. A[p ... i] All entries in this region are  $\leq pivot$ .
  - 2. A[i+1 ... j-1] All entries in this region are > *pivot*.
  - 3. A[j ... r-1] Not known how they compare to *pivot*.
  - 4. A[r] = pivot.
- The above hold before each iteration of the *for* loop, and constitute a *loop invariant*. (4 is not part of the LI loop invariant.)

• Use loop invariant.

#### Initialization:

- » Before first iteration
  - A[p., i] and A[i + 1 ., j 1] are empty Conds. 1 and 2 are satisfied (trivially).
  - *r* is the index of the *pivot* Cond. 4 is satisfied.
  - Cond. 3 trivially holds.

#### Maintenance:

- » **<u>Case 1</u>**: A[j] > x
  - Increment *j* only.
  - LI is maintained.

Partition(A, p, r) x, i := A[r], p - 1; for j := p to r - 1 do if A[j]  $\leq$  x then i := i + 1; A[i]  $\leftrightarrow$  A[j] fi od; A[i + 1]  $\leftrightarrow$  A[r]; return i + 1





#### • <u>Case 2:</u> $A[j] \leq x$

- » Increment *i*
- » Swap A[i] and A[j]
  - Condition 1 is maintained.
- » Increment *j* 
  - Condition 2 is maintained.

- » A[r] is unaltered.
  - Condition 3 is maintained.



#### Termination:

- » When the loop terminates, j = r, so all elements in *A* are partitioned into one of the three cases:
  - *A*[*p* .. *i*] ≤ *pivot*
  - *A*[*i* + 1 .. *r* 1] > *pivot*
  - *A*[*r*] = *pivot*
- The last two lines swap A[i + 1] and A[r].
  - » *Pivot* moves from the end of the array to between the two subarrays.
  - » Thus, procedure *partition* correctly performs the divide step.

## **Complexity of Partition**

 PartitionTime(n) is given by the number of iterations in the *for* loop.

•  $\Theta(n)$ : n = r - p + 1.

 $\begin{array}{l} \underline{Partition(A, p, r)} \\ x, i := A[r], p - 1; \\ \textbf{for } j := p \textbf{ to } r - 1 \textbf{ do} \\ \textbf{if } A[j] \leq x \textbf{ then} \\ i := i + 1; \\ A[i] \leftrightarrow A[j] \\ \textbf{fi} \\ \textbf{od}; \\ A[i + 1] \leftrightarrow A[r]; \\ \textbf{return } i + 1 \end{array}$ 

## Algorithm Performance

- Running time of quicksort depends on whether the partitioning is balanced or not.
- Worst-Case Partitioning (Unbalanced Partitions):
  - » Occurs when every call to partition results in the most unbalanced partition.
  - » Partition is most unbalanced when
    - Subproblem 1 is of size n 1, and subproblem 2 is of size 0 or vice versa.
    - *pivot*  $\geq$  every element in A[p ... r 1] or *pivot* < every element in A[p ... r 1].
  - » Every call to partition is most unbalanced when
    - Array A[1.. n] is sorted or reverse sorted!

## **Worst-case Partition Analysis**

0

Recursion tree for worst-case partition



Running time for worst-case partition at each recursive level: T(n) = T(n - 1) + T(0)+ PartitionTime(n) $= T(n - 1) + \Theta(n)$  $= \sum_{k=1 \text{ to } n} \Theta(k)$  $= \Theta(\sum_{k=1 \text{ to } n} k)$  $= \Theta(\sum_{k=1 \text{ to } n} k)$ 

 $n + (n - 1) + ... + 1 = n(n + 1)/2 = O(n^2)$ 

#### **Best-case Partitioning**

- Size of each subproblem ≤ n/2.
  » One of the subproblems is of size ⌊n/2⌋
  » The other is of size ⌈n/2⌉−1.
- Recurrence for running time »  $T(n) \le 2T(n/2) + PartitionTime(n)$  $= 2T(n/2) + \Theta(n)$
- $T(n) = \Theta(n \lg n)$

#### **Recursion Tree for Best-case Partition**



qsort - 16

#### **Average-case Partitioning**

Average case: Worst cases and best cases interleavingly appear.



## Recurrences – II



## **Recurrence Relations**

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- **Solution Methods** (Chapter 4)
  - » Substitution Method.
  - » Recursion-tree Method.
  - » Master Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
  - » **<u>Ex</u>:** Divide and Conquer.

 $T(n) = \Theta(1)$ if  $n \le c$ T(n) = a T(n/b) + D(n) + C(n)otherwise

## **Technicalities**

- We can (almost always) ignore floors and ceilings.
- Exact vs. Asymptotic functions.
  - » In algorithm analysis, both the recurrence and its solution are expressed using asymptotic notation.
  - » <u>Ex:</u> Recurrence with exact function

T(n) = 1 if n = 1T(n) = 2T(n/2) + n if n > 1

Solution:  $T(n) = n \lg n + n$ 

• Recurrence with asymptotics (BEWARE!)

 $T(n) = \Theta(1) \quad \text{if } n = 1$   $T(n) = 2T(n/2) + \Theta(n) \quad \text{if } n > 1$ Solution:  $T(n) = \Theta(n \lg n)$ 

 "With asymptotics" means we are being sloppy about the exact base case and non-recursive time – still convert to exact, though!

## **Substitution Method**

- <u>Guess</u> the form of the solution, then <u>use mathematical induction</u> to show it correct.
  - » Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values – hence, the name.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

#### **Example – Exact Function**

if n = 1Recurrence: T(n) = 1T(n) = 2T(n/2) + n if n > 1•<u>Guess:</u>  $T(n) = n \lg n + n$ . Induction: •Basis:  $n = 1 \Rightarrow n \lg n + n = 1 = T(n)$ . •Hypothesis:  $T(k) = k \lg k + k$  for all k < n. •Inductive Step: T(n) = 2 T(n/2) + n $= 2 ((n/2) \lg(n/2) + (n/2)) + n$ = n (lg(n/2)) + 2n $= n \lg n - n + 2n$  $= n \lg n + n$ 

## Example – With Asymptotics

- To Solve:  $T(n) = 3T(\lfloor n/3 \rfloor) + n$
- Guess:  $T(n) = O(n \lg n)$
- Need to prove:  $T(n) \le cn \lg n$ , for some c > 0.
- Hypothesis:  $T(k) \le ck \lg k$ , for all k < n.
- Calculate:

 $T(n) \le 3c \lfloor n/3 \rfloor \lg \lfloor n/3 \rfloor + n$  $\le c n \lg (n/3) + n$  $= c n \lg n - c n \lg 3 + n$  $= c n \lg n - n (c \lg 3 - 1)$  $\le c n \lg n$ 

(The last step is true for  $c \ge 1/\lg 3$ .)

## Example – With Asymptotics

To Solve:  $T(n) = 3T(\lfloor n/3 \rfloor) + n$ 

- To show T(n) = Θ(n lg n), must show both upper and lower bounds, i.e., T(n) = O(n lg n) AND T(n) = Ω(n lg n)
- (Can you find the mistake in this derivation?)
- Show:  $T(n) = \Omega(n \lg n)$
- Calculate:

$$T(n) \ge 3c \lfloor n/3 \rfloor \lg \lfloor n/3 \rfloor + n$$
  
$$\ge c n \lg (n/3) + n$$
  
$$= c n \lg n - c n \lg 3 + n$$
  
$$= c n \lg n - n (c \lg 3 - 1)$$
  
$$\ge c n \lg n$$

(The last step is true for  $c \le 1 / \lg 3$ .)

## Example – With Asymptotics

If  $T(n) = 3T(\lfloor n/3 \rfloor) + O(n)$ , as opposed to  $T(n) = 3T(\lfloor n/3 \rfloor) + n$ , then rewrite  $T(n) \le 3T(\lfloor n/3 \rfloor) + cn$ , c > 0.

- To show  $T(n) = O(n \lg n)$ , use second constant *d*, different from *c*.
- Calculate:

 $T(n) \le 3d \lfloor n/3 \rfloor \lg \lfloor n/3 \rfloor + c n$  $\le d n \lg (n/3) + cn$  $= d n \lg n - d n \lg 3 + cn$  $= d n \lg n - n (d \lg 3 - c)$  $\le d n \lg n$ 

(The last step is true for  $d \ge c / \lg 3$ .) It is <u>OK</u> for *d* to depend on *c*.

## Making a Good Guess

- If a recurrence is similar to one seen before, then guess a similar solution.
  - »  $T(n) = 3T(\lfloor n/3 \rfloor + 5) + n$  (Similar to  $T(n) = 3T(\lfloor n/3 \rfloor) + n$ )
    - When *n* is large, the difference between n/3 and (n/3 + 5) is insignificant.
    - Hence, can guess  $O(n \lg n)$ .
- Method 2: Prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty.
  - » E.g., start with  $T(n) = \Omega(n) \& T(n) = O(n^2)$ .
  - » Then lower the upper bound and raise the lower bound.

## **Subtleties**

- When the math doesn't quite work out in the induction, strengthen the guess by subtracting a lower-order term.
   <u>Example:</u>
  - » Initial guess: T(n) = O(n) for  $T(n) = 3T(\lfloor n/3 \rfloor) + 4$
  - » Results in:  $T(n) \le 3c \lfloor n/3 \rfloor + 4 = c n + 4$
  - » Strengthen the guess to:  $T(n) \le c n b$ , where  $b \ge 0$ .
    - What does it mean to strengthen?
    - Though counterintuitive, it works. <u>Why?</u>

 $T(n) \leq 3(c \lfloor n/3 \rfloor - b) + 4 \leq c \ n - 3b + 4 = c \ n - b - (2b - 4)$ Therefore,  $T(n) \leq c \ n - b$ , if  $2b - 4 \geq 0$  or if  $b \geq 2$ . (Don't forget to check the base case: here c > b + 1.)

## **Changing Variables**

- Use algebraic manipulation to turn an unknown recurrence into one similar to what you have seen before.
  - » Example:  $T(n) = 2T(n^{1/2}) + \lg n$
  - » Rename  $m = \lg n$  and we have  $T(2^m) = 2T(2^{m/2}) + m$
  - » Set  $S(m) = T(2^m)$  and we have  $S(m) = 2S(m/2) + m \Longrightarrow S(m) = O(m \lg m)$
  - » Changing back from S(m) to T(n), we have  $T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$

## **Avoiding Pitfalls**

- Be careful not to misuse asymptotic notation. For example:
  - » We can falsely prove T(n) = O(n) by guessing  $T(n) \le cn$  for  $T(n) = 2T(\lfloor n/2 \rfloor) + n$   $T(n) \le 2c \lfloor n/2 \rfloor + n$   $\le c n + n$ = O(n) ⇐ Wrong!
  - » We are supposed to prove that  $T(n) \le c n$  for all n > N, according to the definition of O(n).
- <u>Remember</u>: prove the *exact form* of inductive hypothesis.



- Solution of  $T(n) = T(\lceil n/2 \rceil) + n$  is O(n)
- Solution of  $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$  is  $O(n \lg n)$
- Solve T(n) = 2T(n/2) + 1

Solve T(n) = 2T(n<sup>1/2</sup>) + 1 by making a change of variables. Don't worry about whether values are integral.