Quicksort

- Quick sort
- Correctness of partition
- loop invariant
- Performance analysis
- Recurrence relations

Performance

- A triumph of analysis by C.A.R. Hoare
- Worst-case execution time $-\Theta\left(n^{2}\right)$.
- Average-case execution time - $\Theta(n \lg n)$.
» How do the above compare with the complexities of other sorting algorithms?
- Empirical and analytical studies show that quicksort can be expected to be twice as fast as its competitors.

Design

- Follows the divide-and-conquer paradigm.
- Divide: Partition (separate) the array $A[p . . r]$ into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$.
» Each element in $A[p . . q-1] \leq A[q]$.
» $A[q]$ < each element in $A[q+1$.. $r]$.
» Index q is often referred to as a pivot.
- Conquer: Sort the two subarrays by recursive calls to quicksort.
- Combine: The subarrays are sorted in place - no work is needed to combine them.
- How do the divide and combine steps of quicksort compare with those of merge sort?

Pseudocode

```
Quicksort(A, p, r)
    if \(p<r\) then
        \(\mathrm{q}:=\operatorname{Partition}(\mathrm{A}, \mathrm{p}, \mathrm{r})\);
        Quicksort(A, p, q-1);
        Quicksort(A, q + 1, r)
    fi
```


$$
\mathrm{A}[\mathrm{p} . . \mathrm{q}-1] \mathrm{A}[\mathrm{q}+1 . . \mathrm{r}]
$$

Example

	p	
initially:	25839417106	note: $\operatorname{pivot}(x)=6$
	i j	
next iteration:	25883941706	
	i j	Partition(A, p, r)
next iteration:		$\mathrm{x}, \mathrm{i}:=\mathrm{A}[\mathrm{r}], \mathrm{p}-1$
	$\begin{array}{llllllllll}5 & 8 & 3 & 9 & 4 & 1 & 7 & 10 & 6\end{array}$	$\text { for } \mathrm{j}:=\mathrm{p} \text { to } \mathrm{r}-1 \text { do }$
next iteration:	i j	if $\mathrm{A}[\mathrm{j}] \leq \mathrm{x}$ then
	25083094107106	$\begin{aligned} & \mathrm{i}:=\mathrm{i}+1 \\ & \mathrm{~A}[\mathrm{i}] \leftrightarrow \mathrm{A}[\mathrm{j}] \end{aligned}$
	i j	fi
next iteration:	25389417106	od;
	i j	$\mathrm{A}[\mathrm{i}+1] \leftrightarrow \mathrm{A}[\mathrm{r}]$ $\text { return } \mathrm{i}+1$

Example (Continued)

next iteration:

$$
\begin{array}{lllllllllll}
2 & 5 & 3 & 8 & 9 & 4 & 1 & 7 & 10 & 6 \\
& & & & & j & & & & &
\end{array}
$$

$$
\begin{array}{rlllllllll}
2 & 5 & 3 & 8 & 9 & 4 & 1 & 7 & 10 & 6 \\
& & & & & & & j & & \\
&
\end{array}
$$

next iteration:

next iteration:

$$
\begin{array}{lllllllll}
2 & 5 & 3 & 4 & 1 & 8 & 9 & 7 & 10 \\
& & & & & & &
\end{array}
$$

next iteration:

$$
\begin{array}{llllllllll}
2 & 5 & 3 & 4 & 1 & 8 & 9 & 7 & 10 & 6 \\
& & & & & & & & &
\end{array}
$$

next iteration:

$$
\begin{aligned}
& \frac{\operatorname{Partition}(\mathrm{A}, \mathrm{p}, \mathrm{r})}{\mathrm{x}, \mathrm{i}}:=\mathrm{A}[\mathrm{r}], \mathrm{p}-1 ; \\
& \text { for } \mathrm{j}:=\mathrm{p} \text { to } \mathrm{r}-1 \text { do } \\
& \text { if } \mathrm{A}[\mathrm{j}] \leq \mathrm{x} \text { then } \\
& \mathrm{i}:=\mathrm{i}+1 \\
& \mathrm{~A}[\mathrm{i}] \leftrightarrow \mathrm{A}[\mathrm{j}] \\
& \mathbf{f i}
\end{aligned}
$$

od;
$\mathrm{A}[\mathrm{i}+1] \leftrightarrow \mathrm{A}[\mathrm{r}] ;$ return $i+1$
after final swap:

$$
\begin{array}{llllllllll}
2 & 5 & 3 & 4 & 1 & 6 & 9 & 7 & 10 & 8 \\
& & & \text { i } & & & & & & j
\end{array}
$$

Partitioning

- Select the last element $A[r]$ in the subarray $A[p$.. $r]$ as the pivot - the element around which to partition.
- As the procedure executes, the array is partitioned into four (possibly empty) regions.

1. $A[p$.. $i]$ - All entries in this region are $\leq p i v o t$.
2. $A[i+1 . . j-1]$ - All entries in this region are > pivot.
3. $A[j . . r-1]$ - Not known how they compare to pivot.
4. $A[r]=$ pivot.

- The above hold before each iteration of the for loop, and constitute a loop invariant. (4 is not part of the LI loop invariant.)

Correctness of Partition

- Use loop invariant.
- Initialization:
» Before first iteration
- $A[p . . i]$ and $A[i+1 . . j-1]$ are empty - Conds. 1 and 2 are satisfied (trivially).
- r is the index of the pivot - Cond. 4 is satisfied.
- Cond. 3 trivially holds.
- Maintenance:
» Case 1: $A[j]>x$
- Increment j only.
- LI is maintained.
$\mathrm{x}, \mathrm{i}:=\mathrm{A}[\mathrm{r}], \mathrm{p}-1$;
for $\mathrm{j}:=\mathrm{p}$ to $\mathrm{r}-1$ do if $A[j] \leq x$ then $\mathrm{i}:=\mathrm{i}+1$; $\mathrm{A}[\mathrm{i}] \leftrightarrow \mathrm{A}[\mathrm{j}]$ fi
od;
$\mathrm{A}[\mathrm{i}+1] \leftrightarrow \mathrm{A}[\mathrm{r}]$;
return $\mathrm{i}+1$

Correctness of Partition

Case 1: $A[j]>x$

Correctness of Partition

- Case 2: $A[j] \leq x$
» Increment i
» Swap $A[i]$ and $A[j]$
» $A[r]$ is unaltered.
- Condition 3 is maintained.
- Condition 1 is maintained.
» Increment j
- Condition 2 is maintained.

Correctness of Partition

- Termination:
» When the loop terminates, $j=r$, so all elements in A are partitioned into one of the three cases:
- $A[p$.. $i] \leq$ pivot
- $A[i+1$.. $r-1]>$ pivot
- $A[r]=$ pivot
- The last two lines swap $A[i+1]$ and $A[r]$.
» Pivot moves from the end of the array to between the two subarrays.
» Thus, procedure partition correctly performs the divide step.

Complexity of Partition

- PartitionTime (n) is given by the number of iterations in the for loop.
- $\Theta(n): n=r-p+1$.

$$
\begin{aligned}
& \text { Partition }(\mathrm{A}, \mathrm{p}, \mathrm{r}) \\
& \begin{array}{r}
\mathrm{x}, \mathrm{i}:=\mathrm{A}[\mathrm{r}], \mathrm{p}-1 ; \\
\text { for } \mathrm{j}:=\mathrm{p} \text { to } \mathrm{r}-1 \text { do } \\
\text { if } \mathrm{A}[\mathrm{j}] \leq \mathrm{x} \text { then } \\
\mathrm{i}:=\mathrm{i}+1 ; \\
\quad \mathrm{A}[\mathrm{i}] \leftrightarrow \mathrm{A}[\mathrm{j}]
\end{array} \\
& \quad \text { fi } \\
& \text { od; } \\
& \mathrm{A}[\mathrm{i}+1] \leftrightarrow \mathrm{A}[\mathrm{r}] ; \\
& \text { return } \mathrm{i}+1
\end{aligned}
$$

Algorithm Performance

Running time of quicksort depends on whether the partitioning is balanced or not.

- Worst-Case Partitioning (Unbalanced Partitions):
» Occurs when every call to partition results in the most unbalanced partition.
» Partition is most unbalanced when
- Subproblem 1 is of size $n-1$, and subproblem 2 is of size 0 or vice versa.
- pivot \geq every element in $A[p . . r-1]$ or pivot < every element in $A[p . . r-1]$.
» Every call to partition is most unbalanced when
- Array $A[1$.. $n]$ is sorted or reverse sorted!

$$
\begin{aligned}
& 1,2,3,4,5,6,7,8,9,10 \\
& { }^{\dagger} i{ }^{\dagger}{ }^{\dagger}
\end{aligned}
$$

Worst-case Partition Analysis

Recursion tree for worst-case partition

Running time for worst-case partition at each recursive level:

$$
\begin{aligned}
T(n) & =T(n-1)+T(0) \\
& +\operatorname{PartitionTime}(n) \\
& =T(n-1)+\Theta(n) \\
& =\sum_{k=1 \text { to } n} \Theta(k) \\
& =\Theta\left(\sum_{k=1 \text { to } n} k\right) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

$$
n+(n-1)+\ldots+1=n(n+1) / 2=\mathrm{O}\left(n^{2}\right)
$$

Best-case Partitioning

- Size of each subproblem $\leq n / 2$.
» One of the subproblems is of size $\lfloor n / 2\rfloor$
» The other is of size $\lceil n / 2\rceil-1$.
- Recurrence for running time

$$
\begin{aligned}
>T(n) & \leq 2 T(n / 2)+\text { PartitionTime }(n) \\
& =2 T(n / 2)+\Theta(n)
\end{aligned}
$$

- $T(n)=\Theta(n \lg n)$

Recursion Tree for Best-case Partition

Average-case Partitioning

Average case: Worst cases and best cases interleavingly appear.

Recurrences - II

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Solution Methods (Chapter 4)
»Substitution Method.
» Recursion-tree Method.
» Master Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
» Ex: Divide and Conquer.

$$
\begin{aligned}
& T(n)=\Theta(1) \\
& T(n)=a T(n / b)+D(n)+C(n)
\end{aligned}
$$

if $n \leq c$
otherwise

Technicalities

- We can (almost always) ignore floors and ceilings.
- Exact vs. Asymptotic functions.
» In algorithm analysis, both the recurrence and its solution are expressed using asymptotic notation.
» Ex: Recurrence with exact function

$$
\begin{array}{ll}
T(n)=1 & \text { if } n=1 \\
T(n)=2 T(n / 2)+n & \text { if } n>1
\end{array}
$$

Solution: $\quad T(n)=n \lg n+n$

- Recurrence with asymptotics (BEWARE!)

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}
$$

Solution: $\quad T(n)=\Theta(n \lg n)$

* "With asymptotics" means we are being sloppy about the exact base case and non-recursive time - still convert to exact, though!

Substitution Method

- Guess the form of the solution, then use mathematical induction to show it correct.
» Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values hence, the name.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example - Exact Function

Recurrence: $T(n)=1$

$$
T(n)=2 T(n / 2)+n \quad \text { if } \quad n>1
$$

- Guess: $T(n)=n \lg n+n$.
- Induction:
- Basis: $n=1 \Rightarrow n \lg n+n=1=T(n)$.
- Hypothesis: $T(k)=k \lg k+k$ for all $k<n$.
-Inductive Step: $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2((n / 2) \lg (n / 2)+(n / 2))+n \\
& =n(\lg (n / 2))+2 n \\
& =n \lg n-n+2 n \\
& =n \lg n+n
\end{aligned}
$$

Example - With Asymptotics

To Solve: $\quad T(n)=3 T(\lfloor n / 3\rfloor)+n$

- Guess: $\quad T(n)=O(n \lg n)$
- Need to prove: $T(n) \leq c n \lg n$, for some $c>0$.
- Hypothesis: $T(k) \leq c k \lg k$, for all $k<n$.
- Calculate:

$$
\begin{aligned}
T(n) & \leq 3 c\lfloor n / 3\rfloor \lg \lfloor n / 3\rfloor+n \\
& \leq c n \lg (n / 3)+n \\
& =c n \lg n-c n \lg 3+n \\
& =c n \lg n-n(c \lg 3-1) \\
& \leq c n \lg n
\end{aligned}
$$

(The last step is true for $c \geq 1 / \lg 3$.)

Example - With Asymptotics

To Solve: $\quad T(n)=3 T(\lfloor n / 3\rfloor)+n$

- To show $T(n)=\Theta(n \lg n)$, must show both upper and lower bounds, i.e., $T(n)=O(n \lg n)$ AND $T(n)=\Omega(n \lg n)$
- (Can you find the mistake in this derivation?)
- Show: $\quad T(n)=\Omega(n \lg n)$
- Calculate:

$$
\begin{aligned}
T(n) & \geq 3 c\lfloor n / 3\rfloor \lg \lfloor n / 3\rfloor+n \\
& \geq c n \lg (n / 3)+n \\
& =c n \lg n-c n \lg 3+n \\
& =c n \lg n-n(c \lg 3-1) \\
& \geq c n \lg n
\end{aligned}
$$

(The last step is true for $c \leq 1 / \lg 3$.)

Example - With Asymptotics

If $T(n)=3 T(\lfloor n / 3\rfloor)+O(n)$, as opposed to $T(n)=3 T(\lfloor n / 3\rfloor)+n$, then rewrite $T(n) \leq 3 T(\lfloor n / 3\rfloor)+c n, c>0$.

- To show $T(n)=O(n \lg n)$, use second constant d, different from c.
- Calculate:

$$
\begin{aligned}
T(n) & \leq 3 d\lfloor n / 3\rfloor \lg \lfloor n / 3\rfloor+c n \\
& \leq d n \lg (n / 3)+c n \\
& =d n \lg n-d n \lg 3+c n \\
& =d n \lg n-n(d \lg 3-\mathrm{c}) \\
& \leq d n \lg n
\end{aligned}
$$

(The last step is true for $d \geq c / \lg 3$.)
It is $\underline{\mathrm{OK}}$ for d to depend on c.

Making a Good Guess

- If a recurrence is similar to one seen before, then guess a similar solution.
$» T(n)=3 T(\lfloor n / 3\rfloor+5)+n($ Similar to $T(n)=3 T(\lfloor n / 3\rfloor)+n)$
- When n is large, the difference between $n / 3$ and $(n / 3+5)$ is insignificant.
- Hence, can guess $O(n \lg n)$.
- Method 2: Prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty.
» E.g., start with $T(n)=\Omega(n) \& T(n)=O\left(n^{2}\right)$.
» Then lower the upper bound and raise the lower bound.

Subtleties

- When the math doesn't quite work out in the induction, strengthen the guess by subtracting a lower-order term. Example:
» Initial guess: $T(n)=O(n)$ for $T(n)=3 T(\lfloor n / 3\rfloor)+4$
» Results in: $T(n) \leq 3 c\lfloor n / 3\rfloor+4=c n+4$
» Strengthen the guess to: $T(n) \leq c n-b$, where $b \geq 0$.
- What does it mean to strengthen?
- Though counterintuitive, it works. Why?
$T(n) \leq 3(c\lfloor n / 3\rfloor-b)+4 \leq c n-3 b+4=c n-b-(2 b-4)$
Therefore, $T(n) \leq c n-b$, if $2 b-4 \geq 0$ or if $b \geq 2$.
(Don't forget to check the base case: here $c>b+1$.)

Changing Variables

- Use algebraic manipulation to turn an unknown recurrence into one similar to what you have seen before.
» Example: $T(n)=2 T\left(n^{1 / 2}\right)+\lg n$
» Rename $m=\lg n$ and we have

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

» Set $S(m)=T\left(2^{m}\right)$ and we have

$$
S(m)=2 S(m / 2)+m \Rightarrow S(m)=O(m \lg m)
$$

» Changing back from $S(m)$ to $T(n)$, we have

$$
T(n)=T\left(2^{m}\right)=S(m)=O(m \lg m)=O(\lg n \lg \lg n)
$$

Avoiding Pitfalls

- Be careful not to misuse asymptotic notation. For example:
» We can falsely prove $T(n)=O(n)$ by guessing

$$
T(n) \leq c n \text { for } T(n)=2 T(\lfloor n / 2\rfloor)+n
$$

$$
\begin{aligned}
T(n) & \leq 2 c\lfloor n / 2\rfloor+n \\
& \leq c n+n \\
& =O(n) \Leftarrow \text { Wrong }!
\end{aligned}
$$

» We are supposed to prove that $T(n) \leq c n$ for all $n>N$, according to the definition of $O(n)$.

- Remember: prove the exact form of inductive hypothesis.

Exercises

- Solution of $T(n)=T(\lceil n / 2\rceil)+n$ is $O(n)$
- Solution of $T(n)=2 T(\lfloor n / 2\rfloor+17)+n$ is $O(n \lg n)$
- Solve $T(n)=2 T(n / 2)+1$
- Solve $T(n)=2 T\left(n^{1 / 2}\right)+1$ by making a change of variables. Don't worry about whether values are integral.

