
9/25/2023

Quicksort

• Quick sort

• Correctness of partition

- loop invariant

• Performance analysis

- Recurrence relations

qsort - 2

Performance

 A triumph of analysis by C.A.R. Hoare

 Worst-case execution time – (n2).

 Average-case execution time – (nlg n).

» How do the above compare with the complexities of
other sorting algorithms?

 Empirical and analytical studies show that
quicksort can be expected to be twice as fast as
its competitors.

qsort - 3

Design

 Follows the divide-and-conquer paradigm.

 Divide: Partition (separate) the array A[p .. r] into two
(possibly empty) subarrays A[p .. q–1] and A[q+1 .. r].

» Each element in A[p .. q–1] A[q].

» A[q] < each element in A[q+1 .. r].

» Index q is often referred to as a pivot.

 Conquer: Sort the two subarrays by recursive calls to
quicksort.

 Combine: The subarrays are sorted in place – no work
is needed to combine them.

 How do the divide and combine steps of quicksort
compare with those of merge sort?

qsort - 4

Pseudocode

Quicksort(A, p, r)

if p < r then

q := Partition(A, p, r);

Quicksort(A, p, q – 1);

Quicksort(A, q + 1, r)

fi

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j] x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 15

A[p .. r]

A[p .. q – 1] A[q + 1 .. r]

 5 5

Partition 5

i j

qsort - 5

Example

p r

initially: 2 5 8 3 9 4 1 7 10 6 note: pivot (x) = 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 3 8 9 4 1 7 10 6

i j

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j] x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 6

Example (Continued)
next iteration: 2 5 3 8 9 4 1 7 10 6

i j

next iteration: 2 5 3 8 9 4 1 7 10 6

i j

next iteration: 2 5 3 4 9 8 1 7 10 6

i j

next iteration: 2 5 3 4 1 8 9 7 10 6

i j

next iteration: 2 5 3 4 1 8 9 7 10 6

i j

next iteration: 2 5 3 4 1 8 9 7 10 6

i j

after final swap: 2 5 3 4 1 6 9 7 10 8

i j

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j] x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 7

Partitioning

 Select the last element A[r] in the subarray A[p .. r] as

the pivot – the element around which to partition.

 As the procedure executes, the array is partitioned

into four (possibly empty) regions.

1. A[p .. i] — All entries in this region are pivot.

2. A[i+1 .. j – 1] — All entries in this region are > pivot.

3. A[j .. r – 1] — Not known how they compare to pivot.

4. A[r] = pivot.

 The above hold before each iteration of the for loop,

and constitute a loop invariant. (4 is not part of the LI -

loop invariant.)

qsort - 8

Correctness of Partition

 Use loop invariant.

 Initialization:

» Before first iteration

• A[p.. i] and A[i + 1 .. j – 1] are empty – Conds. 1 and 2 are satisfied

(trivially).

• r is the index of the pivot – Cond. 4 is satisfied.

• Cond. 3 trivially holds.

 Maintenance:

» Case 1: A[j] > x

• Increment j only.

• LI is maintained.

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j] x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 9

Correctness of Partition

>x x

p i j r

 x > x

x

p i j r

 x > x

Case 1: A[j] > x

qsort - 10

Correctness of Partition

 x x

p i j r

 x > x

 Case 2: A[j] x

» Increment i

» Swap A[i] and A[j]

• Condition 1 is maintained.

» Increment j

• Condition 2 is maintained.

» A[r] is unaltered.

• Condition 3 is maintained.

 x > x

x

p i j r

qsort - 11

Correctness of Partition

 Termination:

» When the loop terminates, j = r, so all elements in A

are partitioned into one of the three cases:

• A[p .. i] pivot

• A[i + 1 .. r – 1] > pivot

• A[r] = pivot

 The last two lines swap A[i + 1] and A[r].

» Pivot moves from the end of the array to between

the two subarrays.

» Thus, procedure partition correctly performs the

divide step.

qsort - 12

Complexity of Partition

 PartitionTime(n) is given by the number of

iterations in the for loop.

 (n) : n = r – p + 1.
Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j] x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 13

Algorithm Performance

Running time of quicksort depends on whether the
partitioning is balanced or not.

 Worst-Case Partitioning (Unbalanced Partitions):

» Occurs when every call to partition results in the most unbalanced
partition.

» Partition is most unbalanced when

• Subproblem 1 is of size n – 1, and subproblem 2 is of size 0 or vice versa.

• pivot every element in A[p .. r – 1] or pivot < every element in A[p .. r – 1].

» Every call to partition is most unbalanced when

• Array A[1 .. n] is sorted or reverse sorted!

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

i j

qsort - 14

Worst-case Partition Analysis

Running time for worst-case

partition at each recursive level:

T(n) = T(n – 1) + T(0)

+ PartitionTime(n)

= T(n – 1) + (n)

= k=1 to n(k)

= (k=1 to n k)

= (n2)

n

Recursion tree for

worst-case partition
n

n – 1 0 pivot

0 n -2 pivot

0 n - 3 pivot

0 1 pivot

… …

n + (n - 1) + … + 1 = n(n + 1)/2 = O(n2)

qsort - 15

Best-case Partitioning

 Size of each subproblem n/2.

» One of the subproblems is of size n/2

» The other is of size n/2 −1.

 Recurrence for running time

» T(n) 2T(n/2) + PartitionTime(n)

= 2T(n/2) + (n)

 T(n) = (n lg n)

qsort - 16

Recursion Tree for Best-case Partition

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

Total : O(n lg n)

cn

qsort - 17

Average-case Partitioning

2log n

n

n – 1 0 pivot

(n – 2)/2 (n – 2)/2 pivot

(n – 2)/2 - 1 0 pivot

… …

(n – 2)/2 - 1 0 pivot

worst case

best case

worst case

best case

… …

Average case: Worst cases and best cases interleavingly appear.

Average case time complexity: 2n log n

9/25/2023

Recurrences – II

qsort - 19

Recurrence Relations

 Equation or an inequality that characterizes a
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

» Substitution Method.

» Recursion-tree Method.

» Master Method.

 Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.

» Ex: Divide and Conquer.

T(n) = (1) if n c

T(n) = a T(n/b) + D(n) + C(n) otherwise

qsort - 20

Technicalities
 We can (almost always) ignore floors and ceilings.

 Exact vs. Asymptotic functions.

» In algorithm analysis, both the recurrence and its solution are
expressed using asymptotic notation.

» Ex: Recurrence with exact function

T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

Solution: T(n) = n lgn + n

• Recurrence with asymptotics (BEWARE!)

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

Solution: T(n) = (n lgn)

 “With asymptotics” means we are being sloppy about the exact
base case and non-recursive time – still convert to exact, though!

qsort - 21

Substitution Method

 Guess the form of the solution, then

use mathematical induction to show it correct.

» Substitute guessed answer for the function when the

inductive hypothesis is applied to smaller values –

hence, the name.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.

qsort - 22

Example – Exact Function

Recurrence: T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

⬧Guess: T(n) = n lgn + n.

⬧Induction:

•Basis: n = 1 n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lgk + k for all k < n.

•Inductive Step: T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lgn – n + 2n

= n lgn + n

qsort - 23

Example – With Asymptotics

To Solve: T(n) = 3T(n/3) + n

 Guess: T(n) = O(n lg n)

 Need to prove: T(n) cn lg n, for some c > 0.

 Hypothesis: T(k) ck lg k, for all k < n.

 Calculate:
T(n) 3c n/3 lg n/3 + n

 c n lg (n/3) + n

= c n lg n – c n lg3 + n

= c n lg n – n (c lg 3 – 1)

 c n lg n

(The last step is true for c 1 / lg3.)

qsort - 24

Example – With Asymptotics

To Solve: T(n) = 3T(n/3) + n

 To show T(n) = (n lg n), must show both upper and lower
bounds, i.e., T(n) = O(n lg n) AND T(n) = (n lg n)

 (Can you find the mistake in this derivation?)

 Show: T(n) = (n lg n)

 Calculate:
T(n) 3c n/3 lg n/3 + n

 c n lg (n/3) + n

= c n lg n – c n lg3 + n

= c n lg n – n (c lg 3 – 1)

 c n lg n

(The last step is true for c 1 / lg3.)

qsort - 25

Example – With Asymptotics

If T(n) = 3T(n/3) + O (n), as opposed to T(n) = 3T(n/3) + n,

then rewrite T(n) 3T(n/3) + cn, c > 0.

 To show T(n) = O(n lg n), use second constant d, different from c.

 Calculate:
T(n) 3d n/3 lg n/3 +c n

 d n lg (n/3) + cn

= d n lg n – d n lg3 + cn

= d n lg n – n (d lg 3 – c)

 d n lg n

(The last step is true for d c / lg3.)

It is OK for d to depend on c.

qsort - 26

Making a Good Guess

 If a recurrence is similar to one seen before, then guess a

similar solution.

» T(n) = 3T(n/3 + 5) + n (Similar to T(n) = 3T(n/3) + n)

• When n is large, the difference between n/3 and (n/3 + 5) is

insignificant.

• Hence, can guess O(n lg n).

 Method 2: Prove loose upper and lower bounds on the

recurrence and then reduce the range of uncertainty.

» E.g., start with T(n) = (n) & T(n) = O(n2).

» Then lower the upper bound and raise the lower bound.

qsort - 27

Subtleties
 When the math doesn’t quite work out in the induction,

strengthen the guess by subtracting a lower-order term.

Example:

» Initial guess: T(n) = O(n) for T(n) = 3T(n/3)+ 4

» Results in: T(n) 3c n/3 + 4 = c n + 4

» Strengthen the guess to: T(n) c n – b, where b 0.

• What does it mean to strengthen?

• Though counterintuitive, it works. Why?

T(n) 3(c n/3 – b)+4 c n – 3b + 4 = c n – b – (2b – 4)

Therefore, T(n) c n – b, if 2b – 4 0 or if b 2.

(Don’t forget to check the base case: here c>b+1.)

qsort - 28

Changing Variables
 Use algebraic manipulation to turn an unknown

recurrence into one similar to what you have seen

before.

» Example: T(n) = 2T(n1/2) + lg n

» Rename m = lg n and we have

T(2m) = 2T(2m/2) + m

» Set S(m) = T(2m) and we have

S(m) = 2S(m/2) + m S(m) = O(m lg m)

» Changing back from S(m) to T(n), we have

T(n) = T(2m) = S(m) = O(m lg m) = O(lg n lg lg n)

qsort - 29

Avoiding Pitfalls

 Be careful not to misuse asymptotic notation.

For example:

» We can falsely prove T(n) = O(n) by guessing

T(n) cn for T(n) = 2T(n/2) + n

T(n) 2c n/2 + n

 c n + n

= O(n) Wrong!

» We are supposed to prove that T(n) c n for all n>N,

according to the definition of O(n).

 Remember: prove the exact form of inductive hypothesis.

qsort - 30

Exercises

 Solution of T(n) = T(n/2) + n is O(n)

 Solution of T(n) = 2T(n/2 + 17) + n is O(n lg n)

 Solve T(n) = 2T(n/2) + 1

 Solve T(n) = 2T(n1/2) + 1 by making a change of

variables. Don’t worry about whether values are

integral.

