
9/18/2023

Divide and Conquer

(Merge Sort)

• Divide and conquer

• Merge sort

• Loop-invariant

• Recurrence relations

dc - 2

Divide and Conquer

 Recursive in structure

⬧ Divide the problem into sub-problems that are

similar to the original but smaller in size

⬧ Conquer the sub-problems by solving them

recursively. If they are small enough, just solve

them in a straightforward manner.

⬧ Combine the solutions of the sub-problems to

create a global solution to the original problem

dc - 3

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into

non-decreasing order.

 Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2 elements each

 Conquer: Sort the two subsequences recursively

using merge sort.

 Combine: Merge the two sorted subsequences to

produce the sorted answer.

dc - 5

Merge Sort – Example

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

2618 6 32 1543 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 326 15 43 1 9

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

6

6

32 6

18 26 32 6

43

43

15

15

43 15

9

9

1

1

9 1

43 15 9 1

18 26 32 6 43 15 9 1

18 26 6 32

6 26 3218

1543 1 9

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence

dc - 6

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 if p < r

2 then q  (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

dc - 7

Procedure Merge
Merge(A, p, q, r)

1 n1  q – p + 1

2 n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Sentinels, to avoid having to

check if either subarray is

fully copied at each step.

Input: Array containing

sorted subarrays A[p .. q]

and A[q+1 .. r].

Output: Merged sorted

subarray in A[p .. r].

dc - 8

j

Merge – Example

…A

k

6 8 26 32 1 9 42 43

k k k k k k k k

i

 

j

6 8 26 32 1 9 42 43

6 8 26 32 1 9 42 431 6 8 9 26 32 42 43

L R

6 8 26 32 1 9 42 43… …A 6 8 26 32 1 9 42 43

merge

p r

at the very beginning at the termination

…

p r

dc - 9

Correctness of Merge
Merge(A, p, q, r)

1 n1  q – p + 1

2 n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Loop Invariant for the for loop

• At the start of each iteration of the

for loop:

subarray A[p . . k – 1]

contains the k – p smallest elements

of L and R in sorted order.

• L[i] and R[j] are the smallest elements of

L and R that have not been copied back into

A.

Initialization:

Before the first iteration:

• A[p .. k – 1] is empty.

• i = j = 1.

• L[1] and R[1] are the smallest

elements of L and R not copied to A.

dc - 10

Correctness of Merge
Merge(A, p, q, r)

1 n1  q – p + 1

2 n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Maintenance:

(We will prove that if after the kth

iteration, the Loop Invariant (LI) holds,

we still have the LI after the (k+1)th

iteration.)

Case 1: L[i]  R[j]

•By Loop Invariant, A contains k – p

smallest elements of L and R in sorted order.

•Also, L[i] and R[j] are the smallest

elements of L and R not yet copied into A.

•Line 13 results in A containing k – p + 1

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI

for the next iteration.

Similarly for Case 2: L[i] > R[j].

dc - 11

Correctness of Merge
Merge(A, p, q, r)

1 n1  q – p + 1

2 n2  r – q

3 for i  1 to n1

4 do L[i]  A[p + i – 1]

5 for j  1 to n2

6 do R[j]  A[q + j]

7 L[n1+1] 

8 R[n2+1] 

9 i  1

10 j  1

11 for k  p to r

12 do if L[i]  R[j]

13 then A[k]  L[i]

14 i  i + 1

15 else A[k]  R[j]

16 j  j + 1

Maintenance:

Case 1: L[i]  R[j]

•By Loop Invariant (LI), A contains k – p

smallest elements of L and R in sorted order.

•By LI, L[i] and R[j] are the smallest

elements of L and R not yet copied into A.

•Line 13 results in A containing k – p + 1

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI

for the next iteration.

Similarly for Case 2: L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r – p + 1 smallest

elements of L and R in sorted order.

•L and R together contain r – p + 3 – (r – p

+ 1) = 2 elements.

All but the two sentinels have been copied

back into A.

9/18/2023

• Reduction of data movements

• Non-recursive Algorithm

Improvements

Y. Chen, and R. Su, Merge Sort Revisited, ACTA Scientific

Computer Sciences, Vol. 4, No. 5, pp. 49 - 52, 2022.

9/18/2023

• Reduction of data movements

We notice that in the procedure 𝑚𝑒𝑟𝑔𝑒() of Merge sort the

copying of 𝐴[𝑞 + 1 .. 𝑟] into 𝑅 is not necessary, since we can

directly merge 𝐿 and 𝐴[𝑞 + 1 .. 𝑟] and store the merged, but

sorted sequence back into 𝐴.

Improvements

j

6 8 26 32 1 9 42 43 6 8 26 32 1 9 42 43L R

6 8 26 32 1 9 42 43… …A 6 8 26 32 1 9 42 43

p r

not necessary

9/18/2023

j

6 8 26 32

i

j

6 8 26 32L

1 9 42 43… …A

p r

merge

result to be sent to

9/18/2023

j

6 8 26 32

i

j

6 8 26 32L

1 9 42 43… …A

merge

result to be sent to

42 43… …1

42 43… …1 6 9

42 43… …1 6 9 8

42 43… …1 6 9 8

9

After 32 is sent to A,

we have i > n1.

9/18/2023

Why does it work?

• Denote by 𝐴′ the sorted version of 𝐴. Denote
by 𝐴′(𝑖, 𝑗) a prefix of 𝐴′ which contains the
first 𝑖 elements from 𝐿 and first 𝑗 elements
from 𝐴[𝑞 + 1 .. 𝑟].

• Obviously, we can store 𝐴′(𝑖, 𝑗) in 𝐴 itself
since after the 𝑗th element (from 𝐴[𝑞 + 1 .. 𝑟])
has been inserted into 𝐴′, the first 𝑞 - 𝑝 + 𝑗 + 1
entries in 𝐴 are empty and 𝑞 - 𝑝 + 1  i (thus,
𝑞 - 𝑝 + 𝑗 + 1  i + j).

dc - 17

Improvements

Algorithm: 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟 (𝐴, 𝑝, 𝑞, 𝑟)

Input: Both 𝐴[𝑝 .. 𝑞] and 𝐴[𝑞 + 1 .. 𝑟] are sorted; but 𝐴 as a whole is

not sorted

Output : sorted 𝐴
1. 𝑛1 := 𝑞 - 𝑝 + 1; 𝑛2 := 𝑟 – p + 1; k := p;

2. let 𝐿[1 .. 𝑛1] be a new array;

3. for i = 1 to 𝑛1 do

4. 𝐿[𝑖] := 𝐴[𝑝 + 𝑖 - 1]

5. i := p; 𝑗 := 𝑞 + 1;
6. while 𝑖 ≤ 𝑛1 and 𝑗 ≤ 𝑛2 do
7. if 𝐿[𝑖] ≤ 𝐴[𝑗] then {𝐴[𝑘] := 𝐿[𝑖]; 𝑖 := 𝑖 + 1;}

8. else {𝐴[𝑘] := 𝐴[𝑗]; 𝑗 := 𝑗 + 1;}

9. 𝑘 := 𝑘 + 1;

10. if j > 𝑛2 then
11. copy the remaining elements in 𝐿 into 𝐴[𝑘 .. 𝑟];

When going out of while-loop,

we distinguish between two cases:

i > 𝑛1,

j > 𝑛2.

9/18/2023

Non-recursive algorithm
•Merge Sort can be further improved by replacing its recursive calls

with a series of merging operations, by which the recursive execution

of the algorithm is simulated.
•The whole working process can be divided into ⌈log2 n⌉ phases.

•In the first phase, we will make ⌈𝑛/2⌉ merging operations with each

merging two single-element sequences together.

•In the second phase, we will make ⌈ 𝑛/4 ⌉ merging operations with

each merging two two-element sequences together, and so on.

•Finally, we will make only one operation to merge two sorted

subsequences to form a globally sorted sequence. Between the sorted

subsequences, one contains ⌈𝑛/2⌉ elements while the other contains

⌊𝑛/2⌋ elements.

Improvements

9/18/2023

Algorithm: 𝑚𝑆𝑜𝑟𝑡 (𝐴)

Input : 𝐴 - a sequence of elements stored as an array;

Output : sorted 𝐴
1. if |A| ≤ 1 then return A;
2. r := |A|;
3. 𝑙 := log2 𝑟;
4. j : = 2;

5. for i = 1 to 𝑙 do
6. for k = 1 to ⌈𝑟/𝑗⌉) do
7. 𝑠 := ⌊(𝑘 - 1)𝑗 ⌋;

8. 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟(𝐴, 𝑠 + 1, 𝑠 + ⌈𝑗 /2 ⌉, 𝑠 + 𝑗);

9. 𝑗 := 2𝑗 ;

Improvements

9/18/2023

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

2618 6 32 1543 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 326 15 43 1 9

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

6

6

32 6

18 26 32 6

43

43

15

15

43 15

9

9

1

1

9 1

43 15 9 1

18 26 32 6 43 15 9 1

18 26 6 32

6 26 3218

1543 1 9

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence

⌈log2 n⌉ phases

dc - 21

Analysis of Merge Sort

 Running time T(n) of Merge Sort:

 Divide: computing the middle takes (1)

 Conquer: solving 2 subproblems takes 2T(n/2)

 Combine: merging n elements takes (n)

 Total:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) (CLRS, Chapter 4)

9/18/2023

Recurrences – I

dc - 23

Recurrence Relations

 Equation or an inequality that characterizes a
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

⬧ Substitution Method.

⬧ Recursion-tree Method.

⬧ Master Method.

 Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.

⬧ Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) otherwise

dc - 24

Substitution Method

 Guess the form of the solution, then

use mathematical induction to show it correct.

⬧ Substitute guessed answer for the function when the

inductive hypothesis is applied to smaller values.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.

dc - 25

Example – Exact Function

Recurrence: T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1  n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step: T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n

dc - 26

Recursion-tree Method

 Making a good guess is sometimes difficult with

the substitution method.

 Use recursion trees to devise good guesses.

 Recursion Trees

⬧ Show successive expansions of recurrences using

trees.

⬧ Keep track of the time spent on the subproblems of a

divide and conquer algorithm.

⬧ Help organize the algebraic bookkeeping necessary

to solve a recurrence.

dc - 27

Recursion Tree – Example

 Running time of Merge Sort:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 Rewrite the recurrence as

T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.

dc - 28

Recursion Tree for Merge Sort

For the original problem,

we have a cost of cn,

plus two subproblems

each of size (n/2) and

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems

has a cost of cn/2 plus two

subproblems, each costing

T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and

merge.

Cost of sorting

subproblems.

T(n)

dc - 29

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

cn

Total: cnlgn+cn

dc - 30

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

•Each level has total cost cn.

•Each time we go down one level,

the number of subproblems doubles,

but the cost per subproblem halves

 cost per level remains the same.

•There are lg n + 1 levels, height is

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each

level = (lg n + 1)cn = cnlgn + cn =

(n lgn).

dc - 31

Other Examples

 Use the recursion-tree method to determine a

guess for the recurrences

⬧ T(n) = 3T(n/4) + (n2).

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

dc - 32

Recursion Trees – Caution Note

 Recursion trees only generate guesses.

⬧ Verify guesses using substitution method.

 A small amount of “sloppiness” can be

tolerated. Why?

 If careful when drawing out a recursion tree and

summing the costs, it can be used as direct

proof.

dc - 33

The Master Method

 Based on the Master theorem.

 “Cookbook” approach for solving recurrences

of the form

T(n) = aT(n/b) + f(n)

• a  1, b > 1 are constants.

• f(n) is asymptotically positive.

• n/b may not be an integer, but we ignore floors and

ceilings. Why?

 Requires memorization of three cases.

dc - 34

The Master Theorem

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and

let T(n) be defined on nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.

T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If f(n) = (nlogba), then T(n) = (nlogbalg n).

3. If f(n) = (nlogba+) for some constant  > 0,

and if, for some constant c < 1 and all sufficiently large n,

we have a·f(n/b)  c f(n), then T(n) = (f(n)).

We’ll return to recurrences as we need them…

