Divide and Conquer (Merge Sort)

- Divide and conquer
- Merge sort
- Loop-invariant
- Recurrence relations

Divide and Conquer

- Recursive in structure
- Divide the problem into sub-problems that are similar to the original but smaller in size
- Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
- Combine the solutions of the sub-problems to create a global solution to the original problem

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

- Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer: Sort the two subsequences recursively using merge sort.
- Combine: Merge the two sorted subsequences to produce the sorted answer.

Merge Sort - Example

Original Sequence
Sorted Sequence

dc - 5

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A OUTPUT: an ordered sequence of n numbers

```
MergeSort (A,p,r) // sort A[p..r] by divide & conquer
1 if }p<
2 then }q\leftarrow\lfloor(p+r)/2
3 MergeSort (A,p,q)
4 MergeSort (A,q+1,r)
5 Merge (A,p,q,r)// merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort $(A, 1, n)$

Procedure Merge

Input: Array containing sorted subarrays $A[p$.. $q]$ and $A[q+1 . . r]$.

Output: Merged sorted subarray in $A[p . . r]$.

Merge - Example

Correctness of Merge

$\operatorname{Merge}(A, p, q, r)$
$1 n_{1} \leftarrow q-p+1$
$2 n_{2} \leftarrow r-q$
$3 \quad$ for $i \leftarrow 1$ to n_{1}
do $L[i] \leftarrow A[p+i-1]$
for $j \leftarrow 1$ to n_{2}
do $R[j] \leftarrow A[q+j]$
$L\left[n_{1}+1\right] \leftarrow \infty$
$R\left[n_{2}+1\right] \leftarrow \infty$
$i \leftarrow 1$
$j \leftarrow 1$
for $k \leftarrow p$ to r
do if $L[i] \leq R[j]$
then $A[k] \leftarrow L[i]$

$$
i \leftarrow i+1
$$

else $A[k] \leftarrow R[j]$
16

$$
j \leftarrow j+1
$$

Loop Invariant for the for loop

- At the start of each iteration of the for loop: subarray $A[p . . k-1]$ contains the $k-p$ smallest elements of L and R in sorted order.
- $\quad L[i]$ and $R[j]$ are the smallest elements of L and R that have not been copied back into A.

Initialization:

Before the first iteration:

- $A[p . . k-1]$ is empty.
- $\quad i=j=1$.
- $\quad L[1]$ and $R[1]$ are the smallest elements of L and R not copied to A.

Correctness of Merge

$\operatorname{Merge}(A, p, q, r)$	
$1 n_{1} \leftarrow q-p+1$	
$2 n^{\prime}$	$\leftarrow r-q$
	for $i \leftarrow 1$ to n_{1}
4	do $L[i] \leftarrow A[p+i-1]$
	for $j \leftarrow 1$ to n_{2}
6	do $R[j] \leftarrow A[q+j]$
7	$L\left[n_{l}+1\right] \leftarrow \infty$
8	$R\left[n_{2}+1\right] \leftarrow \infty$
9	$i \leftarrow 1$
10	$j \leftarrow 1$
11	for $k \leftarrow p$ to r
12	do if $L[i] \leq R[j]$
13	then $A[k] \leftarrow L[i]$
14	$i \leftarrow i+1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j+1$

Maintenance:

(We will prove that if after the k th iteration, the Loop Invariant (LI) holds, we still have the LI after the $(k+1)$ th iteration.)

Case 1: $L[i] \leq R[j]$

- By Loop Invariant, A contains $k-p$ smallest elements of L and R in sorted order.
-Also, $L[i]$ and $R[j]$ are the smallest elements of L and R not yet copied into A. -Line 13 results in A containing $k-p+1$ smallest elements (again in sorted order). Incrementing i and k reestablishes the LI for the next iteration.
Similarly for Case 2: $L[i]>R[j]$.

Correctness of Merge

Merge (A, p, q, r)	
$1 n_{1} \leftarrow q-p+1$	
	$\leftarrow r-q$
3	for $i \leftarrow 1$ to n_{1}
4	do $L[i] \leftarrow A[p+i-1]$
	for $j \leftarrow 1$ to n_{2}
6	do $R[j] \leftarrow A[q+j]$
7	$L\left[n_{l}+1\right] \leftarrow \infty$
8	$R\left[n_{2}+1\right] \leftarrow \infty$
9	$i \leftarrow 1$
10	$j \leftarrow 1$
11	for $k \leftarrow p$ to r
12	do if $L[i] \leq R[j]$
13	then $A[k] \leftarrow L[i]$
14	$i \leftarrow i+1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j+1$

Maintenance:

Case 1: $L[i] \leq R[j]$
-By Loop Invariant (LI), A contains $k-p$ smallest elements of L and R in sorted order. - By LI, $L[i]$ and $R[j]$ are the smallest elements of L and R not yet copied into A.
-Line 13 results in A containing $k-p+1$ smallest elements (again in sorted order). Incrementing i and k reestablishes the LI for the next iteration.
Similarly for Case 2: $L[i]>R[j]$.

Termination:

- On termination, $k=r+1$.
-By LI, A contains $r-p+1$ smallest elements of L and R in sorted order.
$-L$ and R together contain $r-p+3-(r-p$
$+1)=2$ elements.
All but the two sentinels have been copied back into A.

Improvements

- Reduction of data movements
- Non-recursive Algorithm
Y. Chen, and R. Su, Merge Sort Revisited, ACTA Scientific Computer Sciences, Vol. 4, No. 5, pp. 49 - 52, 2022.

Improvements

- Reduction of data movements

We notice that in the procedure merge() of Merge sort the copying of $A[q+1$.. $r]$ into R is not necessary, since we can directly merge L and $A[q+1$.. $r]$ and store the merged, but sorted sequence back into A.

Why does it work?

- Denote by A^{\prime} the sorted version of A. Denote by $A^{\prime}(i, j)$ a prefix of A^{\prime} which contains the first i elements from L and first j elements from $A[q+1$.. $r]$.
- Obviously, we can store $A^{\prime}(i, j)$ in A itself since after the j th element (from $A[q+1 . . r]$) has been inserted into A^{\prime}, the first $q-p+j+1$ entries in A are empty and $q-p+1 \geq i$ (thus, $q-p+j+1 \geq i+j)$.

Improvements

Algorithm: mergeImpr (A, p, q, r)
Input: Both $A[p . . q]$ and $A[q+1 . . r]$ are sorted; but A as a whole is not sorted
Output : sorted A
1.
$n_{1}:=q-p+1 ; n_{2}:=r-p+1 ; k:=p ;$
2. let $L\left[1 . . n_{1}\right]$ be a new array;
3. \quad for $i=1$ to n_{1} do
4.
5.

$$
L[i]:=A[p+i-1]
$$

When going out of while-loop,
we distinguish between two cases:

$$
i:=p ; j:=q+1 \text {; }
$$

$i>n_{1}$,
$j>n_{2}$.
6. while $i \leq n_{1}$ and $j \leq n_{2}$ do
7.
8.
if $L[i] \leq A[j]$ then $\{A[k]:=L[i] ; i:=i+1 ;\}$
else $\{A[k]:=A[j] ; j:=j+1 ;\}$
$k:=k+1 ;$
10.
if $j>n_{2}$ then
11. copy the remaining elements in L into $A[k . . r]$;

Improvements

Non-recursive algorithm

-Merge Sort can be further improved by replacing its recursive calls with a series of merging operations, by which the recursive execution of the algorithm is simulated.
-The whole working process can be divided into $\left\lceil\log _{2} n\right\rceil$ phases.
-In the first phase, we will make $\lceil n / 2\rceil$ merging operations with each merging two single-element sequences together.
-In the second phase, we will make 〔 $n / 4\rceil$ merging operations with each merging two two-element sequences together, and so on. -Finally, we will make only one operation to merge two sorted subsequences to form a globally sorted sequence. Between the sorted subsequences, one contains $\lceil n / 2\rceil$ elements while the other contains [$n / 2$] elements.

Improvements

Algorithm: mSort (A)
Input : A - a sequence of elements stored as an array;
Output : sorted A

1. if $|A| \leq 1$ then return A;
2. $r:=|A|$;
3. $l:=\left\lceil\log _{2} r\right\rceil$;
4. $j:=2$;
5. for $i=1$ to l do
6. \quad for $k=1$ to $\lceil r / j\rceil$) do
7.

$$
s:=\lfloor(k-1) j\rfloor ;
$$

8. mergeImpr $(A, s+1, s+\lceil j / 2\rceil, s+j) ;$
9. $\quad j:=2 j$;

Original Sequence
Sorted Sequence

Analysis of Merge Sort

- Running time $\boldsymbol{T}(\boldsymbol{n})$ of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 subproblems takes $2 T(n / 2)$
- Combine: merging n elements takes $\Theta(n)$
- Total:

$$
\begin{array}{rlrl}
T(n) & =\Theta(1) & \text { if } n=1 \\
T(n) & =2 T(n / 2)+\Theta(n) & \text { if } n>1 \\
\Rightarrow T(n) & =\Theta(n \lg n)(\text { CLRS, Chapter } 4)
\end{array}
$$

Recurrences - I

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Solution Methods (Chapter 4)
- Substitution Method.
- Recursion-tree Method.
- Master Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
- Ex: Divide and Conquer.

$$
\begin{aligned}
& T(n)=\Theta(1) \\
& T(n)=a T(n / b)+D(n)
\end{aligned}
$$

if $n \leq c$
otherwise

Substitution Method

- Guess the form of the solution, then use mathematical induction to show it correct.
- Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example - Exact Function

Recurrence: $T(n)=1$

$$
\text { if } n=1
$$

$$
T(n)=2 T(n / 2)+n \quad \text { if } \quad n>1
$$

- Guess: $T(n)=n \lg n+n$.
${ }^{-}$Induction:
-Basis: $n=1 \Rightarrow n \lg n+n=1=T(n)$.
-Hypothesis: $T(k)=k \lg k+k$ for all $k<n$.
\cdot Inductive Step: $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2((n / 2) \lg (n / 2)+(n / 2))+n \\
& =n(\lg (n / 2))+2 n \\
& =n \lg n-n+2 n \\
& =n \lg n+n
\end{aligned}
$$

Recursion-tree Method

- Making a good guess is sometimes difficult with the substitution method.
- Use recursion trees to devise good guesses.
- Recursion Trees
- Show successive expansions of recurrences using trees.
- Keep track of the time spent on the subproblems of a divide and conquer algorithm.
- Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion Tree - Example

- Running time of Merge Sort:

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}
$$

- Rewrite the recurrence as

$$
\begin{array}{ll}
T(n)=\boldsymbol{c} & \text { if } n=1 \\
T(n)=2 T(n / 2)+\boldsymbol{c n} & \text { if } n>1
\end{array}
$$

$\boldsymbol{c}>\mathbf{0}$: Running time for the base case and
time per array element for the divide and combine steps.

Recursion Tree for Merge Sort

For the original problem, we have a cost of $c n$, plus two subproblems each of size ($n / 2$) and running time $T(n / 2)$.

Each of the size $n / 2$ problems has a cost of $c n / 2$ plus two subproblems, each costing $T(n / 4)$.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

-Each level has total cost $c n$.
-Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves \Rightarrow cost per level remains the same. -There are $\lg n+1$ levels, height is $\lg n$. (Assuming n is a power of 2.) - Can be proved by induction.
-Total cost $=$ sum of costs at each level $=(\lg n+1) c n=c n \lg n+c n=$ $\Theta(n \lg n)$.

Other Examples

- Use the recursion-tree method to determine a guess for the recurrences
- $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$.
- $T(n)=T(n / 3)+T(2 n / 3)+O(n)$.

Recursion Trees - Caution Note

- Recursion trees only generate guesses.
- Verify guesses using substitution method.
* A small amount of "sloppiness" can be tolerated. Why?
- If careful when drawing out a recursion tree and summing the costs, it can be used as direct proof.

The Master Method

- Based on the Master theorem.
*"Cookbook" approach for solving recurrences of the form

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \cdot a \geq 1, b>1 \text { are constants. }
\end{aligned}
$$

- $f(n)$ is asymptotically positive.
- n / b may not be an integer, but we ignore floors and ceilings. Why?
- Requires memorization of three cases.

The Master Theorem

Theorem 4.1

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on nonnegative integers by the recurrence $T(n)=a T(n / b)+f(n)$, where we can replace n / b by $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. $T(n)$ can be bounded asymptotically in three cases:

1. If $f(n)=O\left(n^{\log _{2} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{0} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{\Delta} a}\right)$, then $T(n)=\Theta\left(n^{\log _{g} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if, for some constant $c<1$ and all sufficiently large n, we have $a \cdot f(n / b) \leq c f(n)$, then $T(n)=\Theta(f(n))$.

We'll return to recurrences as we need them...

