Divide and Conquer
(Merge Sort)

 Divide and conquer
« Merge sort
 Loop-invariant
 Recurrence relations

9/18/2023

Divide and Conquer

¢ Recursive In structure

¢+ Divide the problem into sub-problems that are
similar to the original but smaller In size

¢+ Conquer the sub-problems by solving them
recursively. If they are small enough, just solve
them in a straightforward manner.

¢+ Combine the solutions of the sub-problems to
create a global solution to the original problem

dc-2

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into
non-decreasing order.

¢ Divide: Divide the n-element sequence to be
sorted into two subsequences of n/2 elements each

¢ Conguer: Sort the two subsequences recursively
using merge sort.

¢+ Combine: Merge the two sorted subsequences to
produce the sorted answer.

Merge Sort — Example

Original Sequence

Sorted Sequence

18|26 (32| 6[43]15] 9] 1] | 1

6

9

15 | 18

26

32

43

N

i

18]26]32] 6[{43]15] 9] 1] [6 32| | 1 43
/\ /\
|18[26}132| 6 \43 15 |

v

/

/Qz

1;[\

a

43 15

{\ /\

32

6

43

15

9

1

18

26

32| 6

4I3_‘ 15

9 1

dc-5

dc -

6

Merge-Sort (A, p, I

INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 ifp<r

2 thenq <« L(pt+r)/2]

MergeSort (A, p, Q)

MergeSort (A, g+1, 1)

Merge (A, p, g, r) // merges A[p..q] with A[g+1..r]

o1 b W

Initial Call: MergeSort(A, 1, n)

Procedure Merge

Merge(A, p, q, I

1 N 1 - o=

2 22 i ?_g " Input: Array containing

3 forie1lton, sorted subarrays A[p .. q]
do L[i] « A[p +i—1] and A[g+1 .. r].

5 forj«1ton,

6 do R[j] « Al[q +j]
7 L[n;+1] < o0
8
9

R[N,+1] < o
i« 1 \

Output: Merged sorted
subarray in Afp .. r].

10 j«1 \

11 fork<ptor Sentinels, to avoid having to
12 do if L[i] < R[] — check if either subarray is

13 then A[K] <« L[i] fully copied at each step.

14 i—i+1

15 else A[k] « R[j]

16 jJ<—J+1

dc-7

Merge — Example

P I
A 11618 9(26]|32|42(43
K — Kk
at the very beginning / I merge \at the termination

L|6|8]26]32]| o| R|1]9[42]|43]| ©

dc-8

dc -

Correctness of Merge

Merge(A, p, q, I)

1 n<«<qg-p+1

2 N,«<r—q

3 fori<1ton,

4 do L[i] < A[p +i1-1]
5 forj«1ton,

6 do R[j] « Al[q +j]
7 L[n,+1] «— o

8 R[N,+1] < o

9 <1

10 j<«1

11 fork<«ptor
12 do if L[i] < R[j]

13 then A[K] « L[i]
14 l«—i+1
15 else A[k] < RJj]

16 jJ<—J+1

Loop Invariant for the for loop
« At the start of each iteration of the
for loop:
subarray A[p . . k—1]
contains the k — p smallest elements
of L and R in sorted order.
* L[i] and R[j] are the smallest elements of
L and R that have not been copied back into
A.

Initialization:

Before the first iteration:

« Alp..k—1]is empty.

e i=j=1.

e L[1] and R[1] are the smallest
elements of L and R not copied to A.

dc -

Correctness of Merge

Merge(A, p, q,)

1 n<«<qg-p+1

2 N,«<r—q

3 fori<1ton,

4 do L[i] < A[p +i1-1]
5 forj«1ton,

6 do R[j] « Al[q +j]
7 L[n;+1] < o0

8 R[N,+1] < o

9 <1

10 j<«1

11 fork<«ptor

12 do if L[i] < R[j]

13 then A[K] « L[i]
14 l«—i+1
15 else A[k] < RJj]
16 jJ<—J+1

Maintenance:

(We will prove that if after the kth
Iteration, the Loop Invariant (L1) holds,
we still have the LI after the (k+1)th
Iteration.)

Case 1: L[i] < R[j]

*By Loop Invariant, A contains k — p
smallest elements of L and R in sorted order.
*Also, L[i] and R[j] are the smallest
elements of L and R not yet copied into A.
Line 13 results in A containingk—p + 1
smallest elements (again in sorted order).
Incrementing 1 and k reestablishes the LI
for the next iteration.

Similarly for Case 2: L[i] > R]j].

dc -

Correctness of Merge

Merge(A, p, q,)

1 n<«<q-p+1

2 N,<r—g

3 fori«1lton

4 do LJi] « Af[p +1-1]
5 forj < 1ton,

6 do R[j] « Al[q +]]
7 L[n,+1] - o

8 R[N,+1] < o

9 <1

10 j<«1

11 fork<«ptor

12 do if L[1] < RJj]

13 then A[K] < L[i]
14 l«<—i1+1
15 else A[K] < RJ[j]
16 j<—j+1

Maintenance:

Case 17 L[i] £ R[j]

*By Loop Invariant (LI), A containsk—p
smallest elements of L and R in sorted order.
By LI, L[i] and R[j] are the smallest
elements of L and R not yet copied into A.
Line 13 results in A containingk —p + 1
smallest elements (again in sorted order).
Incrementing i and k reestablishes the LI
for the next iteration.

Similarly for Case 2: L[i] > R[j].

Termination:

*On termination, k =r + 1.

By LI, A contains r — p + 1 smallest
elements of L and R in sorted order.

L and R together containr—p+3—(r—p

+ 1) = 2 elements.

All but the two sentinels have been copied
back into A.

Improvements

 Reduction of data movements

* Non-recursive Algorithm

Y. Chen, and R. Su, Merge Sort Revisited, ACTA Scientific
Computer Sciences, Vol. 4, No. 5, pp. 49 - 52, 2022.

9/18/2023

A

9/18/2023

Improvements

Reduction of data movements

We notice that in the procedure merge() of Merge sort the
copying of A[g + 1 .. r] into R Is not necessary, since we can

directly merge L and A[g + 1 .. r] and store the merged, but
sorted sequence back into A.

L[6|8[26[32]| o R|1|9|42]|43]| ©

N & —— not necessary

A= A=
: hd I

6826|3219 |42|43

P I

9/18/2023

TN

result to be sent t/

merge

J—>

9

42

43

L6826 After 32 is sent to A,

. we have 1 > n,.
| — \

merge

result to be sent t/ j—

9/18/2023

Why does it work?

 Denote by A" the sorted version of A. Denote
by A'(i, j) a prefix of A" which contains the
first i elements from L and first j elements
fromA[g+1.r].

» Obviously, we can store A'(i, j) in A itself
since after the jth element (from A[g + 1 .. 7])
has been inserted into A', the firstqg-p +j +1
entries in A are empty and qg-p+1=>i(thus,

q-ptjtlzi+))

9/18/2023

Improvements

Algorithm: mergelmpr (A, p, q,)

Input: Both A[p .. q] and A[gq + 1 .. r] are sorted; but A as a whole is
not sorted

Output : sorted A

1. n,=q-p+1ln,=r-p+1,k:=p;

let L[1 .. n,] be a new array; When going out of while-loop,

2
3 fori=1ton,co we distinguish between two cases:
4, Lli] =Alp+i-1] i >n,,

5. | :=p;j:=q+1, ji>n,

6. whilei < n;andj < n, do

7 if L[i] < A[j] then {A[k] :=L[i];i:=i+1;}

8. else {A[k] .= A[jl;j:=j +1;}

9. k:=k+1,

10. if | > n, then
11. copy the remaining elements in L into Alk .. r];

Improvements

Non-recursive algorithm
*Merge Sort can be further improved by replacing its recursive calls
with a series of merging operations, by which the recursive execution

of the algorithm is simulated.
The whole working process can be divided into [log, 7] phases.

*In the first phase, we will make [n/2] merging operations with each
merging two single-element sequences together.

*In the second phase, we will make [n/4] merging operations with
each merging two two-element sequences together, and so on.
Finally, we will make only one operation to merge two sorted
subsequences to form a globally sorted sequence. Between the sorted
subseguences, one contains [n/2] elements while the other contains
In/2]| elements.

9/18/2023

Improvements

Algorithm: mSort (4)

Input : A - a sequence of elements stored as an array;
Output : sorted A

1.if Al <1 then return A;

2.r=1Al;
3.1:=[log, rl;
4.]:.=2;

5.fori=1tol do

fork=1to [r/j]) do
s = [(k-1)j I;
mergelmpr(A,s +1,s+ [j/2],s+j);
J =2,

© ® o

9/18/2023

Original Sequence

Sorted Sequence

18|26 (32| 6[43]15] 9] 1] | 1

6

9

15 | 18

26

32

43

N

i

18]26]32] 6[{43]15] 9] 1] [6 32| | 1 43
/\ /\
|18[26}132| 6 \43 15 |

v

/

/Qz

1;[\

a

43 15

ﬁ\ /\

32

6

43

15

9

1

18

26

32

4‘3_‘ 15

9 1

9/18/2023

| log, n| phases

Analysis of Merge Sort

¢ Running time T(n) of Merge Sort:

¢ Divide: computing the middle takes ®(1)

+ Conquer: solving 2 subproblems takes 2T(n/2)
+ Combine: merging n elements takes ©(n)

¢ Total:
T(n) = 6(1) ifn=1
T(n) = 2T(n/2) + G(N) ifn>1

= T(n) = O®(nlgn) (CLRS, Chapter 4)

dc-21

Recurrences — | \

9/18/2023

Recurrence Relations

+ Equation or an Inequality that characterizes a
function by its values on smaller inputs.
¢ Solution Methods (Chapter 4)
¢+ Substitution Method.
¢+ Recursion-tree Method.
¢+ Master Method.
+ Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.
¢+ EX: Divide and Conqguer.
T(n) =6(1) ifn<c
T(n) = a T(n/b) + D(n) otherwise

dc - 23

Substitution Method

¢ Guess the form of the solution, then
use mathematical induction to show It correct.

¢+ Substitute guessed answer for the function when the
Inductive hypothesis is applied to smaller values.

+ \Works well when the solution Is easy to guess.

+ No general way to guess the correct solution.

dc - 24

Example — Exact Function

Recurrence: T(n) =1 If n=1
T(n) =2T(n/2) + n if n>1
*Guess: T(nN)=nlgn+n.
+Induction:
‘Basis:n=1=nlgn+n=1=T(n).
*Hypothesis: T(k) =k Ig k + k for all k < n.
*Inductive Step: T(n) =2 T(n/2) + n
=2 ((n/2)lg(n/2) + (n/2)) + n
=n (Ig(n/2)) + 2n
=nlgn—-n+2n
=nlgn+n

dc - 25

Recursion-tree Method

+ Making a good guess 1s sometimes difficult with
the substitution method.

¢ Use recursion trees to devise good guesses.

¢ Recursion Trees

¢+ Show successive expansions of recurrences using
trees.

+ Keep track of the time spent on the subproblems of a
divide and conquer algorithm.

¢+ Help organize the algebraic bookkeeping necessary
to solve a recurrence.

dc - 26

Recursion Tree — Example

¢ Running time of Merge Sort:
T(n) = 6(1) ifn=1
T(n) =2T(n/2) + ®(n) 1fn>1
+ Rewrite the recurrence as
T(n)=c ifn=1
T(n) =2T(n/2) + cn ifn>1
¢ > 0: Running time for the base case and
time per array element for the divide and
combine steps.

dc - 27

Recursion Tree for Merge Sort

For the original problem, Each of the size n/2 problems
we have a cost of cn, has a cost of cn/2 plus two
plus two subproblems subproblems, each costing
each of size (n/2) and T(n/4).

running time T(n/2).

¢ Cost of divide and // \

merge

) —

cn/2 cn/2
T(n/2) T(n/2) / \ / \
— T(n/4) T(n/4) T(n/4) T(n/4)

Cost of sorting
subproblems.

dc - 28

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

(04 1 cn
Cn/2 Cn/2 .. ~ ch
o / \ / \
7< 7<Cn/4 7/4\ ... ~ cn
c oo e S . on

Total: cnlgn+cn
dc - 29

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

2 *Each level has total cost cn.
\ «Each time we go down one level,
the number of subproblems doubles,
but the cost per subproblem halves

cn/2 cn/2 .
—> cost per level remains the same.
/\ /\ *There are Ig n + 1 levels, height is

Ilg n. (Assuming n Is a power of 2.)

cn/4 cn/4 cn/4 cnl/4 «Can be proved by induction.

/ \ / \ / \ / \ Total cost = sum of costs at each
level = (Ign + 1)cn =cnlgn + cn =

A 1+ O(nlgn).

C C C CC C

dc - 30

Other Examples

+ Use the recursion-tree method to determine a
guess for the recurrences

¢ T(n) = 3T(Ln/4)) + O(n?).
¢ T(n) =T(n/3) + T(2n/3) + O(n).

dc - 31

Recursion Trees — Caution Note

* Recursion trees only generate guesses.
¢+ Verify guesses using substitution method.

+ A small amount of “sloppiness” can be
tolerated. \Why?

¢ |f careful when drawing out a recursion tree and
summing the costs, it can be used as direct
proof.

dc - 32

The Master Method

+ Based on the Master theorem.

* “Cookbook™ approach for solving recurrences
of the form
T(n) = aT(n/b) + f(n)
e a>1,b>1are constants.
« f(n) Is asymptotically positive.
 n/b may not be an integer, but we ignore floors and
ceilings. Why?

+ Requires memorization of three cases.

dc - 33

The Master Theorem

Theorem 4.1
Leta>1andb > 1 be constants, let f(n) be a function, and
let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by [n/b] or [n/b]
T(n) can be bounded asymptotically in three cases:
1. If f(n) =O(n'%=<) for some constant € >0, then T(n) = @(n'°%?2),
If f(n) = ®(n'%2), then T(n) = A(n'°%2lg n).
3. If f(n)=Q(n'"%2*¢) for some constant ¢ > 0,
and if, for some constant ¢ < 1 and all sufficiently large n,

we have a-f(n/b) < c f(n), then T(n) = O(f(n)).

N

We’ll return to recurrences as we need them...

dc - 34

