
9/20/2023

Recursive Equation

• Recurrence relations

• How to solve a recursive equation



dc - 2

Analysis of Merge Sort

 Running time T(n) of Merge Sort:

 Divide: computing the middle takes (1)

 Conquer: solving 2 subproblems takes 2T(n/2)

 Combine: merging n elements takes (n)

 Total:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) (CLRS, Chapter 4)



dc - 3

Recurrence Relations

 Equation or an inequality that characterizes a 
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

⬧ Substitution Method.

⬧ Recursion-tree Method.

⬧ Master Theorem Method.

 Recurrence relations arise when we analyze the 
running time of iterative or recursive algorithms.

⬧ Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) otherwise



dc - 4

Substitution Method

 Guess the form of the solution, then 

use mathematical induction to show it correct.

⬧ Substitute guessed answer for the function when the 

inductive hypothesis is applied to smaller values.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.



dc - 5

Example – Exact Function

Recurrence:  T(n) = 1                         if   n = 1

T(n) = 2T(n/2) + n   if   n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1  n lg n + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step:

T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n



dc - 6

Recursion-tree Method

 Making a good guess is sometimes difficult with 

the substitution method.

 Use recursion trees to devise good guesses.

 Recursion Trees

⬧ Show successive expansions of recurrences using 

trees.

⬧ Keep track of the time spent on the subproblems of a 

divide and conquer algorithm.

⬧ Help organize the algebraic bookkeeping necessary 

to solve a recurrence.



dc - 7

Recursion Tree – Example 

 Running time of Merge Sort:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 Rewrite the recurrence as

T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.



dc - 8

Recursion Tree for Merge Sort

For the original problem, 

we have a cost of cn, 

plus two subproblems 

each of size (n/2) and 

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems 

has a cost of cn/2 plus two 

subproblems, each costing 

T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide 

and merge. 

Cost of sorting 

subproblems.

T(n)



dc - 9

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n + 1

cn

cn

cn

cn

Total: cnlg n+cn



dc - 10

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

•Each level has total cost cn.

•Each time we go down one level, 

the number of subproblems doubles, 

but the cost per subproblem halves  

 cost per level remains the same.

•There are lg n + 1 levels, height is 

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each 

level = (lg n + 1)cn = cnlgn + cn = 

(n lgn).



dc - 11

Other Examples

 Use the recursion-tree method to determine a 

guess for the recurrences

⬧ T(n) = 3T(n/4) + (n2).

⬧ T(n) = T(n/3) + T(2n/3) + O(n).



dc - 12

Other Examples

⬧ T(n) = 3T(n/4) + (n2).

n2

T(n/4) T(n/4)

T(n)

T(n/4)

n2

(n/4)2 (n/4)2(n/4)2

T(n/42) T(n/42)T(n/42)

… …



dc - 13

Other Examples

⬧ T(n) = 3T(n/4) + (n2).
n2

(n/4)2 (n/4)2(n/4)2

(n/42)2 (n/42)2(n/42)2

… …

T(n/43) T(n/43)T(n/43)

… …

… …

log4 n



dc - 14

Other Examples



dc - 15

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

n

T(n/3) T(2n/3)

T(n)

n

n/3 2n/3

T(n/32)T(2n/32) T(2n/32) T(22n/32)



dc - 16

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

n

n/3 2n/3

n/32 2n/32 2n/32 22n/32

n/33 2n/33 2n/33 22n/33

… …

2n/33 22n/33 22n/33 23n/33

n

n

n

n

log3 n

n log3 n



dc - 17

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n)

T(n) = T(n/3) + T(2n/3) + n

T(n) = (T(n/32)+ T(2n/32) + n/3) + (T(2n/32) +T(22n/32)  + 2n/3) + n

= T(n/9) + 2T(2n/9) + T(4n/9) + 2

= (T(n/27) + T(2n/27)  + n/9) +2(T(2n/27) + T(4n/27)+ 2n/9) + 

(T(4n/27) +T(8n/27) + 4n/9) + 2n

= T(n/27) + 3T(2n/27) + 3T(4n/27) + T(8n/27) + 3n

= … … + n/27 + 3(2n/27) + 3(4n/27) + 8n/27 + 3n

= n log3 n 



dc - 18

Recursion Trees – Caution Note

 Recursion trees only generate guesses.

⬧ Verify guesses using substitution method.

 A small amount of “sloppiness” can be 

tolerated. Why?

 If careful when drawing out a recursion tree and 

summing the costs, it can be used as direct 

proof.



dc - 19

The Master Method

 Based on the Master theorem.

 “Cookbook” approach for solving recurrences 

of the form

T(n) = aT(n/b) + f(n)

• a  1, b > 1 are constants.

• f(n) is asymptotically positive.

• n/b may not be an integer, but we ignore floors and 

ceilings. Why?

 Requires memorization of three cases.



dc - 20

The Master Theorem

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and 

let T(n) be defined on nonnegative integers by the recurrence 

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b. 

T(n) can be bounded asymptotically in three cases:

1. If  f(n) = O(nlogba–) for some constant  > 0, then T(n) = (nlogba).

2. If  f(n) = (nlogba), then T(n) = (nlogbalg n).

3. If  f(n) = (nlogba+) for some constant  > 0, 

and if, for some constant c < 1 and all sufficiently large n, 

we have a·f(n/b)  c f(n), then T(n) = (f(n)).

We’ll return to recurrences as we need them…



dc - 21

The Master Method

T(n) = aT(n/b) + f(n)

= a(T(n/b2) + f(n/b)) + f(n)

= a(a(T(n/b3) + f(n/b2)) + f(n/b)) + f(n)

… …

 clogbaf(n) + clogba-1f(n) + …+ c2f(n) + cf(n) + f(n)

= f(n) (clogba + clogba-1… + c)

= (f(n)) 

a·f(n/b)  c f(n)   (c < 1),

amf(n/bm+1)  cam-1f(n/bm)  …  cm+1f(n).


