Recursive Equation

- Recurrence relations
- How to solve a recursive equation

Analysis of Merge Sort

- Running time $\boldsymbol{T}(\boldsymbol{n})$ of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 subproblems takes $2 T(n / 2)$
- Combine: merging n elements takes $\Theta(n)$
- Total:

$$
\begin{array}{rlrl}
T(n) & =\Theta(1) & \text { if } n=1 \\
T(n) & =2 T(n / 2)+\Theta(n) & \text { if } n>1 \\
\Rightarrow T(n) & =\Theta(n \lg n)(\text { CLRS, Chapter } 4)
\end{array}
$$

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Solution Methods (Chapter 4)
- Substitution Method.
- Recursion-tree Method.
- Master Theorem Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
- Ex: Divide and Conquer.

$$
\begin{aligned}
& T(n)=\Theta(1) \\
& T(n)=a T(n / b)+D(n)
\end{aligned}
$$

if $n \leq c$
otherwise

Substitution Method

- Guess the form of the solution, then use mathematical induction to show it correct.
- Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example - Exact Function

Recurrence: $T(n)=1$

$$
\text { if } n=1
$$

$$
T(n)=2 T(n / 2)+n \quad \text { if } \quad n>1
$$

- Guess: $T(n)=n \lg n+n$.
${ }^{-}$Induction:
-Basis: $n=1 \Rightarrow n \lg n+n=1=T(n)$.
-Hypothesis: $T(k)=k \lg k+k$ for all $k<n$.
-Inductive Step:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+n \\
= & 2((n / 2) \lg (n / 2)+(n / 2))+n \\
= & n(\lg (n / 2))+2 n \\
= & n \lg n-n+2 n \\
= & n \lg n+n
\end{aligned}
$$

Recursion-tree Method

- Making a good guess is sometimes difficult with the substitution method.
- Use recursion trees to devise good guesses.
- Recursion Trees
- Show successive expansions of recurrences using trees.
- Keep track of the time spent on the subproblems of a divide and conquer algorithm.
- Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion Tree - Example

- Running time of Merge Sort:

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}
$$

- Rewrite the recurrence as

$$
\begin{array}{ll}
T(n)=\boldsymbol{c} & \text { if } n=1 \\
T(n)=2 T(n / 2)+\boldsymbol{c n} & \text { if } n>1
\end{array}
$$

$\boldsymbol{c}>\mathbf{0}$: Running time for the base case and
time per array element for the divide and combine steps.

Recursion Tree for Merge Sort

For the original problem, we have a cost of $c n$, plus two subproblems each of size ($n / 2$) and running time $T(n / 2)$.

Each of the size $n / 2$ problems has a cost of $c n / 2$ plus two subproblems, each costing $T(n / 4)$.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

-Each level has total cost $c n$.
-Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves \Rightarrow cost per level remains the same. -There are $\lg n+1$ levels, height is $\lg n$. (Assuming n is a power of 2.) - Can be proved by induction.
-Total cost $=$ sum of costs at each level $=(\lg n+1) c n=c n \lg n+c n=$ $\Theta(n \lg n)$.

Other Examples

- Use the recursion-tree method to determine a guess for the recurrences
- $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$.
- $T(n)=T(n / 3)+T(2 n / 3)+O(n)$.

Other Examples

- $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$.

Other Examples

$$
T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)
$$

Other Examples

- $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$. $T(n)=3 T(n / 4)+n^{2}$
$=n^{2}+\frac{3^{1}}{4^{2 \times 1}} n^{2}+3 T\left(n / 4^{2}\right)$
$=n^{2}+\frac{3^{1}}{4^{2 \times 1}} n^{2}+\frac{3^{2}}{4^{2 \times 2}} n^{2}+\ldots+\frac{3^{i}}{4^{2 \times i}} n^{2}+\ldots+\frac{3^{\log _{4} n}}{4^{2 \times \log _{4} n}} n^{2}$
$=\left(\frac{n}{4}\right)^{2}\left(1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}++\ldots+\left(\frac{3}{4}\right)^{\log _{4} n}\right)$
$=\left(\frac{n}{4}\right)^{2} \frac{\left(1-\frac{3}{4} \log _{4} n\right.}{1-\frac{3}{4}}=\Theta\left(n^{2}\right)$.

Other Examples

- $T(n)=T(n / 3)+T(2 n / 3)+O(n)$.

Other Examples

Other Examples

- $T(n)=T(n / 3)+T(2 n / 3)+O(n)$

$$
\begin{aligned}
T(n)= & T(n / 3)+T(2 n / 3)+n \\
T(n)= & \left(T\left(n / 3^{2}\right)+T\left(2 n / 3^{2}\right)+n / 3\right)+\left(T\left(2 n / 3^{2}\right)+T\left(2^{2} n / 3^{2}\right)+2 n / 3\right)+n \\
= & T(n / 9)+2 T(2 n / 9)+T(4 n / 9)+2 \\
= & (T(n / 27)+T(2 n / 27)+n / 9)+2(T(2 n / 27)+T(4 n / 27)+2 n / 9)+ \\
& (T(4 n / 27)+T(8 n / 27)+4 n / 9)+2 n \\
= & T(n / 27)+3 T(2 n / 27)+3 T(4 n / 27)+T(8 n / 27)+3 n \\
= & \ldots \ldots+n / 27+3(2 n / 27)+3(4 n / 27)+8 n / 27+3 n \\
= & n \log _{3} n
\end{aligned}
$$

Recursion Trees - Caution Note

- Recursion trees only generate guesses.
- Verify guesses using substitution method.
- A small amount of "sloppiness" can be tolerated. Why?
- If careful when drawing out a recursion tree and summing the costs, it can be used as direct proof.

The Master Method

- Based on the Master theorem.
*"Cookbook" approach for solving recurrences of the form

$$
\begin{aligned}
& T(n)=a T(n / b)+f(n) \\
& \cdot a \geq 1, b>1 \text { are constants. }
\end{aligned}
$$

- $f(n)$ is asymptotically positive.
- n / b may not be an integer, but we ignore floors and ceilings. Why?
- Requires memorization of three cases.

The Master Theorem

Theorem 4.1

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on nonnegative integers by the recurrence $T(n)=a T(n / b)+f(n)$, where we can replace n / b by $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. $T(n)$ can be bounded asymptotically in three cases:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if, for some constant $c<1$ and all sufficiently large n, we have $a \cdot f(n / b) \leq c f(n)$, then $T(n)=\Theta(f(n))$.

We'll return to recurrences as we need them...

The Master Method

$$
\begin{aligned}
T(n) & =a T(n / b)+f(n) \\
& =a\left(T\left(n / b^{2}\right)+f(n / b)\right)+f(n) \\
& =a\left(a\left(T\left(n / b^{3}\right)+f\left(n / b^{2}\right)\right)+f(n / b)\right)+f(n)
\end{aligned}
$$

$=f(n)\left(c^{\log _{b} a}+c^{\log _{b} a-1} \ldots+c\right)$
$=\Theta(f(n))$
$a \cdot f(n / b) \leq c f(n) \quad(c<1)$,
$a^{m} f\left(n / b^{m+1}\right) \leq c a^{m-1} f\left(n / b^{m}\right) \leq \ldots \leq c^{m+1} f(n)$.

