Recursive Equation

 Recurrence relations
* How to solve a recursive equation

9/20/2023

dc -

2

Analysis of Merge Sort

¢ Running time T(n) of Merge Sort:

¢ Divide: computing the middle takes ®(1)

+ Conquer: solving 2 subproblems takes 2T(n/2)
+ Combine: merging n elements takes ©(n)

¢ Total:
T(n) = 6(1) ifn=1
T(n) = 2T(n/2) + G(N) ifn>1

= T(n) = O®(nlgn) (CLRS, Chapter 4)

Recurrence Relations

+ Equation or an Inequality that characterizes a
function by its values on smaller inputs.
¢ Solution Methods (Chapter 4)
¢+ Substitution Method.
¢+ Recursion-tree Method.
¢+ Master Theorem Method.
+ Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.
¢+ EX: Divide and Conqguer.
T(n) =6(1) ifn<c
T(n) = a T(n/b) + D(n) otherwise

dc-3

Substitution Method

¢ Guess the form of the solution, then
use mathematical induction to show It correct.

¢+ Substitute guessed answer for the function when the
Inductive hypothesis is applied to smaller values.

+ \Works well when the solution Is easy to guess.

+ No general way to guess the correct solution.

dc-4

Example — Exact Function

Recurrence: T(n) =1 If n=1
T(n) =2T(n/2) + n if n>1
*Guess: T(nN)=nlgn+n.
¢|nduction:
‘Basis:in=1=nlgn+n=1=T(n).
*Hypothesis: T(k) =k Ig k + k for all k < n.
*Inductive Step:
T(n)=2T(n/2) +n
=2 ((n/2)lg(n/2) + (n/2)) + n
=n (Ig(n/2)) + 2n
=nlgn—-n+2n
=nlgn+n

dc-5

Recursion-tree Method

+ Making a good guess 1s sometimes difficult with
the substitution method.

¢ Use recursion trees to devise good guesses.

¢ Recursion Trees

¢+ Show successive expansions of recurrences using
trees.

+ Keep track of the time spent on the subproblems of a
divide and conquer algorithm.

¢+ Help organize the algebraic bookkeeping necessary
to solve a recurrence.

dc-6

Recursion Tree — Example

¢ Running time of Merge Sort:
T(n) = 6(1) ifn=1
T(n) =2T(n/2) + ®(n) 1fn>1
+ Rewrite the recurrence as
T(n)=c ifn=1
T(n) =2T(n/2) + cn ifn>1
¢ > 0: Running time for the base case and
time per array element for the divide and
combine steps.

dc-7

dc -

Recursion Tree for Merge Sort

For the original problem, Each of the size n/2 problems
we have a cost of cn, has a cost of cn/2 plus two
plus two subproblems subproblems, each costing
each of size (n/2) and T(n/4).

running time T(n/2).

cn // \
Cost of divide

and merge

) —

cn/2 cn/2
T(n/2) T(n/2) / \ / \
— T(n/4) T(n/4) T(n/4) T(n/4)

Cost of sorting
subproblems.

8

dc -

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

9

7/{ cn/4 cn/4] — > cn
c c ¢ E b O em— .

Total: cnlg n+cn

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

2 *Each level has total cost cn.
\ «Each time we go down one level,
the number of subproblems doubles,
but the cost per subproblem halves

cn/2 cn/2 .
—> cost per level remains the same.
/\ /\ *There are Ig n + 1 levels, height is

Ilg n. (Assuming n Is a power of 2.)

cn/4 cn/4 cn/4 cnl/4 «Can be proved by induction.

/ \ / \ / \ / \ Total cost = sum of costs at each
level = (Ign + 1)cn =cnlgn + cn =

A 1+ O(nlgn).

C C C CC C

dc-10

Other Examples

+ Use the recursion-tree method to determine a
guess for the recurrences

¢ T(n) = 3T(Ln/4)) + O(n?).
¢ T(n) =T(n/3) + T(2n/3) + O(n).

dc-11

Other Examples
¢ T(n) = 3T(Ln/4]) + O(n?).

N2 N2

AN AN

T(n/4) T(n/4) T(n/4) (n/4)? (n/4)? (n/4)?

AN

T(n/42) T(n/4?) T(n/4?)

dc-12

Other Examples

¢ T(n) = 3T(Ln/4]) + O(n?).

N2

SN

(n/4)?

(n/4)? (n/4)?
log, n / \
(n/42)? (n/42)2 (n/4%)?
T(n/43) T(n/43) T(n/43)
J'

dc - 14

Other Examples

¢ T(n) = 3T(Ln/4)) + On?).
T(n) = 31T(n/4) + n?

31
=n* + —n® + 3T(n/4%)
— 12 2 2
ne+ 42><1n T 42><2n LT 42><i

= (21 +3+ ()2 + ..+ ()lossm)

(1_%)log4n

= (=00,

nt+ ...+

Other Examples

¢ T(n) =T(n/3) + T(2n/3) + O(n).

n

ANA

T(n/3) T(2n/3) N/3 2n/3

/N /N

T(n/32)T(2n/32) T(2n/32) T(22n/32)

dc - 15

Other Examples

¢ T(n) =T(n/3) + T(2n/3) + O(n).

T L n
/ \
n/3 2 0 1 20 J > N
NN
log; n n/32 2n/32 2n/32 X8V - N
N ANV NN
n/33 2n/322n/33 22n/332n/33 22n/33 22n/33 2333 s » N
| loga

dc - 16

Other Examples
¢ T(n) =T(n/3) + T(2n/3) + O(n)

T(n) = T(n/3) + T(2n/3) + n
T(n) = (T(n/3%)+ T(2n/32) + n/3) + (T(2n/32) +T(22n/32) +2n/3) + n
=T(n/9) + 2T(2n/9) + T(4n/9) + 2

=(T(n/27) + T(2n/27) + n/9) +2(T(2n/27) + T(4n/27)+ 2n/9) +
(T(4n/27) +T(8n/27) + 4n/9) + 2n

=T(n/27) + 3T(2n/27) + 3T(4n/27) + T(8n/27) + 3n
=[N +n/27 + 3(2n/27) + 3(4n/27) + 8n/27 + 3n

=nlog;n

dc-17

Recursion Trees — Caution Note

* Recursion trees only generate guesses.
¢+ Verify guesses using substitution method.

+ A small amount of “sloppiness” can be
tolerated. \Why?

¢ |f careful when drawing out a recursion tree and
summing the costs, it can be used as direct
proof.

dc - 18

The Master Method

+ Based on the Master theorem.

* “Cookbook™ approach for solving recurrences
of the form
T(n) = aT(n/b) + f(n)
e a>1,b>1are constants.
« f(n) Is asymptotically positive.
 n/b may not be an integer, but we ignore floors and
ceilings. Why?

+ Requires memorization of three cases.

dc-19

The Master Theorem

Theorem 4.1
Leta>1andb > 1 be constants, let f(n) be a function, and
let T(n) be defined on nonnegative integers by the recurrence
T(n) = aT(n/b) + f(n), where we can replace n/b by [n/b] or [n/b]
T(n) can be bounded asymptotically in three cases:
1. If f(n) =O(n'%=<) for some constant € >0, then T(n) = @(n'°%?2),
If f(n) = ®(n'%2), then T(n) = A(n'°%2lg n).
3. If f(n) = Q(n'°%2*) for some constant € > 0,
and if, for some constant ¢ < 1 and all sufficiently large n,

we have a-f(n/b) < ¢ f(n), then T(n) = @(f(n)).

N

We’ll return to recurrences as we need them...

dc - 20

The Master Method
T(n) = aT(n/b) + f(n)
= a(T(n/b?) + f(n/b)) + f(n)
= a(a(T(n/bd) + f(n/b2)) + f(n/b)) + f(n)

< clogaf(n) + cloga-if(n) + ...+ c2f(n) + cf(n) + f(n)
= f(n) (c'99:2 + clog:a-1 +)

= O(f(n))

a-f(n/b) <c f(n) (c<1),

amf(n/b™*1) < ca™H(n/b™M) < ... < c™*H(n).

