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Asymptotic Complexity 

 Running time of an algorithm as a function of 

input size n for large n. 

 Expressed using only the highest-order term in 

the expression for the exact running time. 

 7n5 + 2n4 + 3n3 + 9n2 + 4n + 6 

 Instead of exact running time, we use asymptotic 

notations such as O(n5), Ω(n), Q(n2). 

 Describes behavior of running time functions by setting 

lower and upper bounds for their values. 
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Asymptotic Notation 

  Q, O, W, o, w 

 Defined for functions over the natural numbers. 

 Ex: f(n)  =  Q(n2). 

 Describes how f(n) grows in comparison to n2. 

 Define a set of functions; in practice used to compare 

two function values. 

 The notations describe different rate-of-growth 

relations between the defining function and the 

defined set of functions. 
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Q-notation 

Q(g(n)) = {f(n) :  

 positive constants c1, c2, and n0, 

such that n   n0, 

we have 0  c1g(n)   f(n)  c2g(n) 

} 

For function g(n), we define Q(g(n)), 

big-Theta of n, as a set: 

g(n) is an asymptotically tight bound for any f(n) in the set. 

Intuitively: Set of all functions that 

have the same rate of growth as g(n). 

g(n) = c (a constant), n, n2, n3, … 
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Q-notation 

Q(g(n)) = {f(n) :  

 positive constants c1, c2, and n0, 

such that n   n0, 

we have 0  c1g(n)   f(n)  c2g(n) 

} 

For function g(n), we define Q(g(n)), 

big-Theta of n, as the set: 

Technically, f(n)  Q(g(n)). 

Older usage,  f(n) = Q(g(n)). 

I’ll accept either of the forms. 

f(n) and g(n) are nonnegative, for large n.  
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Example 

 10n2 - 3n = Q(n2)? 

 What constants for n0, c1, and c2 will work? 

 Make c1 a little smaller than the leading 
coefficient, and c2 a little bigger. 

 To compare orders of growth, look at the 
leading term (highest-order term). 

 Exercise: Prove that n2/2-3n = Q(n2) 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 
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Example 

• 10n2 - 3n = Q(n2)? 

• To show that this equation holds, we find c1 

= 9,  c2 = 11, and n0 = 3 and for n ≥ n0, we 

always have  

  9n2 ≤ 10n2 - 3n ≤ 11n2. 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 
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Example 

• 10n2 - 3n = Q(n2) 

 

• 10n2 - 3n > 9n2 ⇒ n2  > 3n ⇒ n  

> 3 

 

• 10n2 - 3n < 11n2 ⇒ n2  > - 3n ⇒ n  

> - 3 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 
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Example 

• n2/2-3n = Q(n2)? 

• c1 = 1/3 ⇒ n2/2 - 3n > n2/3 

 ⇒  n2/6 > 3n  ⇒ n > 18 

• c2 = 1 ⇒ n2/2 - 3n < n2  

 ⇒ n2  > - 6n ⇒ n  > - 6 

• Then, for n > n0 = 18, we will definitely have 

  n2/3 < n2/2 - 3n < n2. 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 
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Example 

 Is 3n3  Q(n4)? 

 How about 22n Q(2n)? 

 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 



asymp - 10 

Example 

• Is 3n3  Q(n4)? 

• If it is true, we can find c1, c2, and n0 such 

that for n > n0, we have 

  c1n
4 ≤ 3n3 ≤ c2n

4. 

 c1n
4 ≤ 3n3  ⇒ n ≤ 3/c1. 

• It is a contradiction. So, 3n3  Q(n4)? 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 
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Example 

• How about 22n Q(2n)? 

• If it is true, we can find c1, c2, and n0 such 

that for n > n0, we have 

  c12
n ≤ 22n ≤ c22

n. 

 22n ≤ c22
n  ⇒ 2n ≤ c2 ⇒ n ≤ log2 c2.  

•  It is a contradiction. So, 22n Q(2n)? 

 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0, 0  c1g(n)   f(n)  c2g(n)} 
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O-notation 

O(g(n)) = {f(n) :  

 positive constants c and n0, 

such that n   n0, 

we have 0   f(n)  cg(n) } 

For function g(n), we define O(g(n)), 

big-O of n, as the set: 

g(n) is an asymptotic upper bound for any f(n) in the set. 

Intuitively: Set of all functions 

whose rate of growth is the same as 

or lower than that of g(n). 

f(n) = Q(g(n))  f(n) = O(g(n)). 

Q(g(n))   O(g(n)). 
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Examples 

 Any linear function an + b is in O(n2). How? 

 Show that 3n3 = O(n4) for appropriate c and n0. 

 Show that 3n3 = O(n3) for appropriate c and n0. 

 

 

O(g(n)) = {f(n) :  positive constants c and n0, 

such that n   n0, we have 0   f(n)  cg(n) } 
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Examples 

O(g(n)) = {f(n) :  positive constants c and n0, 

such that n   n0, we have 0   f(n)  cg(n) } 

. 
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Examples 

• Show that 3n3 = O(n4) for appropriate c and n0. 

• The answer is obviously yes, since for any n > n0 

= 4, we must have n4 > 3n3. 

 

• Show that 3n3 = O(n3) for appropriate c and n0. 

• The answer is also yes, since we can take c = 4, 
and for any n > n0 = 1, we must have cn3 > 3n3. 

 

 

O(g(n)) = {f(n) :  positive constants c and n0, 

such that n   n0, we have 0   f(n)  cg(n) } 
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W -notation 

g(n) is an asymptotic lower bound for any f(n) in the set. 

Intuitively: Set of all functions 

whose rate of growth is the same 

as or higher than that of g(n). 

f(n) = Q(g(n))  f(n) = W(g(n)). 

Q(g(n))   W(g(n)). 

W(g(n)) = {f(n) :  

 positive constants c and n0, 

such that n   n0, 

we have 0  cg(n)  f(n)} 

For function g(n), we define W(g(n)), 

big-Omega of n, as the set: 
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Example 

W(g(n)) = {f(n) :  positive constants c and n0, such 

that n  n0, we have 0  cg(n)  f(n)} 
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Relations Between Q, O, W 
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Relations Between Q, W, O 

 That is, Q(g(n)) = O(g(n))  W(g(n)) 

 In practice, asymptotically tight bounds are 

obtained from asymptotic upper and lower bounds. 

Theorem :  For any two functions g(n) and f(n), 

 f(n) = Q(g(n)) iff  

 f(n) = O(g(n)) and f(n) = W(g(n)). 
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Running Times 

 “Running time is O(f(n))”  Worst case is O(f(n)) 

 O(f(n)) bound on the worst-case running time  O(f(n)) 
bound on the running time of every input. 

 Q(f(n)) bound on the worst-case running time  Q(f(n)) 
bound on the running time of every input. 

 “Running time is W(f(n))”  Best case is W(f(n))  

 Can still say “Worst-case running time is W(f(n))” 

 Means worst-case running time is given by some 
unspecified function g(n)  W(f(n)). 
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Example 

 Insertion sort takes Q(n2) in the worst case, so 

sorting (as a problem) is O(n2).  Why? 

 Any sort algorithm must look at each item, so 

sorting is W(n). 

 In fact, using (e.g.) merge sort, sorting is Q(n lg n) 

in the worst case. 

 Later, we will prove that we cannot hope that any 

comparison sort to do better in the worst case. 
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Asymptotic Notation in Equations 

 Can use asymptotic notation in equations to 
replace expressions containing lower-order terms. 

 For example, 

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n)  

= 4n3 + Q(n2) = Q(n3). How to interpret? 

 In equations, Q(f(n)) always stands for an 
anonymous function g(n)  Q(f(n)) 

 In the example above, Q(n2) stands for  
3n2 + 2n + 1. 
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o-notation 

o(g(n)) = {f(n): c > 0, n0 > 0 such that  
  n   n0, we have 0   f(n) < cg(n)}. 

For a given function g(n), the set little-o: 



asymp - 24 

o(g(n)) = {f(n):  

c > 0, n0 > 0 such that n   n0,  

we have 0   f(n) < cg(n)}. 

little-o: 

O(g(n)) = {f(n) :  

 positive constants c and n0, such that n  n0, 

we have 0   f(n)  cg(n) } 

big-O: 
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w(g(n)) = {f(n): c > 0, n0 > 0 such that  
  n   n0, we have 0  cg(n) <  f(n)}. 

w -notation 

For a given function g(n), the set little-omega: 
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w(g(n)) = {f(n): c > 0, n0 > 0 such that n   n0, 
we have 0  cg(n) <  f(n)}. 

little-w: 

W(g(n)) = {f(n) :  

 positive constants c and n0, such that n  n0, 

we have 0  cg(n)  f(n)} 

big-W: 
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Comparison of Functions 

             f  g    a  b 
 

f (n) = O(g(n))    a     b 

f (n) = W(g(n))    a    b 

f (n) = Q(g(n))    a  =  b 

f (n) = o(g(n))    a  <  b 

f (n) = w (g(n))    a  >  b 
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Limits 

 lim [f(n) / g(n)] = 0  f(n)  o(g(n)) 
    

n 

 lim [f(n) / g(n)] <   f(n)  O(g(n)) 
    

n 

 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n)) 
            

n 

 0 < lim [f(n) / g(n)]  f(n)  W(g(n)) 
            

n 

 lim [f(n) / g(n)] =   f(n)  w(g(n)) 
    

n 

 lim [f(n) / g(n)] undefined  can’t say 
    

n 
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Properties 
 Transitivity 

f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n)) 
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n)) 
f(n) = W(g(n)) & g(n) = W(h(n))  f(n) = W(h(n)) 
f(n) = o (g(n)) & g(n) = o (h(n))  f(n) = o (h(n)) 

f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))  
 

 Reflexivity 

 f(n) = Q(f(n)) 

    f(n) = O(f(n)) 

   f(n)  = W(f(n)) 
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Properties 

 Symmetry 

 f(n) = Q(g(n)) iff g(n) = Q(f(n))  

 

 Complementarity 

     f(n) = O(g(n)) iff g(n) = W(f(n))  

     f(n) =  o(g(n)) iff g(n) = w((f(n))  
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Common Functions 
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Monotonicity 

 f(n) is  

 monotonically increasing if m  n  f(m)  f(n). 

 monotonically decreasing if m  n  f(m)  f(n). 

 strictly increasing if m < n  f(m) < f(n). 

 strictly decreasing if m > n  f(m) > f(n). 
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Exponentials 

 Useful Identities: 

 

 

 

 

 Exponentials and polynomials 
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Logarithms  

x = logba is the  

exponent for a = bx. 

 

Natural log: ln a = logea 

Binary log: lg a = log2a 

 

lg2a = (lg a)2 

lg lg a  =  lg (lg a) 
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Logarithms and exponentials – Bases  

 If the base of a logarithm is changed from one 

constant to another, the value is altered by a 

constant factor. 

 Ex: log10 n * log210 = log2 n. 

 Base of logarithm is not an issue in asymptotic 

notation. 

 Exponentials with different bases differ by a 

exponential factor (not a constant factor). 

 Ex: 2n = (2/3)n*3n. 
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Polylogarithms 

 For a  0, b > 0, lim n ( lga n / nb ) = 0,  

so lga n = o(nb), and  nb = w(lga n ) 

 Prove using L’Hopital’s rule repeatedly 

 

 lg(n!) = Q(n lg n) 

 Prove using Stirling’s approximation (in the text) for lg(n!). 
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Exercise 

Express functions in A in asymptotic notation using functions in B. 

 A                                         B                                     

5n2 + 100n               3n2 + 2 

 A  Q(n2), n2  Q(B)  A  Q(B) 

log3(n
2)            log2(n

3) 

logba = logca / logcb; A = 2lgn / lg3, B  = 3lgn, A/B =2/(3lg3) 

 nlg4                   3lg n 

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3)   as n 

lg2n                              n1/2 

lim ( lga n / nb ) = 0 (here a = 2 and b = 1/2)  A  o (B) 

 
n

 

A  Q(B) 

A  Q(B) 

A  w(B) 

A  o (B) 
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Summations – Review  
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Review on Summations 

 Why do we need summation formulas?  

For computing the running times of iterative 

constructs (loops). (CLRS – Appendix A) 

Example:  Maximum Subvector 

Given an array A[1…n] of numeric values (can be 

positive, zero, and negative) determine the 

subvector A[i…j] (1 i  j  n) whose sum of 

elements is maximum over all subvectors. 

 

1 -2 2 2 



asymp - 40 

Review on Summations 

MaxSubvector(A, n)  
 maxsum  0; 
 for i  1 to n  
     do for j = i to n 
        sum  0 
        for k  i to j   
   do sum += A[k] 
        maxsum  max(sum, maxsum) 
 return maxsum 

               n     n      j 

T(n) =    1 
             i=1   j=i  k=i 

NOTE:  This is not a simplified solution.  What is the final answer? 
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Review on Summations 

 Constant Series: For integers a and b, a  b, 
 
 
 
 

 

 

 Linear Series (Arithmetic Series):  For n  0, 

 

 

 

 Quadratic Series:  For n  0, 
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Review on Summations 

 Cubic Series:  For n  0, 

 

 

 

 

 Geometric Series:  For real x  1, 

 

 

      

       For |x| < 1, 
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Review on Summations 
 

 Linear-Geometric Series:  For n  0, real c  1, 

 

 

 

 

 Harmonic Series: nth harmonic number, nI+, 
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Review on Summations 

 Telescoping Series: 

 

 

 

 Differentiating Series:  For |x| < 1, 
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Review on Summations 

 Approximation by integrals: 

 For monotonically increasing f(n) 

 

 

 For monotonically decreasing f(n) 

 

 

 How? 
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Review on Summations 

 nth harmonic number 
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Reading Assignment 

 Chapter 4 of CLRS. 


