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Asymptotic Complexity

+ Running time of an algorithm as a function of
Input size n for large n.

* Expressed using only the highest-order term in
the expression for the exact running time.
¢ 7P+ 2n* +3n + 92+ 4n+6

¢+ Instead of exact running time, we use asymptotic
notations such as O(n°), Q(n), ®(n?).

* Describes behavior of running time functions by setting
lower and upper bounds for their values.
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Asymptotic Notation

¢ 0,000 0
+ Defined for functions over the natural numbers.
¢ Ex: f(n) = ©(n?).
¢+ Describes how f(n) grows in comparison to n?.

+ Define a set of functions; In practice used to compare
two function values.

+ The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.



®-notation

g(n) = ¢ (a constant), n, n?, n3, ...

For function\ g(n), we define ®(g(n)),
big-Theta of n, as a set:

®(g(n) = 1f(n) :
3 positive constants ¢y, ¢,, and n,
such that vn > n,,

we have 0 < ¢,g(n) £ f(n) < c,g(n)

}

c28(n)

f(n)

crg(n)

Intuitively: Set of all functions that
have the same rate of growth as g(n).

n

f(n)=0(gn))

g(n) is an asymptotically tight bound for any f(n) in the set.
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®-notation

For function g(n), we define ®(g(n)),
big-Theta of n, as the set:

®(g(n)) = {f(n):
3 positive constants c,, C,, and n,
such that vn > n,,

we have 0 < ¢,g(n) £ f(n) < c,g(n)

}

c28(n)

f(n)

¢18(n)

Technically, f(n) € ®(g(n)).
Older usage, f(n) =®(g(n)).
I’1l accept either of the forms.

f(n) and g(n) are nonnegative, for larg
asymp - 4

n

o f(n) = ©(gn))

e n.
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Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) <c,g(n)}

¢ 10n% - 3n = ®(n?)?
+ What constants for n,, c,, and c, will work?

+ Make c, a little smaller than the leading
coefficient, and c, a little bigger.

¢ To compare orders of growth, look at the
leading term (highest-order term).

¢ Exercise: Prove that n4/2-3n = ©(n?)




Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) <c,g(n)}

* 10n% - 3n = ®©(n?)?

» To show that this equation holds, we find c,
=9, ¢, =11, and n,= 3 and for n > n,, we
always have

9n?<10n%-3n<11n
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Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) <c,g(n)}

* 10n2 - 3n = B(n?)

e 10n2 - 3n > 9n? = n¢>3n = n
> 3

e 10N%2-3n<11n? = n?2>-3n = n
> -3
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Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) < c,g(n)}

* N%/2-3n = O(n?)?
e ¢,=1/3= n?/2-3n>n?3
= n46>3n = n>18
*C,=1 = n?%2-3n<n?
=> n2>-6n =>n >-6
* Then, for n > n,= 18, we will definitely have
n¢/3 < né/2 - 3n < n2
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Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) <c,g(n)}

¢ |s 3n3 € ©(n%)?
+ How about 22" ©(2")?

asymp - 9



Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) <c,g(n)}

 |s3n3 e O(N%)?
* If it is true, we can find c,, ¢,, and n, such

that for n > n,, we have
c,n*<3n3 <c,n’
c,n*<3n® = n<3/c,.

* |t is a contradiction. So, 3n3 ¢ ®(n*)?
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Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n,, 0 <c,g(n) < f(n) < c,g(n)}

« How about 2" ®(2")?
* If it is true, we can find c,, ¢,, and n, such

that for n > n,, we have
c,2"< 22" < ¢, 2",
2" <c,2" = 2'<c, =n<log,c,.

 [tis a contradiction. So, 2"¢ ®(2")?
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O-notation

For function g(n), we define O(g(n)).
big-O of n, as the set:

O(g(n)) = {f(n) :
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < f(n) < cg(n) }

Intuitively: Set of all functions
whose rate of growth is the same as | "

or lower than that of g(n). L F(n) = 0(g(n))
g(n) is an asymptotic upper bound for any f(n) in the set.

f(n) = ®(g(n)) = 1(n) = O(g(n)).
0(g(n)) <O(g(n)).
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Examples

O(g(n)) = {f(n) : 3 positive constants ¢ and n,,
such that Vn > n,, we have 0 < f(n) <cg(n) }

¢ Any linear function an + b is in O(n?%). How?
¢ Show that 3n3= O(n*) for appropriate ¢ and n,,
+ Show that 3n3= O(n?) for appropriate ¢ and n,,
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Examples

O(g(n)) = {f(n) : 3 positive constants ¢ and n,,
such that Vn > n,, we have 0 < f(n) <cg(n) }

* Any linear function an + b is in O(n?). How?

 To answer this question, we set c =1, to see
whether we have an + b < n? for n > a constant
ng.

* To determine the value of n,, we will solve an
equation:n?-an-b = 0.

a+Vvaz2+4b

* We get n,=

asymp - 14



Examples

O(g(n)) = {f(n) : 3 positive constants ¢ and n,,
such that Vn > n,, we have 0 < f(n) <cg(n) }

 Show that 3n3= O(n#) for appropriate ¢ and n,,.

* The answer is obviously yes, since for any n > n,
=4, we must have n* > 3n3.

 Show that 3n3= O(n3) for appropriate ¢ and n,,.

* The answer is also yes, since we can take c =4,
and for any n > n,= 1, we must have cn?® > 3n3.
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() -notation

For function g(n), we define Q(g(n)), |

big-Omega of n, as the set:

Q(g(n)) = {f(n) :
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < cg(n) < f(n)}

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n).

f(n)

n

"0 Fn) = Qgn))

g(n) i1s an asymptotic lower bound for any f(n) in the set.

f(n) = ®(g(n)) = 1(n) = Q(g(n)).
0(g(n)) <Q(g(n)).
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Example

Q(g(n)) = {f(n) : 3 positive constants c and n,, such
that ¥n > n,, we have 0 <cg(n) <f(n)}

« \n= Q(log, n). Choose ¢ and n,,.
* For this purpose, we need to determine constants ¢

and n,, such that for any n 2 n,, we have

Clog, n < \n
* We canc=1 and ngy= 25 since log, 25 <log, 32 =5 =

V25

* We can also prove that yn — log, n 1s an increasing

function.
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Relations Between ®, O, O

28(n)

f(n)

¢ 2(n)

no
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n

f(n)=0(g(n))

" f ) = 0(g(n))

cg(n)

f(n)

n

"t n) = Qg (n)

n



Relations Between ®, Q3. O

Theorem : For any two functions g(n) and f(n),
f(n) = ®(g(n)) Iff
f(n) = O(g(n)) and 1(n) = 2(g(n)).

¢ That s, ©(g(n)) = O(g(n)) N (g(n))

+ |n practice, asymptotically tight bounds are
obtained from asymptotic upper and lower bounds.
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Running Times

“Running time 1s O(f(n))” = Worst case iIs O(f(n))

O(f(n)) bound on the worst-case running time = O(f(n))
bound on the running time of every input.

®(f(n)) bound on the worst-case running time ;2 0(f(n))
bound on the running time of every input.

“Running time 1s €2(f(n))” = Best case Is Q(f(n))
Can still say “Worst-case running time is Q(f(n))”

¢+ Means worst-case running time Is given by some
unspecified function g(n) € Q(f(n)).



Example

* Insertion sort takes ®(n?) in the worst case, so
sorting (as a problem) is O(n%). Why?

+ Any sort algorithm must look at each item, so
sorting Is ©2(n).

+ |n fact, using (e.g.) merge sort, sorting is O(n Ig n)
In the worst case.

¢+ Later, we will prove that we cannot hope that any
comparison sort to do better in the worst case.
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Asymptotic Notation In Equations

¢ Can use asymptotic notation in equations to
replace expressions containing lower-order terms.

* For example,
An3 + 3n% +2n + 1 =4n3 + 3n + O(n)
= 4n3 + O(n?%) = ®(n%). How to interpret?
* |n equations, ®(f(n)) always stands for an
anonymous function g(n) € ®(f(n))

¢+ In the example above, ®(n?) stands for
3n2+2n + 1.
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0-notation
For a given function g(n), the set little-o:

o(g(n)) = {f(n): Yc >0, dn, > 0 such that
¥n > n,, we have 0 < f(n) <cg(n)}.

f(n) becomes 1nsignificant relative to g(n) as n
approaches infinity:

lim [f(n)/g(m)] =0
g(n) 1s an upper bound for f(n) that 1s not
asymptotically tight.

Observe the difference in this definition from previous
ones. Why?
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little-0:

0(g9(n)) = {i(n):

Vc >0, dny > 0 such that Vn > n,,
we have 0 < f(n) <cg(n)}.

big-O:

O(g(n)) = {i(n) :

3 positive constants ¢ and n,, such that Vn > n,,
we have 0 < f(n) <cg(n) }
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@ -notation
For a given function g(n), the set little-omega:

@(g(n)) = {f(n): Yc >0, dn, > 0 such that
¥n > n,, we have 0 < cg(n) < f(n)}.

f(n) becomes arbitrarily large relative to g(n) as n
approaches mfinity:

lim [f(n)/g(m)] =

g(n)is a lower bound for f(n) that 1s not
asymptotically tight.
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little-w:

w(g(n)) = {f(n): vc >0, dn, > 0 such that Vn > n,,
we have 0 < cg(n) < f(n)}.

big-Q:
Q(g(n)) ={f(n) :

3 positive constants ¢ and n,, such that ¥n > n,,
we have 0 < cg(n) <f(n)}
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Comparison of Functions

f>g=aeob

t(n)=0(n) ~a< b
t(n)=Q@gM) ~az=b
t(n)=0(Mh) ~a=Db
t(n)=o(g(n) ~a<b
t(n)=w(h) ~a>Db
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¢ lim

N—>co

¢ |im

N—>c0

Limits

f(n) /g(n)] =0 = 1(n) € o(g(n))

1(n) /.g(n)] <0 =1(n) € Ag(n))

¢ 0 <Ilim[f(n)/g(n)] <o = f(n) € ®(g(n))

N—>c0

* 0 <lim[f(n) /g(n)] = f(n) € Q(g(n))

N—>c0

¢ lim [t(n) /g(n)] = .o = 1(n) € (g(n))

N—>c0

¢ |lim [f(n) / g(n)] undefined = can’t say

N—>co
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Properties

¢ Transitivity
f(n) = ©(g(n)) & g(n) = O(
f(n) = 0(g(n)) & g(n) = O(
f(n) = Q(g(n)) & g(n) = (
f(n) =0 (g(n)) & g(n) =o (
f(n) = a(g(n)) & g(n) = o

+ Reflexivity
f(n) = ©(i(n))
f(n) = O(f(n))

f(n) = Q(f(n))

asymp - 29

n(n)) = f(n) = O(
n(n)) = f(n) = O(
n(n)) = f(n) = Q(
n(n)) = f(n) = o (

N(n))
N(n))
N(n))
N(n))

N(n)) = 1(n) = o(h(n))



Properties

¢ Symmetry
t(n) = ©(g(n)) It g(n) = O(i(n))

¢ Complementarity
f(n) = O(g(n)) Itf g(n) = Q(f(n))
f(n) = o(g(n)) 1t g(n) = ((f(n))

asymp - 30



Common Functions
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Monotonicity

¢ f(n) Is
¢+ monotonically increasing if m < n = f(m) < f(n).
+ monotonically decreasing if m > n = f(m) > f(n).
¢ strictly increasing if m < n = f(m) < f(n).
¢ strictly decreasing if m > n = f(m) > f(n).
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Exponentials

+ Useful Identities:

at=t

(am)n — amn

aman — am+n

¢ Exponentials and polynomials
b
lim =0

n—oo an

= n°=o0(a")
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Logarithms

X = log,a Is the
exponent for a = b*.

Natural log: In a = log.a
Binary log: Ig a = log,a

Ig<a = (lg a)°
lglga =1g(lga)

asymp - 34

q — blogba
log.(ab) =log.a+log. b
log, a" =nlog,a




Logarithms and exponentials — Bases

+ |f the base of a logarithm Is changed from one
constant to another, the value is altered by a
constant factor.

¢+ Ex: log,, n * l0og,10 = log, n.

¢+ Base of logarithm is not an issue in asymptotic
notation.

+ Exponentials with different bases differ by a
exponential factor (not a constant factor).

v Ex: 20 = (2/3)M*3n,
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Polylogarithms

* Fora=0,b>0,lim __(lgan/nbk)=0,
so Igan = o(nP), and n° = w(lg@n)

¢ Prove using L’Hopital’s rule repeatedly

¢+ lg(n") =6(n g n)

¢+ Prove using Stirling’s approximation (in the text) for lg(n!).

asymp - 36



Exercise

Express functions in A in asymptotic notation using functions in B.

A B
5n2 + 100N 3n2 + 2 A € ©(B)
A € B(n?),n’e O(B) = A € B(B)
log,(n?) log,(n°) A e ©(B)
log,a = log.a / log.b; A=2Ign/Ig3, B =3lgn, A/B =2/(3Ig3)
n'e4 3lan A € o(B)
alogb =ploga; B =319"=nld3: A/B =n'9*3) 5 0 as n—> o0
lg2n n1/2 Ae o(B)

lim(lggn/n®)=0(herea=2andb=1/2) = A € o (B)
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Summations — Review
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Review on Summations

+ \Why do we need summation formulas?

For computing the running times of iterative
constructs (loops). (CLRS — Appendix A)

Example: Maximum Subvector

Given an array A[1...n] of numeric values (can be
positive, zero, and negative) determine the
subvector A[l...J] (1<1<j < n) whose sum of
elements is maximum over all subvectors.
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Review on Summations

MaxSubvector(A, n)
maxsum <« O;
fori< 1ton
doforj=iton
sum < 0
fork < 1to]
do sum += A[K]
maxsum <— max(sum, maxsum)
return maxsum

TN =331

=1 j=i k=i

*NOTE: This is not a simplified solution. What is the final answer?
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Review on Summations

¢ Constant Series: For integers a and b, a <D,

Zbllzb—a+1

¢ Linear Series (Arithmetic Series): Forn >0,

¢ Quadratic Series: Forn >0,
Zn:iz —12+224...4n% = n(n+1)(2n+1)
— !
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Review on Summations

¢ Cubic Series: Forn >0,

n 2 2
. n“(n+1
Y= +2°+.-4n’= (n+1)
= 4
¢ Geometric Series: Forreal x =1,
n n+1
X =1
DX =14 X+ X 44 X" =
k=0 X—1

o 1
For |x| < 1, X ="
X Z .
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Review on Summations

¢ Linear-Geometric Series: Forn>0, real ¢c # 1,

iici —c4+20% 4. anC” = —(n-|—]_)C”+1_|_nCn+2+C
=1 (c-1)°

¢ Harmonic Series: nth harmonic number, nel,

Hn :1_|_1_|_l_|_..._|_1
2 n

_ Z% _In(n) +O(1)
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Review on Summations

* Telescoping Serles:

n
Zak — %y =d, — g
k=1

¢ Differentiating Series: For |x| <1,
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Review on Summations

¢ Approximation by integrals:
¢+ For monotonically increasing f(n)

n+1

f f (x)dx < Zn:f(k) < jf(x)dx

m-1
+ For monotonically decreasing f(n)

n+1

j f(x)dxszn:f(k)s ff(x)dx

m

¢ How?
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Review on Summations

¢ nth harmonic number

n+1

1] dx
ZEZ _!'?_In(n+1)

k=1

n

:Z%élnmrl

k=1
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Reading Assignment

¢ Chapter 4 of CLRS.
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