
What is an Algorithm?

(And how do we analyze one?)

9/2/2023 1



Algorithms
• Informally, an algorithm is

– a tool for solving a well-specified computational 
problem.

• Example:  sorting

input:  A sequence of numbers.

output:  An ordered permutation of the input.

issues:  correctness, efficiency, storage, etc.

AlgorithmInput Output

9/2/2023 2



Strengthening the Informal 

Definiton

• An algorithm is a finite sequence of

unambiguous instructions for solving a 

well-specified computational problem.

• Important Features:

– Finiteness.

– Definiteness.

– Input.

– Output.

– Effectiveness.

9/2/2023 3



Algorithm Analysis
• Determining performance characteristics.

(Predicting the resource requirements.)

– Time, memory, communication bandwidth etc.

– Computation time (running time) is of primary 
concern.

• Why analyze algorithms?

– Choose the most efficient of several possible 
algorithms for the same problem.

– Is the best possible running time for a problem 
reasonably finite for practical purposes?

– Is the algorithm optimal (best in some sense)? 
Is something better possible?

9/2/2023 4



Running Time

• Run time expression should be machine-

independent.

– Use a model of computation or “hypothetical” 

computer.

– Our choice – RAM model (most commonly-

used).

• Model should be

– Simple.

– Applicable.

9/2/2023 5



RAM Model
• Generic single-processor model.

• Supports simple constant-time instructions found 
in real computers.
– Arithmetic (+, –, *, /, %, floor, ceiling).

– Data Movement (load, store, copy, assignment statement).

– Control (branch, subroutine call, loop control).

• Run time (cost) is uniform (1 time unit) for all simple 
instructions.

• Memory is unlimited.

• Flat memory model – no hierarchy.

• Access to a word of memory takes 1 time unit.

• Sequential execution – no concurrent operations.

9/2/2023 6



Model of Computation

• Should be simple, or even simplistic.

– Assign uniform cost for all simple operations 

and memory accesses. (Not true in practice.)

– Question: Is this OK?

• Should be widely applicable.

– Can’t assume the model to support complex 

operations. Ex: No SORT instruction.

– Size of a word of data is finite. 

– Why?

9/2/2023 7



Running Time – Definition

• Call each simple instruction and access to 

a word of memory a “primitive operation” 

or “step.”

• Running time of an algorithm for a given 

input is 

– The number of steps executed by the 

algorithm on that input.

• Often referred to as the complexity of the 

algorithm.

9/2/2023 8



Complexity and Input

• Complexity of an algorithm generally

depends on

– Size of input.

• Input size depends on the problem.

– Examples: No. of items to be sorted.

– No. of vertices and edges in a graph.

– Other characteristics of the input data.

• Are the items already sorted? 

• Are there cycles in the graph?

9/2/2023 9



Worst, Average, and Best-case 

Complexity

• Worst-case Complexity

– Maximum number of steps the algorithm takes for any 
possible input.

– Most tractable measure.

• Average-case Complexity

– Average of the running times of all possible inputs.

– Demands a definition of probability of each input, which 
is usually difficult to provide and to analyze.

• Best-case Complexity

– Minimum number of steps for any possible input.

– Not a useful measure. Why?

9/2/2023 10



Pseudo-code Conventions

• Read about pseudo-code in the text. pp 19 – 20.

• Indentation (for block structure).

• Value of loop counter variable upon loop 
termination.

• Conventions for compound data. Differs from 
syntax in common programming languages.

• Call by value not reference.

• Local variables.

• Error handling is omitted.

• Concerns of software engineering ignored.

• …
9/2/2023 11



A Simple Example – Linear 

Search 
INPUT: a sequence of n numbers, key to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

 =

n

i 2
1

LinearSearch(A, key)                      cost        times

1    i  1 c1 1

2   while i ≤ n and A[i] != key                    c2 x

3 do i++                                              c3 x-1

4 if i  n c4 1

5 then return true                             c5 1

6 else  return false                             c6 1

x ranges between 1 and n + 1.

So, the running time ranges between c1+ c2x+ c3(x - 1) + c4 + c6

c1+ c2+ c4 + c5 – best case

and

c1+ c2(n+1)+ c3n + c4 + c6 – worst case

9/2/2023 12



A Simple Example – Linear 

Search 
INPUT: a sequence of n numbers, key to search for.

OUTPUT:  true if key occurs in the sequence, false otherwise.

 =

n

i 2
1

Assign a cost of 1 to all statement executions.

Now, the running time ranges between

1+ 1+ 1 + 1 = 4 – best case

and

1+ (n+1)+ n + 1 + 1 = 2n + 4 – worst case

LinearSearch(A, key) cost        times

1    i  1 1 1

2   while i ≤ n and A[i] != key 1 x

3 do i++ 1 x-1

4 if i  n 1 1

5 then return true 1 1

6 else  return false 1 1

9/2/2023 13



A Simple Example – Linear 

Search 
INPUT: a sequence of n numbers, key to search for.

OUTPUT:  true if key occurs in the sequence, false otherwise.

 =

n

i 2
1

If we assume that the key is equal to a random item in the list, 

on average, statements 2 and 3 will be executed n/2 times. 

Running times of other statements are independent of input. 

Hence, average-case complexity is

1+ n/2+ n/2 + 1 + 1 = n + 3

LinearSearch(A, key) cost times

1    i  1 1 1

2   while i ≤ n and A[i] != key 1 x

3 do i++ 1 x-1

4 if i  n 1 1

5 then return true 1 1

6 else  return false 1 1

9/2/2023 14



Order of growth
• Principal interest is to determine

– how running time grows with input size – Order of growth.

– the running time for large inputs – Asymptotic complexity.

• In determining the above,
– Lower-order terms and coefficient of the highest-order term 

are insignificant.

– Ex: In 7n5+6n3+n+10, which term dominates the running time 
for very large n? - n5.

• Complexity of an algorithm is denoted by the highest-order 
term in the expression for running time.
– Ex: Ο(n), Θ(1), Ω(n2), etc.

– Constant complexity when running time is independent of the input 
size – denoted Ο(1).

– Linear Search: Best case Θ(1), Worst and Average cases: 
Θ(n).

• More on Ο, Θ, and Ω in next classes. Use Θ for present.

9/2/2023 15



Comparison of Algorithms

• Complexity function can be used to compare the 

performance of algorithms.

• Algorithm A is more efficient than Algorithm B for solving 

a problem, if the complexity function of A is of lower 

order than that of B.

• Examples:

– Linear Search – (n) vs. Binary Search – (lg n)

– Insertion Sort – (n2) vs. Quick Sort – (n lg n)

9/2/2023 16



Comparisons of Algorithms
• Sorting

– insertion sort: (n2)

– merge sort: (n lg n)

For a sequence of 106 numbers, 

the insertion sort took 5.56 hrs on a 

supercomputer using machine language; and

the merge sort took 16.67 min on a PC using 

C/C++.

9/2/2023 17



Why Order of Growth Matters?

• Computer speeds double every two 

years, so why worry about algorithm 

speed?

• When speed doubles, what happens to 

the amount of work you can do? 

• What about the demands of 

applications?

9/2/2023 18



Effect of Faster Machines

• Higher gain with faster hardware for more efficient algorithm.

• Results are more dramatic for higher speeds.

No. of items sorted

Ο(n2)

H/W Speed

Comp. of Alg.
1 M* 2 M Gain

1000 1414 1.414

O(n lgn) 62700 118600 1.9

* Million operations per second.

9/2/2023 19



Correctness Proofs

• Proving (beyond “any” doubt) that an 
algorithm is correct.

– Prove that the algorithm produces correct 
output  when it terminates. Partial 
Correctness.

– Prove that the algorithm will necessarily 
terminate. Total Correctness.

• Techniques

– Proof by Construction.

– Proof by Induction.

– Proof by Contradiction.
9/2/2023 20



Loop Invariant

• Logical expression with the following 

properties.

– Holds true before the first iteration of the loop –

Initialization.

– If it is true before an iteration of the loop, it remains 

true before the next iteration – Maintenance.

– When the loop terminates, the invariant ― along 

with the fact that the loop terminated ― gives a 

useful property that helps show that the loop is 

correct – Termination.

• Similar to mathematical induction.

– Are there differences?

9/2/2023 21



Correctness Proof of Linear 

Search

• Use Loop Invariant for the while loop:

– At the start of each iteration of the while loop, 

the search key is not in the subarray A[1..i-1].

LinearSearch(A, key)
1    i  1

2   while i ≤ n and A[i] != key

3 do i++

4 if i  n

5 then return true

6 else  return false

If the algm. terminates, 
then it produces correct 
result.

Initialization.

Maintenance.

Termination.

Argue that it terminates.

9/2/2023 22



• Go through correctness proof of insertion 

sort in the text.

9/2/2023 23


