What is an Algorithm? (And how do we analyze one?)

Algorithms

Informally, an algorithm is

 a tool for solving a well-specified computational problem.

 Example: sorting input: A sequence of numbers. output: An ordered permutation of the input. issues: correctness, efficiency, storage, etc.

Strengthening the Informal Definiton

- An algorithm is a <u>finite</u> sequence of <u>unambiguous</u> instructions for solving a well-specified computational problem.
- Important Features:
 - Finiteness.
 - Definiteness.
 - Input.
 - Output.
 - Effectiveness.

Algorithm Analysis

- Determining performance characteristics. (Predicting the resource requirements.)
 - Time, memory, communication bandwidth etc.
 - <u>Computation time</u> (running time) is of primary concern.
- Why analyze algorithms?
 - Choose the most efficient of several possible algorithms for the same problem.
 - Is the best possible running time for a problem reasonably finite for practical purposes?
 - Is the algorithm optimal (best in some sense)?
 Is something better possible?

Running Time

- Run time expression should be machineindependent.
 - Use a model of computation or "hypothetical" computer.
 - Our choice RAM model (most commonlyused).
- Model should be
 - Simple.
 - Applicable.

RAM Model

- Generic single-processor model.
- Supports simple constant-time instructions found in real computers.
 - Arithmetic (+, -, *, /, %, floor, ceiling).
 - Data Movement (load, store, copy, assignment statement).
 Control (branch, subroutine call, loop control).
- Run time (cost) is uniform (1 time unit) for all simple instructions.
- Memory is unlimited.
- Flat memory model no hierarchy.
- Access to a word of memory takes 1 time unit.
- Sequential execution no concurrent operations.

Model of Computation

- Should be simple, or even simplistic.
 - Assign uniform cost for all simple operations and memory accesses. (Not true in practice.)
 - <u>Question</u>: Is this OK?
- Should be widely applicable.

Can't assume the model to support complex operations.
 Ex: No SORT instruction.

- Size of a word of data is finite.
- Why?

Running Time – Definition

- Call each simple instruction and access to a word of memory a "primitive operation" or "step."
- Running time of an algorithm for a given input is
 - The **number of steps** executed by the algorithm on that **input**.
- Often referred to as the *complexity* of the algorithm.

Complexity and Input

 Complexity of an algorithm generally depends on

- Size of input.

- Input size depends on the problem.
 - Examples: No. of items to be sorted.
 - No. of vertices and edges in a graph.

Other characteristics of the input data.

- Are the items already sorted?
- Are there cycles in the graph?

Worst, Average, and Best-case Complexity

- Worst-case Complexity
 - Maximum number of steps the algorithm takes for any possible input.
 - Most tractable measure.
- Average-case Complexity
 - Average of the running times of all possible inputs.
 - Demands a definition of probability of each input, which is usually difficult to provide and to analyze.
- Best-case Complexity
 - Minimum number of steps for any possible input.
 - Not a useful measure. Why?

Pseudo-code Conventions

- Read about pseudo-code in the text. pp 19 20.
- Indentation (for block structure).
- Value of loop counter variable upon loop termination.
- Conventions for compound data. Differs from syntax in common programming languages.
- Call by value **not** reference.
- Local variables.
- Error handling is omitted.
- Concerns of software engineering ignored.

A Simple Example – Linear Search

INPUT: a sequence of *n* numbers, *key* to search for. OUTPUT: *true* if *key* occurs in the sequence, *false* otherwise.

Li	nearSearch(A, key)	cost	times	
1	$i \leftarrow 1$	c_1	1	
2	while $i \le n$ and $A[i] != key$	c_2	X	
3	do <i>i</i> ++	c_3	<i>x</i> -1	
4	if $i \leq n$	c_4	1	
5	then return true	c_5	1	
6	else return false	<i>c</i> ₆	1	

x ranges between 1 and n + 1. So, the running time ranges between

 $c_1 + c_2 + c_4 + c_5 -$ best case and

 $c_1 + c_2(n+1) + c_3n + c_4 + c_6 -$ worst case

 $c_1 + c_2 x + c_3 (x - 1) + c_4 + c_6$

A Simple Example – Linear Search

INPUT: a sequence of *n* numbers, *key* to search for.

OUTPUT: true if key occurs in the sequence, false otherwise.

Lii	nearSearch(A, key)	cost	times
1	$i \leftarrow 1$	1	1
2	while $i \le n$ and $A[i] != key$	1	X
3	do <i>i</i> ++	1	<i>x</i> -1
4	if $i \leq n$	1	1
5	then return true	1	1
6	else return false	1	1

Assign a cost of 1 to all statement executions.

Now, the running time ranges between 1+1+1+1=4- best case

and

1 + (n+1) + n + 1 + 1 = 2n + 4 - worst cas

9/2/2023

A Simple Example – Linear Search

INPUT: a sequence of *n* numbers, key to search for. OUTPUT: true if key occurs in the sequence. false otherwi

Lii	nearSearch(A, key)	cost	times
1	$i \leftarrow 1$	1	1
2	while $i \le n$ and $A[i] != key$	1	X
3	do <i>i</i> ++	1	<i>x</i> -1
4	if $i \leq n$	1	1
5	then return true	1	1
6	else return false	1	1

If we assume that the *key* is equal to a random item in the list, on average, statements 2 and 3 will be executed n/2 times. Running times of other statements are independent of input. Hence, average-case complexity is 1+n/2+n/2+1+1=n+3

9/2/2023

Order of growth

- Principal interest is to determine
 - how running time grows with input size Order of growth.
 - the running time for large inputs <u>Asymptotic complexity</u>.
- In determining the above,
 - Lower-order terms and coefficient of the highest-order term are insignificant.
 - <u>Ex:</u> In 7n⁵+6n³+n+10, which term dominates the running time for very large n? - n⁵.
- Complexity of an algorithm is denoted by the highest-order term in the expression for running time.
 - **Ex:** O(n), $\Theta(1)$, $\Omega(n^2)$, etc.
 - Constant complexity when running time is independent of the input size denoted O(1).
 - <u>Linear Search</u>: Best case Θ(1), Worst and Average cases: Θ(n).
- More on O, Θ , and Ω in next classes. Use Θ for present.

Comparison of Algorithms

- Complexity function can be used to compare the performance of algorithms.
- Algorithm *A* is more efficient than Algorithm *B* for solving a problem, if the complexity function of *A* is of lower order than that of *B*.
- Examples:
 - Linear Search $\Theta(n)$ vs. Binary Search $\Theta(\lg n)$
 - Insertion Sort $\Theta(n^2)$ vs. Quick Sort $\Theta(n \lg n)$

Comparisons of Algorithms

Sorting

- insertion sort: $\Theta(n^2)$
- merge sort: $\Theta(n \lg n)$
 - For a sequence of 10⁶ numbers,
 - the insertion sort took 5.56 hrs on a
 - supercomputer using machine language; and the merge sort took 16.67 min on a PC using C/C++.

Why Order of Growth Matters?

- Computer speeds double every two years, so why worry about algorithm speed?
- When speed doubles, what happens to the amount of work you can do?
- What about the demands of applications?

Effect of Faster Machines

No. of items sorted

H/W Speed Comp. of Alg.	1 M*	2 M	Gain
$O(n^2)$	1000	1414	1.414
$O(n \lg n)$	62700	118600	1.9

* Million operations per second.

• Higher gain with faster hardware for more efficient algorithm.

• Results are more dramatic for higher speeds.

9/2/2023

Correctness Proofs

- Proving (beyond "any" doubt) that an algorithm is correct.
 - Prove that the algorithm produces correct output when it terminates. Partial Correctness.
 - Prove that the algorithm will necessarily terminate. <u>Total Correctness.</u>

Techniques

Proof by Construction.
Proof by Induction.
Proof by Contradiction.

Loop Invariant

- Logical expression with the following properties.
 - Holds true before the first iteration of the loop Initialization.
 - If it is true before an iteration of the loop, it remains true before the next iteration – Maintenance.
 - When the loop terminates, the invariant along with the fact that the loop terminated — gives a useful property that helps show that the loop is correct – Termination.
- Similar to mathematical induction.
 - Are there differences?

Correctness Proof of Linear Search

Use Loop Invariant for the while loop:
 At the start of each iteration of the while loop, the search *key* is not in the subarray A[1..*i*-1].

LinearSearch(A, *key*)

- 1 $i \leftarrow 1$
- 2 while $i \le n$ and A[i] != key
- **3 do** *i*++
- 4 if $i \leq n$
- 5 **then return** *true*
- 6 else return false

•If the algm. terminates, then it produces correct result.

- Initialization.
- Maintenance.
- Termination.
- •Argue that it terminates.

• Go through correctness proof of insertion sort in the text.