Due: March 08, 2024

(sent to teaching assistant: Ms. R. Kondam, rasagnya53@gmail.com)

1. (15) Represent the following graph as an XML document.

2. (15) The following is a DTD for books. Please produce an XML document conforming to the DTD.

```
<!DOCTYPE AuthorBook [</pre>
      <!ELEMENT AuthorBook
                                    (Author*, Book*)>
      <!ELEMENT Author (Name, Address+)>
               <!ATTLIST Author
                   AuthorId
                                    ID
                                                #REQUIRED
                                    INREFS
                                                #IMPLIED
                   writing
               >
      <!ELEMENT Name (#PCDATA)>
      <!ELEMENT Address
                                    (Street, City)>
      <!ELEMNT Street
                        (#PCDATA)>
      <!ELEMENT City
                        (#PCDATA)>
                        (Title, Publisher, Year)>
      <!ELEMENT Book
               <!ATTLIST
                                    Book
                   BookIn
                                                #REQUIRED
                                    ID
                                                #REQUIRED
                   authorOf
                                    IDREFS
               >
      <!ELEMENT Title
                                    (#PCDATA)>
      <!ELEMENT Publisher
                                    (#PCDATA)>
      <!ELEMENT Year
                        (#PCDATA)>
]>
```

- 3. (15) Define an XML-schema which is equivalent to the DTD shown in Question 2.
- 4. (25) Write an algorithm to transform a simplified XPath expression (in which the subexpressions in any condition can be connected only with \(\cdot, \) e.g., \(/StarMovieData/Star[//City = "Malibu" and //Street = "123 Maple St."]/Name) to a tree structure.

 (Hint:
 - 1. First, generate a path P covering all the element names on the main path in XPath expression X (not including the element names in predicates.)
 - 2. Check each element e on P. If e is associated with a predicate: $x_1 = a_1 \land x_2 = a_2 \land \ldots \land x_m = a_m$, make a series call of the algorithm recursively to generate a subtree for each x_i ($i = 1, \ldots, m$).
 - 3. Make it clear how the subtrees generated for x_i 's are connected to P.)

- 5. (20) The following is a DTD for a set of documents on books.
 - (a) Write an FLWR expression to find all the books authored by D. Knuth.
 - (b) Write an FLWR expression to find all books published by Addison Wesley Longman in 2007.

```
<!DOCTYPE AuthorBook [</pre>
      <!ELEMENT AuthorBook
                                    (Author*, Book*)>
      <!ELEMENT Author (Name, Address+)>
               <!ATTLIST Author
                   AuthorId
                                    ID
                                                #REQUIRED
                                    INREFS
                                                #IMPLIED
                   writing
      <!ELEMENT Name
                                    (#PCDATA)>
      <!ELEMENT Address
                                    (Street, City)>
      <!ELEMNT Street
                                    (#PCDATA)>
      <!ELEMENT City
                                    (#PCDATA)>
      <!ELEMENT Book
                                    (Title, Publisher, Year)>
               <!ATTLIST
                                    Book
                   BookIn
                                                #REQUIRED
                                    ID
                                                #REQUIRED
                   authorOf
                                    IDREFS
               >
      <!ELEMENT Title
                                    (#PCDATA)>
      <!ELEMENT Publisher
                                    (#PCDATA)>
      <!ELEMENT Year
                        (#PCDATA)>
]>
```

6. (10) According to the above DTD, construct an Xpath expression to find the author's name who published a book entitles "Art of Programming" in 1972.