
 
Question 1 

Question 1 

a) Consider the ER diagram of Figure 3.16 (found on my home page. Click on “figures on Chapter 3) 
which shows a simplified schema for an airline reservation system. Extract from the ER diagram the 
requirements and constraints that produced this schema. Try to be as precise as possible in your 
requirement and constraint specification.  

      
      



1 
 
 

 
 
 

1. AIRPORT:  The database presents the information about each AIRPORT in an 

AIRPORT table. Each AIRPORT has its unique combination of the attributes 

Airport_code, Airport Name, City and State where it is located. The Airport_code is the 

unique identifier of this entity.   

2. FLIGHT: Each FLIGHT has a unique Number attribute as an identifier. The FLIGHT 

entity also consists of the details of the flight, including the Airline of the flight and the 

Weekdays of the flight schedule.   



2 
 
 

3. FARE: Each FLIGHT has its FARE with a Code attribute as the discriminator and the 

FARE weak entity has its Amount and Restrictions.  

4. FLIGHT_LEG: The FLIGHT_LEG is a weak entity type with Leg_No as the partial key 

attribute. A FLIGHT can have one or more FLIGHT_LEGs with Leg_No. Each 

FLIGHT_LEG can depart at DEPARTURE AIRPORT having a scheduled Departure 

Time (Scheduled DepTime). Similarly, each FLIGHT_LEG can arrive at ARRIVAL 

AIRPORT at a scheduled Arrival Time (ScheduledArrTime).  

5. LEG-INSTANCE: A FLIGHT_LEG can have one or more LEG_INSTANCEs. A 

LEG_INSTANCE is a weak entity type with date on which flight travels as the partial 

key.  It is used to keep track of the number of available seats and has daily records of all 

the AIRPLANE information including the actual Arrival Time and Departure Time at the 

AIRPORT. Each RESERVATION also need check with the daily LEG_INSTANCE for 

the number of seats available before making a seat reservation for a customer.  

6.   AIRPLANE: Each AIRPLANE has its unique Airplane ID as the identifier along with 

the attribute, total number of seats. Each AIRPLANE is assigned a LEG_INSTANCE 

according to its flight date and has AIRPLANE_TYPE. 

7. AIRPLANE_TYPE: The type of the airplane is determined with the attributes Type 

Name, Fixed Maximum number of seats and the Company name who owns the 

AIRPLANE. Each Type Name is considered unique and is used as an identifier. Many 

AIRPLANE_TYPEs can land at a time at one or many other AIRPORTs.   

8. SEAT: Each SEAT weak entity type has a Seat_No as a partial key. RESERVATION for 

seats can be made with Customer Name and Customer Phone number.  

Relationship Constraints: 

1. DEPARTURE AIRPORT: a 1:N relationship type between AIRPORT and 

FLIGHT_LEG. The participation of AIRPORT is partial whereas for FLIGHT_LEG is 

total. 

2. ARRIVAL AIRPORT: a 1:N relationship type between AIRPORT and FLIGHT_LEG. 

The participation of AIRPORT is partial whereas for FLIGHT_LEG is total. 

3. LEGS: a 1:N relationship type between FLIGHT and FLIGHT_LEG which is also the 

identifying relationship for the weak entity type FLIGHT_LEG. The participation of 

FLIGHT is partial, whereas that of FLIGHT_LEG is total. 



3 
 
 

4. FARES: a 1:N relationship type between FLIGHT and FARE which is also the 

identifying relationship for the weak entity type FARE. The participation of FLIGHT is 

partial and that of FARE is total. 

5. ASSIGNED: a 1:N relationship type between AIRPLANE and LEG_INSTANCE. The 

participation of AIRPLANE is partial but that of LEG_INSTANCE is total. 

6. RESERVATION: a 1:N relationship type between SEAT and LEG_INSTANCE which is 

also the identifying relationship for the weak entity type SEAT. The participation of 

SEAT is total and that of LEG_INSTANCE is partial. 

7. TYPE: a 1:N relationship type between AIPLANE_TYPE and AIRPLANE. The 

participation of AIRPLANE_TYPE is partial and that of AIRPLANE is total as all 

airplanes must be of a particular type and there can be many airplanes of an 

AIRPLANE_TYPE. 

8. CAN_LAND: a N:M relationship type between AIRPLANE_TYPE and AIRPORT. One 

or more Airplanes of an AIRPLANE_TYPE can land at every AIRPORT. Both 

participations are determined to be partial as not all types of airplanes can land at every 

airport. 

9. INSTANCE OF: There are many instances of FLIGHT_LEG. It is the identifying 

relationship for the weak entity LEG_INSTANCE. The participation of FLIGHT_LEG is 

partial whereas it is total for LEG_INSTANCE.  

    

 
 

Answer to Question 1 Part (b) 



4 
 
 

 

Figure: ER schema diagram for Basketball League 

Assumptions: 

• No two Games are scheduled on the same date. 

• A Game might get cancelled and might happen on a different date than the scheduled 

date. 

• A Coach can only train one Team. 

• A Team must have a Coach but a Coach can decide to not train a Team 

• Some Teams might not participate in a game. 

• For a Team to exist, it must have Players. 

• A Player must have a Team. 

• A Tournament with the same tournament name can be organized again (maybe annually). 

• A Game must take place at a Basketball court. 

• Players from different Teams can have the same player number.   



5 
 
 

Answer to Question 2 

a. SELECT FNAME, LNAME FROM EMPLOYEE, PROJECT, WORKS_ON WHERE 

EMPLOYEE.SSN = WORKS_ON.ESSN AND PROJECT.PNUMBER = 

WORKS_ON.PNO AND EMPLOYEE.DNO = 5 AND WORKS_NO.HOURS > 10 

AND PROJECT.PNAME = ‘Project X’; 

b. SELECT FNAME, LNAME FROM EMPLOYEE, DEPENDENT WHERE 

EMPLOYEE.SSN = DEPENDENT.ESSN AND DEPENDENT.DEPENDENT_NAME 

= EMPLOYEE.FNAME; 

c. SELECT emp1.FNAME, emp1.LNAME FROM EMPLOYEE emp1, EMPLOYEE emp2 

WHERE emp2.FNAME = ‘Franklin’ AND emp2.LNAME = ‘Wong’ AND emp2.SSN = 

emp1.SUPERSSN; 

d. SELECT PNAME, SUM(HOURS) FROM PROJECT, WORKS_ON GROUP BY 

PNAME HAVING PROJECT.PNUMBER = WORKS_ON.PNO; 

e. SELECT FNAME, LNAME FROM EMPLOYEE AS e WHERE NOT EXISTS 

(SELECT * FROM PROJECT AS p WHERE NOT EXISTS(SELECT * FROM 

WORKS_ON AS w WHERE w.ESSN = e.ESSN AND w.PNO=p.PNO)); 

f. SELECT FNAME, LNAME FROM EMPLOYEE AS e, PROJECT AS p WHERE NOT 

EXISTS (SELECT * FROM WORKS_ON AS w WHERE w.ESSN = e.SSN AND 

w.PNO = p.PNUMBER); 

 
A simple ERD: 

 
 
 
 
 

team 

player game play 

  TID 

  Tname 

  PID 

  Tname 

  GID 

  time 

  locatio
n 

  score 

  coacher 



6 
 
 

Question 2 

 

a) 
Query: 
SELECT FNAME,MINIT,LNAME 
FROM EMPLOYEE, WORKS_ON, PROJECT 
WHERE PNAME = ‘Product X’ AND PNO = PNUMBER AND HOURS > 10 
AND SSN = ESSN AND DNO=5 
 
 
Relational Algebra Notation 

EP10 ← ESSN( HOURS>10 (WORKS_ON  ⨝PNO=PNUMBER(PNUMBER( PNAME=’ProductX’(PROJECT)))) 

FNAME,MINIT,LNAME ( DNO=5 (EMPLOYEE ⨝SSN=ESSN(EP10)) 

b) 
Query: 
SELECT FNAME,MINIT,LNAME 
FROM EMPLOYEE, DEPENDENT 
WHERE FNAME = DEPENDENT_NAME AND SSN = ESSN 
 
 
Relational Algebra Notation 

FNAME,MINIT,LNAME ( EMPLOYEE ⨝FNAME = DEPENDENT_NAME AND SSN=ESSN(DEPENDENT)) 

 

 

  



7 
 
 

c) 
SELECT E.FNAME,E.MINIT,E.LNAME 
FROM EMPLOYEE E, EMPLOYEE S 
WHERE S.FNAME = ‘Franklin’ AND S.LNAME = ‘Wong’ 
AND E.SUPERSSN = S.SSN 
 
Relational Algebra Notation 

FNAME,MINIT,LNAME (EMPLOYEE ⨝SUPERSSN=SSN(SSN(FNAME=’Franklin’ AND LNAME=’Wong’(EMPLYOEE)))) 

d) 
SELECT PNAME, SUM(HOURS) 
FROM PROJECT, WORKS_ON 
WHERE PNO=PNUMBER 
GROUP BY PNAME 
 
Relational Algebra Notation 
PNAME, F SUM HOURS(PROJECT ⨝PNO=PNUMBER(WORKS_ON)) 

e) 
SELECT E.FNAME,E.MINIT,E.LNAME 
FROM EMPLOYEE E 
WHERE NOT EXISTS  
(SELECT * FROM PROJECT AS P WHERE NOT EXISTS 
(SELECT * FROM WORKS_ON AS W WHERE W.ESSN=E.SSN AND W.PNO=P.PNUMBER)) 
 
Relational Algebra Notation 

P_MISSED ← ESSN (PROJECT⨝PNUMBER!=PNO(ESSN, PNO(WORKS_ON⨝ESSN=SSN(EMPLYOEE)))) 

FNAME,MINIT,LNAME(EMPLOYEE ⨝SSN != ESSN (P_MISSED))  

The above query gets all the employes who didn’t missed any project to work on i.e they worked on 

all porjects 

f) 
SELECT E.FNAME,E.MINIT,E.LNAME 
FROM EMPLOYEE E 
WHERE E.SSN NOT EXISTS  
(SELECT W.ESSN FROM WORKS_ON AS W WHERE W.ESSN=E.SSN) 
 
Relational Algebra Notation 

FNAME,MINIT,LNAME (EMPLOYEE ⨝SSN != ESSN(ESSN(WORKS_ON⨝ESSN=SSN(EMPLYOEE)))) 

 

 



8 
 
 

Question 3 

 
 
Phase 0: 
Insert using: h0 = key mod M, Split using h1 = key mod 2M 
Initially M=4 

    
    
    
    

Insertion Process: n=0 (split point) 
32 9 14 31 
44 25 18 35 
36 5 10  
  30  

0    1   2    3 
 
When we inserted the 12th value we have load factor (12/16) = 0.75 > 0.70. So bucket 0 needs to be split 
using h1 and and n will be incremented to 1. So, we get  

32 9 14 31 44 
 25 18 35 36 
 5 10   
  30   

0    1   2  3  4 
Now load factor 12/20 = 0.6, we will continue to insertion 

32 9 14 31 44 
 25 18 35 36 
 5 10 7  
  30 11  

0    1   2  3  4 
   43 Overflow 

 
Now load factor is 15/24 = 0.75 > 0.70 
We will use h1 to split bucket 1 and increment n to 2. We get the following result: 



9 
 
 

32 9 14 31 44 5 
 25 18 35 36  
  10 7   
  30 11   

0   1  2  3   4  5 
   43 Overflow  

Now we will continue 
32 9 14 31 44 5 
 25 18 35 36  
 37 10 7   
 29 30 11   

0   1  2  3   4  5 
   43 Overflow  

Upon inserting the 17th value the load factor is 17/24 = 0.708 > 0.70 
We will use h1 to split bucket 2 and increment n to 3. We get the following result: 

32 9  31 44 5 14 
 25 18 35 36  30 
 37 10 7    
 29  11    

0   1  2  3  4 5  6 
   43 Overflow   

Now we will continue 
32 9 50 31 44 5 14 
 25 18 35 36  30 
 37 10 7    
 29  11    

0   1  2  3  4 5  6 
   43 Overflow   

All the values have been inserted. 



10 
 
 

Question 4 

 
 

 
 
 

1,3 0 1 

6 0 3 
3,5 

Stack: 

-1 -1 
4 0 2 

3 0 

1 

2 

3 

4 

B+-tree stored in a file: 

5 



11 
 
 

 

 

6 0 3 

Stack: 
4 0 2 

3 0 

1 

2 

3 

4 

B+-tree stored in a file: 

5 

1 3 

1 

0 2 

3 0 

1 

2 

3 

4 

5 

1 3 

1 

0 2 

4 1 

2 

6 0 3 

3 0 

1 

2 

3 

4 

5 

1 3 

1 

0 2 

4 1 

2 

Empty stack  

6 0 

3 

0  1  2  3  
 

6 1 4       

Data File 



12 
 
 

Question 5 

 
  
We need to maintain an array A[ ] of integers, in which each A[j] is the beginning position of sj in s. Then, 
to uncompress sj, (j = 1, …, m), execute the following procedure:  
 

1. Let A[j] = a. Let A[j + 1] = b. 
2. t := s[a .. b - 1]. 
3. Scan t from beginning to find the first 0. 
4. Let the first 0 appears at position j. Check the next j bits. The corresponding value is a run.  
5. Remove all these bits from s. Go to (3). 

 
 


