Question 1

a) Consider the ER diagram of Figure 3.16 (found on my home page. Click on “figures on Chapter 3)
which shows a simplified schema for an airline reservation system. Extract from the ER diagram the
requirements and constraints that produced this schema. Try to be as precise as possible in your
requirement and constraint specification.

@ Schedubed DapTimea

AiperiCade
.Sue 1 N
DEPARTURE
AIRPORT
SchaduledATime FLIGHTLEG

Aganakd. Totno-clseats

LEG
AIRFLANE ASSIGNED INSTANCE

%0

WOTES:

{1} ALEG (SEGMENT} IS A NONSTOP PORTION OF A FLIGHT

EHALEG INSTANCE 15 A PRTICULAR DCCURRENCE
OF ALEG ON APARTICULARDATE

SEAT

1. AIRPORT: The database presents the information about each AIRPORT in an
AIRPORT table. Each AIRPORT has its unique combination of the attributes
Airport_code, Airport Name, City and State where it is located. The Airport_code is the
unique identifier of this entity.

2. FLIGHT: Each FLIGHT has a unique Number attribute as an identifier. The FLIGHT
entity also consists of the details of the flight, including the Airline of the flight and the
Weekdays of the flight schedule.

3. FARE: Each FLIGHT has its FARE with a Code attribute as the discriminator and the
FARE weak entity has its Amount and Restrictions.

4. FLIGHT_LEG: The FLIGHT_LEG is a weak entity type with Leg_No as the partial key
attribute. A FLIGHT can have one or more FLIGHT _LEGs with Leg_No. Each
FLIGHT_LEG can depart at DEPARTURE AIRPORT having a scheduled Departure
Time (Scheduled DepTime). Similarly, each FLIGHT _LEG can arrive at ARRIVAL
AIRPORT at a scheduled Arrival Time (ScheduledArrTime).

5. LEG-INSTANCE: A FLIGHT_LEG can have one or more LEG_INSTANCEs. A
LEG_INSTANCE is a weak entity type with date on which flight travels as the partial
key. It is used to keep track of the number of available seats and has daily records of all
the AIRPLANE information including the actual Arrival Time and Departure Time at the
AIRPORT. Each RESERVATION also need check with the daily LEG_INSTANCE for
the number of seats available before making a seat reservation for a customer.

6. AIRPLANE: Each AIRPLANE has its unique Airplane ID as the identifier along with
the attribute, total number of seats. Each AIRPLANE is assigned a LEG_INSTANCE
according to its flight date and has AIRPLANE_TYPE.

7. AIRPLANE_TYPE: The type of the airplane is determined with the attributes Type
Name, Fixed Maximum number of seats and the Company name who owns the
AIRPLANE. Each Type Name is considered unique and is used as an identifier. Many
AIRPLANE_TYPEs can land at a time at one or many other AIRPORTS.

8. SEAT: Each SEAT weak entity type has a Seat_No as a partial key. RESERVATION for
seats can be made with Customer Name and Customer Phone number.

Relationship Constraints:

1. DEPARTURE AIRPORT: a 1:N relationship type between AIRPORT and
FLIGHT _LEG. The participation of AIRPORT is partial whereas for FLIGHT _LEG is
total.

2. ARRIVAL AIRPORT: a 1:N relationship type between AIRPORT and FLIGHT_LEG.
The participation of AIRPORT is partial whereas for FLIGHT_LEG is total.

3. LEGS: a 1:N relationship type between FLIGHT and FLIGHT_LEG which is also the
identifying relationship for the weak entity type FLIGHT LEG. The participation of
FLIGHT is partial, whereas that of FLIGHT_LEG is total.

4. FARES: a 1:N relationship type between FLIGHT and FARE which is also the
identifying relationship for the weak entity type FARE. The participation of FLIGHT is
partial and that of FARE is total.

5. ASSIGNED: a 1:N relationship type between AIRPLANE and LEG_INSTANCE. The
participation of AIRPLANE is partial but that of LEG_INSTANCE is total.

6. RESERVATION: a 1:N relationship type between SEAT and LEG_INSTANCE which is
also the identifying relationship for the weak entity type SEAT. The participation of
SEAT is total and that of LEG_INSTANCE is partial.

7. TYPE: a 1:N relationship type between AIPLANE_TYPE and AIRPLANE. The
participation of AIRPLANE_TYPE is partial and that of AIRPLANE is total as all
airplanes must be of a particular type and there can be many airplanes of an
AIRPLANE_TYPE.

8. CAN_LAND: a N:M relationship type between AIRPLANE_TYPE and AIRPORT. One
or more Airplanes of an AIRPLANE_TYPE can land at every AIRPORT. Both
participations are determined to be partial as not all types of airplanes can land at every
airport.

9. INSTANCE OF: There are many instances of FLIGHT_LEG. It is the identifying
relationship for the weak entity LEG_INSTANCE. The participation of FLIGHT LEG is
partial whereas it is total for LEG_INSTANCE.

(b) A database is being constrocted to keep track of the teams and games of a sport league. A team has a

pa.rt1n:1pat1ng in each game for each team, the positions they played in that zame, and the result of the
game. Tty to design an EE. schema diagram for this application, stating any assumption you make.
Choose your favorite sport (soccer, baseball, foothall, ...

Answer to Question 1 Part (b)

Scheduled_date

Address

_Player_number.

Figure: ER schema diagram for Basketball League

Assumptions:

e No two Games are scheduled on the same date.

e A Game might get cancelled and might happen on a different date than the scheduled
date.

e A Coach can only train one Team.

e A Team must have a Coach but a Coach can decide to not train a Team

e Some Teams might not participate in a game.

e [For a Team to exist, it must have Players.

e A Player must have a Team.

e A Tournament with the same tournament name can be organized again (maybe annually).

e A Game must take place at a Basketball court.

e Players from different Teams can have the same player number.

Answer to Question 2

a. SELECT FNAME, LNAME FROM EMPLOYEE, PROJECT, WORKS_ON WHERE
EMPLOYEE.SSN = WORKS_ON.ESSN AND PROJECT.PNUMBER =
WORKS_ON.PNO AND EMPLOYEE.DNO =5 AND WORKS_NO.HOURS > 10
AND PROJECT.PNAME = ‘Project X’;

b. SELECT FNAME, LNAME FROM EMPLOYEE, DEPENDENT WHERE
EMPLOYEE.SSN = DEPENDENT.ESSN AND DEPENDENT.DEPENDENT_NAME
= EMPLOYEE.FNAME;

c. SELECT empl.FNAME, empl.LNAME FROM EMPLOYEE empl, EMPLOYEE emp2
WHERE emp2.FNAME = ‘Franklin” AND emp2.LNAME = ‘Wong” AND emp2.SSN =
empl.SUPERSSN;

d. SELECT PNAME, SUM(HOURS) FROM PROJECT, WORKS_ON GROUP BY
PNAME HAVING PROJECT.PNUMBER = WORKS_ON.PNO;

e. SELECT FNAME, LNAME FROM EMPLOYEE AS e WHERE NOT EXISTS
(SELECT * FROM PROJECT AS p WHERE NOT EXISTS(SELECT * FROM
WORKS_ON AS w WHERE w.ESSN = e.ESSN AND w.PNO=p.PNO));

f. SELECT FNAME, LNAME FROM EMPLOYEE AS e, PROJECT AS p WHERE NOT
EXISTS (SELECT * FROM WORKS_ON AS w WHERE w.ESSN =e.SSN AND
w.PNO = p.PNUMBER);

A simple ERD:

|
O

Tname }— team |——(coacher

time
Thname ;— pIayer » game
‘ locatio

score

R

&}
|Q
o

Question 2

2_(15) Specify the following queries in SQL (see Fig. 7.5 on my home page).
a. Retrieve the name of all employees in department 5 who work more than 10 hours per week on the
‘Product X project.
b, List the names of all employees who have a dependent with the same first name as themselves.
c. Find the names of all employees who are directly supervised by “Franklin Wong®.
d. For each project, list the project name and the total hours per week (by all employees) spent on that project.
e. Retrieve the names of all employees who work on every project.

f Retrieve the names of all employees who do not work on any project

a)

Query:

SELECT FNAME,MINIT,LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME = ‘Product X’ AND PNO = PNUMBER AND HOURS > 10
AND SSN = ESSN AND DNO=5

Relational Algebra Notation
EP10 ¢ Tlessn(O HouRs>10 (WORKS_ON D<lpno=pnumeer(TTPNUMBER(G PNAME="Productx’(PROJECT))))
TUENAME, MINIT,LNAME (O bNo=5 (EMPLOYEE D<lssn-gssn(EP10))

b)

Query:

SELECT FNAME,MINIT,LNAME

FROM EMPLOYEE, DEPENDENT

WHERE FNAME = DEPENDENT_NAME AND SSN = ESSN

Relational Algebra Notation

TCenAME,MINIT,LNAME (EMPLOYEE D<IFNAME = DEPENDENT NAME AND SsN=EssN(DEPENDENT))

c)

SELECT E.FNAME,E.MINIT,E.LNAME

FROM EMPLOYEE E, EMPLOYEE S

WHERE S.FNAME = ‘Franklin” AND S.LNAME = ‘Wong’
AND E.SUPERSSN = S.SSN

Relational Algebra Notation

TUrNAME, MINIT,LNAME (EMPLOYEE D<Isuperssn=ssn (TTssn(OFNAME="Frankiin’ AND LNAME="Wong’(EMPLYOEE))))

d)

SELECT PNAME, SUM(HOURS)
FROM PROJECT, WORKS_ON
WHERE PNO=PNUMBER
GROUP BY PNAME

Relational Algebra Notation
PNAME, Z#sum Hours(PROJECT BIPNO=PNUMBER(WORKS_ON))

e)

SELECT E.FNAME,E.MINIT,E.LNAME

FROM EMPLOYEE E

WHERE NOT EXISTS

(SELECT * FROM PROJECT AS P WHERE NOT EXISTS

(SELECT * FROM WORKS_ON AS W WHERE W.ESSN=E.SSN AND W.PNO=P.PNUMBER))

Relational Algebra Notation
P_MISSED < Ttessn (PROJECTD<Ipnumser!=PNO(TTessN, Pno(WORKS_OND<essn=ssn(EMPLYOEE))))
TUENAME, MINIT,LNAME(EMPLOYEE D<ssw 1= essn (P_MISSED))

The above query gets all the employes who didn’t missed any project to work on i.e they worked on
all porjects

f)

SELECT E.FNAME,E.MINIT,E.LNAME

FROM EMPLOYEE E

WHERE E.SSN NOT EXISTS

(SELECT W.ESSN FROM WORKS_ON AS W WHERE W.ESSN=E.SSN)

Relational Algebra Notation
TCeNAME, MINIT,LNAME (EMPLOYEE D<lss 1= essn(TCessn(WORKS_OND<iessn=ssn(EMPLYOEE))))

Question 3
3.(25) Linear Hashing

- collision resolution strategy: chaining

- split rule: when load factor = 0.7

- initially M = 4 (M: size of the primary area)

- hash functions: hy(key) =keymod 2!x M (i=0, 1, 2, ...)

- bucket capacity =4

Trace the insertion process of the following keys into a linear hashing file:

32,44, 36,9, 14, 18, 10, 25, 5,30, 31, 35, 7, 11, 43, 37, 29, 50

Phase O:

Insert using: ho = key mod M, Split using h; = key mod 2M

Initially M=4

Insertion Process: n=0 (split point)

32 9 14 31
44 25 18 35
36 5 10
30
0 1 2 3

When we inserted the 12 value we have load factor (12/16) = 0.75 > 0.70. So bucket 0 needs to be split
using h; and and n will be incremented to 1. So, we get

32 9 14 31 44
25 18 35 36
5 10
30
0 1 2 4
Now load factor 12/20 = 0.6, we will continue to insertion
32 9 14 31 44
25 18 35 36
5 10 7
30 11
0 1 2 4
| 43 | Overflow

Now load factor is 15/24 =0.75 > 0.70

We will use h1 to split bucket 1 and increment n to 2. We get the following result:

32 9 14 31 44
25 18 35 36
10 7
30 11
0 2 3 4
| 43 Overflow
Now we will continue
32 9 14 31 44
25 18 35 36
37 10 7
29 30 11
0 2 3 4
| 43 | Overflow

Upon inserting the 17" value the load factor is 17/24 = 0.708 > 0.70
We will use h1 to split bucket 2 and increment n to 3. We get the following result:

32 9 31 44 5 14
25 18 35 36 30
37 10 7
29 11
0 2 3 4 5
Overflow
Now we will continue
32 9 50 31 44 5 14
25 18 35 36 30
37 10 7
29 11
0 2 3 4 5
Overflow

All the values have been inserted.

10

Question 4

4. (25) Apply the following algorithm to the B+-tree shown in Fig. 1 to store it in a data file (eachnode ina B+-tree
13 stored as a page in the data file) In the algorithm_ a stack is used to explore a B+-tree in the depth-first manner.
Each entry X in the stack has three data fields:

X data — to store all the key values in a node,

X address-of-parent — to record the address (in the file) of the parent of a node,

X position — used to indicate, for a node, what child of its parent the node 1s (1.e., whether 1t 1s the first,
second, .., child of its parent.)

Trace the computation process.
Algorithm:

push(root, -1, -1);

while (S is not empty) do

{ x:i=pop()
store x.data in file F;
assume that the address of x Iin F is ad;
if x. address-of-parent = -1 then {

y = x.address-of-parent; L]
Z = x.position; N 4
write ad in page y at position z in F; 1 ‘ 3 ‘ 4 ‘ 6 ‘
1
let x4, .., %, be the children of x; l l l l
for (1=k to 1) {push(x;, ad, i)}; Fig. 1:
Stack:
—) 1,3| O 1
2
3) 5 - 1 - 1
6 0 3

B+-tree stored in a file:

11

B+-tree stored in a file:

Stack:
4 0| 2
6 0| 3
\ 6 0| 3
‘ Empty stack ‘

Data File

12

Question 5

5. (20) Assume that for an attribute of a table, m bit maps (bit vectors) are created and then compressed using the

following procedure:

Decompose each bit vector into a series of runs such that each contains a set consecutive 0’s followed by
al.

compress each run with i 0’s as below:

part 1: 1 expressed as a binary number, denoted as b,(1).

part 2: Assume that b(i) is j bits long. Then. part 2 is a sequence of (j — 1) 1’s followed by a 0, denoted a
b,(1).

The compressed bit string is set to be b,(i) by(i).

Let s; be the jth compressed bit vector. Putting all the compressed bit vectors together, we get a bit string:

Please design a method to uncompress any compressed bit vector efficiently.

We need to maintain an array A[] of integers, in which each A[j] is the beginning position of s;in s. Then,
to uncompresss;, (=1, ..., m), execute the following procedure:

vk wnN e

Let Ajl=a.LetA[j+ 1] =bh.

t:=s[la..b-1].

Scan t from beginning to find the first 0.

Let the first 0 appears at position j. Check the next j bits. The corresponding value is a run.
Remove all these bits from s. Go to (3).

