Analysis of Midterm-Examination

1.(10) Draw an ER-diagram to describe the following real world problem.
(a) A university is organized into faculties.
(b) Each faculty has a unique name, ID and number of professors and a specific professor is chosen as the faculty head.
(c) Each faculty provides a number of courses.
(d) Each course has a unique name and courseID.
(e) Each professor has a name, SIN, address, salary, sex and courses taught by him/her.
(f) Each professor belongs to a faculty and can teach several sections of a course.
(g) Each student has a name, ID, SIN, address, GPA, sex, and major.
(h) Each student can choose one faculty as his/her major faculty and take several courses with certain credit hours. Some of the courses are mandatory and some are optional.

Analysis of Midterm-Examination

Analysis of Midterm-Examination

2. (20) (a) The following is the algorithm to search a tree in depth-first manner. Change it to an algorithm to store a B+-tree (a linked list stored in main memory) in a data file. (10)
push(root); (*push the root into stack.*)
while (stack is not empty) do
\{ $\quad v:=\operatorname{pop}()$;
$\operatorname{print}(v) ; \quad(*$ or store v in a file.*)
let v_{1}, \ldots, v_{k} be the children of v;
for $(\mathrm{i}=k$ to 1$)\left\{\operatorname{push}\left(v_{i}\right)\right\}$;
\}

Analysis of Midterm-Examination

(b) Apply the algorithm to the tree shown in Fig. 1 and give the result (i.e., the data file storing the tree). (10)

Analysis of Midterm-Examination

Store a B+-tree on hard disk

Algorithm:

push(root, -1, -1);
while (S is not empty) do
\{ \quad : $=\mathrm{pop}()$;

stack: S
store x.data in file F;
assume that the address of x in F is ad;
if x.address-of-parent $\neq-1$ then \{
y := x.address-of-parent; z := x.position; write ad in page y at position z in F;
\}
let x_{1}, \ldots, x_{k} be the children of v;
for ($\mathrm{i}=\mathrm{k}$ to 1) $\left\{p u \mathrm{x}_{(}\left(\mathrm{x}_{\mathrm{i}}\right.\right.$, ad, i$\left.)\right\}$;
\}

Analysis of Midterm-Examination

$B+$-tree stored in a file:

0	1	$\underline{5}$	2	$\underline{10}$	3	
1	$\underline{1}$	2	$\underline{3}$	1		
2	$\underline{6}$	0	$\underline{9}$	1		
	$\underline{11}$	2	$\underline{13}$	0		
	$\underline{1}$					

13	6	9	3	1	11		
0	1						

Analysis of Midterm-Examination

B+-tree stored in a file:

Stack:

1,3	0	1
6,9	0	2
11,13	0	3

Analysis of Midterm-Examination

B+-tree stored in a file:

Stack:

1,3	0	1
6,9	0	2
11,13	0	3

ACS-7102 Yangjun Chen

Analysis of Midterm-Examination

3.(5) Given the relation schemas shown in Fig. 2, construct expressions (using SQL language) to evaluate the following query:
Find the names of employees who works on all the projects controlled by department 'Applied Computer Science'.

EMPLOYEE

fname, minit, lname, ssn, bdate, address, sex, salary, superssn, dno

DEPARTMENT

Dname, dnumber, mgrssn, mgrstartdate
Fig. 2

PROJECT

Pname, pnumber, plocation, dnum

WORKS_ON
Essn pno, hours

Analysis of Midterm-Examination

SELECT E.FNAME,E.MINIT,E.LNAME FROM EMPLOYEE E
 WHERE
 NOT EXISTS

There is no project that the employee does not work on. controlled by Department of "Applied Computer Science"

Analysis of Midterm-Examination

4. (20) Construct an R-tree over a set of records for geographical objects with the following coordinates $[(x 1, y 1),(x 2, y 2)]$:
$[(0,40),(60,50)]$---- road1
$[(40,0),(60,40)]$---- road2
$[(15,25),(35,35)]$---- house 1
$[(70,40),(80,50)]$---- house2
$[(70,5),(80,15)]$---- house3
$[(35,25),(80,35)]$---- pipeline
Assume that each leaf node can have at most 4 pointers and at least two pointers; and each internal node at most 2 pointers and at least 1 pointer.
Please give the computation process.

Analysis of Midterm-Examination

Analysis of Midterm-Examination

$[(70,5),(80,15)]$---- house3

- If we expand the first subregion in the internal node, then we add 1000 square units to the region.
- If we extend the other subregion in the internal, then we add 1575 square units.
[(35, 25), (80, 35)] ---- pipeline

Analysis of Midterm-Examination

Analysis of Midterm-Examination

5. (15) Given the algorithm for transforming any XML document to a tree structure, apply the algorithm to the following document and trace the computation process.
<book>
<title>
"The Art of Programming"
</title>
<author>
"D. Knuth"
</author>
<year>
"1969"
</year>
</book>

Analysis of Midterm-Examination

Transform an XML document to a tree
Read a file into a character array A:

Analysis of Midterm-Examination

Transform an XML document to a tree

```
Algorithm:
Scan array A;
If A[i] is '<' and A[i+1] is a character then {
    generate a node x for A[i..j],
    where A[j] is '>' directly after A[i];
    let y = S.top().pointer_to_node;
    make x be a child of y; S.push(A[i..j], x);
If A[i] is ' '" ', then {
    genearte a node x for A[i..j],
    where A[j] is ' " ' directly after A[i];
    let y = S.top().pointer_to_node;
    make x be a child of y;
If A[i] is '<' and A[i+1] is '/', then S.pop();
```


Analysis of Midterm-Examination

```
<book>
    <title>
        "The Art of Programming"
    </title>
    <author>
        "D. Knuth"
    </author>
    <year>
            "1969"
    </year>
</book>
```


The Art of
Programming

The Art of
Programming

Analysis of Midterm-Examination

```
<book>
        <title>
            "The Art of Programming"
    </title>
    <author>
            "D. Knuth"
    </author>
    <year>
        "1969"
    </year>
</book>
```


The Art of
Programming

The Art of Programming
D. Knuth

Analysis of Midterm-Examination

```
<book>
    <title>
    "The Art of Programming"
    </title>
    <author>
        "D. Knuth"
    </author>
    <year>
        "1969"
    </year>
</book>
```


Analysis of Midterm-Examination

6. (10) Fig. 3 is a DTD for a set of XML documents on movie and stars. Please produce a FLWR expression to find all those stars, who live at 123 Maple St., Malibu.
<!DOCTYPE Stars [
<!ELEMENT Stars (Star*)>
<!ELEMENT Star (Name, Address+, Movies)>
<!ELEMENT Name (\#PCDATA)>
<!ELEMENT Address (Street, City)>
<!ELEMENT Street (\#PCDATA)>
<!ELEMENT City (\#PCDATA)>
<!ELEMENT Movies (Movie*)>
Fig. 3
<!ELEMENT Movie (Title, Year)>
<!ELEMENT Title (\#PCDATA)>
<!ELEMENT Year (\#PCDATA)>
]>
Assume that all the documents are stored in a file "stars.xml".
```
let \(\quad \$\) stars := doc("stars.xml")
for \(\quad \$\) s in \$stars/Stars/Star, \$s1 in \$s/Address
where \(\$\) s1/Street = "123 Maple St." and
    \$s1//City = "Malibu"
return \$s/Name
```

```
let $stars := doc("stars.xml")
for $s in $stars/Stars/Star/Address
where $s/Street = "123 Maple St." and
    $s//City = "Malibu"
return $s/Name
```

let $\$$ stars := doc("stars.xml")
for $\$ \mathrm{~s}$ in \$stars/Stars/Star
where \$s/Address/Street = "123 Maple St."
and \$s/Address/City = "Malibu"
return \$s/Name

Analysis of Midterm-Examination

Query: find all the stars that live at 123 Maple St., Malibu.

The following FLWR seems correct. But it does not work.

let $\quad \$$ stars := doc("stars.xml")
for $\quad \$$ s in $\$$ stars/Stars/Star
where \$s/Address/Street = "123 Maple St."
and \$s/Address/City = "Malibu"
return $\$ \mathrm{~s} /$ Name

Correct query:

let $\quad \$$ stars := doc("stars.xml")
for $\$$ s in \$stars/Stars/Star,
\$s1 in \$s/Address
where $\$$ s1/Street = "123 Maple St." and
\$s1//City = "Malibu"
return \$s/Name

Analysis of Midterm-Examination

7. (10) The following is an XML schema, please define a DTD which is equivalent to it.
$<$? Xml version = "1.0" encoding = "utf-8" ?>
<xs: schema xmlns: xs = "http://www.w3.org/2001/XMLSchema">
<xs: complexType name = "movieType">
<xs: attribute name = "title" type = "xs: string" use = "required" />
$<x s:$ attribute name $=$ "year" type $=$ "xs: integer" use $=$ "required" $/>$
</xs: complexType>
<xs: element name = "Movies">
<xs: complexTyp>
<xs: sequence>
<xs: element name $=$ "Movie" type $=$ "movieType" minOccurs $=$ " 0 " maxOcurs $=$ "unbouned" $/>$
<xs: element name = "Star" type $=$ "xs:string" minOccurs $=$ " 0 " maxOcurs $=$ "unbouned" $/>$
</xs: sequence>
</xs: complexTyp>
</xs: element>
</xs: schema>

Analysis of Midterm-Examination

Answer:
<!DOCTYPE Movies [
<!ELEMENT Movies (Movie*, Star*) >
<!ELEMENT Movie EMPTY >

<!ATTLIST Movie
Title CDATA \#REQUIRED Year CDATA \#REQUIRED
\(>\)
<!ELEMENTStar \#PCDATA >
]>

Analysis of Midterm-Examination

8. (10) Concerning the linear hash, answer the following questions:
(a) What is a phase?
(b) When to split a bucket?
(c) How to split a bucket?
(d) What bucket will be chosen to split next?
(e) How do we find a record inserted into a linear hashing file?

Answer:
a) In the linear hash process, a series of hash functions: h_{0}, h_{1}, h_{2}, \ldots are used. In each phase i, h_{i} and h_{i+1} will be used. When the size of the primary area is doubled, phase i is completed.

$$
h_{i}(\mathrm{key})=\operatorname{key} \bmod \left(2^{i *} \mathrm{M}\right),
$$

Analysis of Midterm-Examination

Answer:
b) When an overflow occurs or when the load factor becomes larger than a certain threshold, we choose a bucket to split.
c) In phase i, we use h_{i+1} to split the records in the corresponding bucket.
d) A pointer variable n is maintained to indicate what bucked is chosen to split. Initially, n is set to 0 . After each splitting n is increased by 1.
e) When we want to find a certain key value k in a linear hash file, we will try $h_{j}(k)$, and $h_{j+1}(k)$, where j is the number of phases made during the hash file's construction.

