
Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 1

1.(10) Draw an ER-diagram to describe the following real world problem.

(a) A university is organized into faculties.

(b) Each faculty has a unique name, ID and number of professors and a

specific professor is chosen as the faculty head.

(c) Each faculty provides a number of courses.

(d) Each course has a unique name and courseID.

(e) Each professor has a name, SIN, address, salary, sex and courses taught

by him/her.

(f) Each professor belongs to a faculty and can teach several sections of a

course.

(g) Each student has a name, ID, SIN, address, GPA, sex, and major.

(h) Each student can choose one faculty as his/her major faculty and take

several courses with certain credit hours. Some of the courses are

mandatory and some are optional.

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 2

faculty

professor

course

student

ER-model:

belong

head

provide

choose

teach

F-name F-Id NoProf

birthdatename sex major

name

couresId

name ID addr.

startdate

1

1

1

N

N

M

N

1
M

N

take

SIN

sex

salary

section-IDs

M

N

mandatory-optional

ID

SIN

addr.

creditHours

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 3

2. (20) (a) The following is the algorithm to search a tree in depth-first

manner. Change it to an algorithm to store a B+-tree

(a linked list stored in main memory) in a data file. (10)

push(root); (*push the root into stack.*)

while (stack is not empty) do

{ v := pop();

print(v); (*or store v in a file.*)

let v1, …, vk be the children of v;

for (i = k to 1) {push(vi)};

}

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 4

(b) Apply the algorithm to the tree shown in Fig. 1 and give the

result (i.e., the data file storing the tree). (10)

61

5 10

113 9 13

13 6 9 3 1 11

0 1 2

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 5ACS-7102 Yangjun Chen 5

Algorithm:

push(root, -1, -1);

while (S is not empty) do

{ x := pop();

store x.data in file F;

assume that the address of x in F is ad;

if x.address-of-parent  -1 then {

y := x.address-of-parent;

z := x.position;

write ad in page y at position z in F;

}

let x1, …, xk be the children of v;

for (i = k to 1) {push(xi, ad, i)};

}

data address-of-

parent

position

stack: S

Store a B+-tree on hard disk

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 6

1 5 2 100

1

2

3

B+-tree stored in a file:

1 2 3 1

6 0 9 1

11 2 13 0

3

61

5 10

113 9 13

13 6 9 3 1 11

0 1 2

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 7

50

1

2

3

61

5 10

113 9 13

13 6 9 3 1 11

0 1 2

5,10
11, 13 30

Stack:

-1 -1

10

6, 9 20

1, 3 10

B+-tree stored in a file:

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 8

61

5 10

113 9 13

13 6 9 3 1 11

0 1 2

11, 13 30

Stack:

6, 9 20

11, 13 30

6, 9 20

1, 3 10

1 5 2 100

1

2

3

B+-tree stored in a file:

1 2 3 1

6 0 9 1

11 2 13 0

3

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 9

3.(5) Given the relation schemas shown in Fig. 2, construct expressions

(using SQL language) to evaluate the following query:

Find the names of employees who works on all the projects

controlled by department ‘Applied Computer Science’.

fname, minit, lname, ssn, bdate, address, sex, salary, superssn, dno

Dname, dnumber, mgrssn, mgrstartdate

EMPLOYEE

DEPARTMENT

Pname, pnumber, plocation, dnum

PROJECT

Essn pno, hours

WORKS_ON

Fig. 2

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 10

SELECT E.FNAME,E.MINIT,E.LNAME

FROM EMPLOYEE E

WHERE

NOT EXISTS

(SELECT P.pname FROM PROJECT AS P, DEPARTMENT D

WHERE P.dnum = D.dnumber AND

D.DNAME = “Applied Computer Science”))

NOT EXISTS

(SELECT * FROM WORKS_ON AS W,

WHERE P.pnumber = W.pno AND

W.essn=E.ssn))

There is no project that the employee does not work on.

controlled by Department of “Applied Computer Science”

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 11

4. (20) Construct an R-tree over a set of records for geographical

objects with the following coordinates [(x1, y1), (x2, y2)]:

[(0, 40), (60, 50)] ---- road1

[(40, 0), (60, 40)] ---- road2

[(15, 25), (35, 35)] ---- house1

[(70, 40), (80, 50)] ---- house2

[(70, 5), (80, 15)] ---- house3

[(35, 25), (80, 35)] ---- pipeline

Assume that each leaf node can have at most 4 pointers and

at least two pointers; and each internal node at most 2

pointers and at least 1 pointer.

Please give the computation process.

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 12

((0, 40), (60, 50))

road1

((0, 0), (60, 50))

road1 road2

((0, 0), (60, 50))

Road1 road2 house1

((0, 0), (80, 50))

Road1 road2 house1 house2

[(0, 40), (60, 50)] ---- road1 [(40, 0), (60, 40)] ---- road2

[(15, 25), (35, 35)] ---- house1 [(70, 40), (80, 50)] ---- house2

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 13

((0, 0), (60, 50)) ((70, 5), (80, 50))

house2 house3road1 road2 house1

• If we expand the first subregion in the internal node, then we add 1000

square units to the region.

• If we extend the other subregion in the internal, then we add 1575 square

units.

((0, 0), (80, 50)) ((70, 5), (80, 50))

house2 house3road1 road2 house1 pipeline

[(70, 5), (80, 15)] ---- house3

[(35, 25), (80, 35)] ---- pipeline

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 14

[(0, 0), (60, 50)] [(70, 5), (80, 50)]

[(0, 0), (80, 50)] [(35, 5), (80, 50)]

[(35, 25), (80, 35)] ---- pipeline

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 15

5. (15) Given the algorithm for transforming any XML document

to a tree structure, apply the algorithm to the following document

and trace the computation process.

<book>

<title>

“The Art of Programming”

</title>

<author>

“D. Knuth”

</author>

<year>

“1969”

</year>

</book>

<book>

<title> <author> <year>

“The Art of

Programming”

“D. Knuth” “1969”

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 16

node_value Pointer_to_node

stack S:

Read a file into a character array A:

< b o o k > < t i t l e > “ T h e A r t …

Transform an XML document to a tree

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 17

Algorithm:

Scan array A;

If A[i] is ‘<’ and A[i+1] is a character then {

generate a node x for A[i..j],

where A[j] is ‘>’ directly after A[i];

let y = S.top().pointer_to_node;

make x be a child of y; S.push(A[i..j], x);

If A[i] is ‘ ‘‘ ’, then {

genearte a node x for A[i..j],

where A[j] is ‘ ’’ ’ directly after A[i];

let y = S.top().pointer_to_node;

make x be a child of y;

If A[i] is ‘<’ and A[i+1] is ‘/’, then S.pop();

Transform an XML document to a tree

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 18

<book>

<book>

<title>

“The Art of Programming”

</title>

<author>

“D. Knuth”

</author>

<year>

“1969”

</year>

</book> <book>

<title>

<book>

<title>

The Art of

Programming

<book>

The Art of

Programming

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 19

<book>

<title>

“The Art of Programming”

</title>

<author>

“D. Knuth”

</author>

<year>

“1969”

</year>

</book>

<book>

<author>

The Art of

Programming

<book>

The Art of

Programming
D. Knuth

<book>

<year>

The Art of

Programming
D. Knuth

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 20

<book>

<title>

“The Art of Programming”

</title>

<author>

“D. Knuth”

</author>

<year>

“1969”

</year>

</book>

<book>

<year>

The Art of

Programming
D. Knuth 1969

<book> The Art of

Programming
D. Knuth 1969

The Art of

Programming
D. Knuth 1969

em
p
ty

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 21

6. (10) Fig. 3 is a DTD for a set of XML documents on movie and

stars. Please produce a FLWR expression to find all those

stars, who live at 123 Maple St., Malibu.

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Assume that all the documents are stored in a file “stars.xml”.

Fig. 3

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 22

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star, $s1 in $s/Address

where $s1/Street = “123 Maple St.” and

$s1//City = “Malibu”

return $s/Name

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where $s/Address/Street = “123 Maple St.”

and $s/Address/City = “Malibu”

return $s/Name

This is wrong!

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star/Address

where $s/Street = “123 Maple St.” and

$s//City = “Malibu”

return $s/Name

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 23

Query: find all the stars that live at 123 Maple St., Malibu.

The following FLWR seems correct. But it does not work.

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where $s/Address/Street = “123 Maple St.”

and $s/Address/City = “Malibu”

return $s/Name

Correct query:

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star,

$s1 in $s/Address

where $s1/Street = “123 Maple St.” and

$s1//City = “Malibu”

return $s/Name

<? Xml version = “1.0” encoding = “utf-8” … ?>

<Stars>

<Star>

<Name>Fay Wray</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ave.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 24

7. (10) The following is an XML schema, please define a DTD which is equivalent to it.

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: complexType name = “movieType”>

<xs: attribute name = “title” type = “xs: string” use = “required” />

<xs: attribute name = “year” type = “xs: integer” use = “required” />

</xs: complexType>

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”

minOccurs = “0” maxOcurs = “unbouned” />

<xs: element name = “Star” type = “xs:string”

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

</xs: element>

</xs: schema>

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 25

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*, Star*) >

<!ELEMENT Movie EMPTY >

<!ATTLIST Movie

Title CDATA #REQUIRED

Year CDATA #REQUIRED

>

<!ELEMENT Star #PCDATA >

]>

Answer:

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 26

8. (10) Concerning the linear hash, answer the following questions:

(a) What is a phase?

(b) When to split a bucket?

(c) How to split a bucket?

(d) What bucket will be chosen to split next?

(e) How do we find a record inserted into a linear hashing file?

Answer:

a) In the linear hash process, a series of hash functions: h0, h1, h2,

… are used. In each phase i, hi and hi+1 will be used. When the

size of the primary area is doubled, phase i is completed.

hi(key) = key mod (2i*M),

Analysis of Midterm-Examination

Jan, 2024 ACS-7102 Yangjun Chen 27

Answer:

b) When an overflow occurs or when the load factor becomes larger

than a certain threshold, we choose a bucket to split.

c) In phase i, we use hi+1 to split the records in the corresponding

bucket.

d) A pointer variable n is maintained to indicate what bucked is

chosen to split. Initially, n is set to 0. After each splitting n is

increased by 1.

e) When we want to find a certain key value k in a linear hash file,

we will try hj(k), and hj+1(k), where j is the number of phases made

during the hash file’s construction.

